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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PHYSICS DEPARTMENT

8.13/8.14                       
Junior Laboratory

STATISTICS AND ERROR ESTIMATION

The purpose of this note is to explain the application of statistics to the estimation of
error in the context of an imaginary experiment that is similar to situations encountered in
the Junior Lab.  In physical measurements the word "error" should be interpreted as
meaning uncertainty.  More complete discussions of the theory and practise of error
estimation can be found in the books by Bevington & Robinson (1992)  and by Taylor
(1982).

Imagine an experiment designed to measure the gamma-ray activity of a radioactive
source with a detector connected to a counting system as illustrated in Figure 1.  Assume
that the emission of gamma rays by the source is isotropic. Call Q the activity of the source
S in units of disintegrations per second, A the effective area of the detector (the actual area
multiplied by the detector efficiency), x the distance from the source to the detector, and n
the number of gamma-ray photons detected in time T as measured with a digital timer.  The
objective of the experiment is to derive an estimate of Q from measurements of these
quantities and to estimate the error in the derived value.

Figure 1.  Experimental setup for measuring the activity of a radioactive source.

 The expression for the source strength in terms of the measured quantities is

                Q= 
n
T 

4πx2

A . (1)

 The data are listed in Table 1.  The error associated with A  is an estimate of the
"one-sigma" uncertainty in the effective area due to a combination of random and
systematic errors of measurement.   The error of T is purely systematic since it is the
reading of a digital timer controlled by a vibrating quartz crystal with a limited guarantee of
accuracy.  The data include the results of a measurement of x which was carried out with a
meter stick in a manner designed to exploit the advantages of repetition.  We assume that
the observer, cautious to avoid psychological bias,  shifted the meter stick between
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measurements of the positions of the source and detector and did not subtract the two
readings X i1 and X i2 before writing them down.

The following questions arise:

1. What are systematic and random errors?
2. What does "one-sigma" mean?
3. What is the best estimate and one-sigma error of the measurement of the distance x?
4. What is the one-sigma error of the number of recorded counts n?
5. Given the measurements and one-sigma errors of n, T, X , and A, how are they to be
     combined to obtain the estimate of Q and its error?

________________________________________________________________________
Table 1.  Hypothetical data from a measurement of the intrinsic activity of a radioactive source.

n = 10,000
T = 100±0.001  s
A = 40.0 ±0.2  cm2

i X i1 X i2 xi=X i2–X i1
(cm) (cm) (cm)

1 12.2 22.8 10.6
2 11.8 22.2 10.4
3 15.7 26.0 10.3
4 12.7 23.2 10.5
5 13.3 23.9 10.6
6 14.0 24.5 10.5

Summary
In brief, the answers to the questions are:

1. Systematic errors are caused by calibration errors of instruments, by improper
procedures, and by psychological bias that can result from prior conviction as to what the
answer "should" be.  Systematic errors tend to be one-sided, i.e., to result in repeated
measurements that lie on one or the other side of the true value known only to Mother
Nature.  Random error is the uncertainty in a measurement due to everything other than
systematic error such as, for examples, counting statistics, electronic noise, and
uncertainties in visual interpolation between scale marks.  Random error causes the results
of a repeated measurement to be scattered with a distribution which is often (but not
necessarily) symmetric about a mean value and describable by the Gaussian distribution.

2. A "one-sigma error" is a measure of the width of a Gaussian distribution which would
be expected to fit the histogram of values of a measured quantity if the measurement were
repeated many times.  In the example only six statistically independent measurements of x
were made.  So the problem is to make the best estimate of x and its error from the
available data.

3. The best estimate of x and the associated random error are

x = mx ± sx ,

where
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mx= 
1
6∑

i=1

6
xi =10.48 cm

is the mean of the six measurements

and sm = 
1

6*5∑
i=1

6
(xi–mx)2 =0.05 cm

is the standard error of the mean.

4. The error associated with the number of counts caused by the decay of a radioactive
substance is governed by  Poisson statistics.  If the number of counts recorded is n, then
the one-sigma estimate of error is n.  So the one-sigma error in the number of counts
recorded in the experiment is 100.

5. The one-sigma error of the estimate of Q is expressed by the equation

sQ = Q 



sn

n
2
 +  



2sx

x
2
 +  



sA

A  
2
 +  



sT

T   
2
   .

The numerical portion of the estimate and its error are

Q =  
n
T 

4πx2

A  



1±

sQ
Q  = 3452.6 ± 49.8

The result would be reported as

Q = (3.45± 0.05) x 103  disintegrations s–1.

1. The Gaussian Distribution of Error
In many situations, repeated, independent, unbiased measurements of a physical

quantity will yield values that are randomly distributed in a manner that can be described by
the Gaussian distribution

G(µ,σ; x) = 
1

σ 2π
 exp







–  

( )x–µ 2

2σ2
, (2)

where G(µ,σ; x)dx  is the probability that a given measurement will yield a value between x

and x+dx, µ is the "mean" of the distribution, σ is the "standard deviation" of the
distribution.  The semicolon separates the parameters of the distribution from the
distributed quantity.  It can be shown that the distribution is normalized, i.e.,

∫
–∞

∞
G(µ,σ;  x)dx = 1. (3)

Denoting mean values of the distribution by enclosure in brackets [ ], it can also be shown
(with the help of gamma functions)  that
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  [x] = ∫
–∞

∞
G(µ,σ;  x)xdx = µ, (4)

   [(x–µ)2] = ∫
–∞

∞
G(µ,σ;  x)(x–µ)2dx = σ2, (5)

       ∫
µ–σ

µ+σ

G(µ,σ;  x)xdx = 0.6826 (6)

The last of these equations shows that the probability of a single measurement yielding a
value between µ–σ and µ+σ is 0.6826.  Two-sigma and three-sigma ranges indicate
0.9554 and 0.9974 probabilities, respectively.

2. Maximum Likelihood: Sample Mean and Sample Standard Deviation
 If the distribution of measured values of a quantity x  can be described by a

Gaussian, then we can express the probability P(xi) of having obtained N specific values of

x, each within some small fixed range ∆x «σ, as the product of the probabilities of
obtaining each one which is

        P(xi,∆x) = ∏
i

G(µ,σ;xi)∆x=









∏

i

∆x

σ 2π
exp 











–∑
i

 
(xi–µ)2

2σ2
. (7)

The "true values" of the parameters µ and σ are, of course,  known only to Mother Nature.
The best we can do is to derive estimates of  µ and s from the available data.   We call m
the "maximum likelihood" estimate of µ and define it to be that value which maximizes P.
To maximize P, the sum in the exponential must be minimized.  Setting

χ2 = ∑
i

 
(xi–m)2

σ2
(8)

we require

∂χ2

∂m  = –2 ∑
i

 
(xi–m)

σ2
 = 0 , (9)

which implies

m = 
1
N  ∑

i=1

N
xi (10)

Thus, the maximum likelihood estimate of µ is simply the mean of the measured values,
which is called the "sample mean."
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Since N   is always finite (6 in the present case), we cannot assume that the average
value of (xi – m)2 is a good estimate of σ2.  Indeed, since m is calculated to minimize the

sum of the squared deviations, it follows that [(xi –m)2] is likely to be an underestimate of

σ2.  To compensate for this effect and obtain a better estimate of  σ2, the "sample standard
deviation", s, is defined by the equation

s2 = 
1

(N–1)∑
i=1

N
(xi–m)2 (11)

in which the division is by (N–1) instead of N .
The quantity s measures the spread of the measured values of x.  If the series of

measurements were repeated many times, the distribution of the means would obviously be
substantially narrower than the distributions of the individual measurements.  Thus, to get a
measure of the error in the average of a finite number of measurements we need to estimate
the error of the sample mean.

We first address the general problem of estimating the standard deviation of a
function f(q1,q2, ...) of several measured quantities qi with known means µi and standard

deviations σi.  We call  µf  and σf the mean and standard deviation of f , respectively, and
assume the mean value of f is µ f=f(µ1,µ 2

...).  Then

 σf
2= [(f–µ f)2] = [(∆f)2]=[ 







∑

i

∂f

∂qi
(qi–µ i)

2
]. (12)

If the fluctuations of the measured quantities are uncorrelated, then the sum of the cross
terms in the expansion of the squared sum will average to zero.  In this case, the standard
deviation of the mean is defined by the equation

 σf
2 = ∑

i 



∂f

∂qi

2
σi

2 (13)

Considering the sample mean as a function of the variables xi,  we find

∂m

∂xi
 = 

1
N   . (14)

The estimate of  σi  is the sample standard deviation s.   Thus

sm
2 = 

1
N2

 Ns2, (15)

so the estimate of the error of the mean is
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sm = 
 s
N

  =  
1

N(N–1)∑
i=1

N
(xi–m)2 (16)

Table 2 lists the results of numerical experiments employing 10,000 trial data sets
of various sample sizes, each consisting of N  random Gaussian variates with µ=100 and
σ=10.  For each set, the mean, m, and  various measures of deviation were computed and
averaged.  The results show that even with the (N–1) compensation, the average value of s
(sample standard deviation) is less than σ. The rms (root of the mean square) deviation

from the specified µ is closer to σ, as one would expect.  The tests, with  N=3, 10 and

100, confirm the expectation that in the limit N→∞, m→µ and s→σ.

________________________________________________________________________
Table 2. Summary of Monte Carlo tests of Gaussian statistics.  In this table brackets < >
           signify the average over n trials.  The asterisks mark the quantities derived from
data.

_____________________________________________________________

Applying the formulas for the sample mean, standard deviation and, error of the
mean with the measured values of the distance between source and detector, one finds

m   =10.4833
s    =  0.1169 (17)
sm =  0.0477.
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These results would be reported as

x = 10.48 ± 0.05 cm (18)

where only the significant digits are quoted after rounding off.

3. Poisson Statistics
To estimate the error in the quantity n obtained for the number of counts recorded in

time T, one must predict the distribution of the numbers  of counts that might have been
obtained in many trials of the same measurement. One can never know the true rate r since
any measurement is subject to uncontrollable fluctuations.  So we have to proceed with the
only estimate we have, which is n counts in time T.

The Poisson distribution, P(µ;x), expresses the probability that in a given trial
exactly x counts are recorded in time T when the true rate is r=µ/T .  Imagine the time
interval T  divided into M sub-intervals of equal duration ∆T=T/M, where M»µ.  In the

limit M→∞, the probability that exactly one count occurs in x  specific sub-intervals is





µ

M
x
 , and the probability that none occurs in the rest is 





1–

µ
M

M–x
. Thus,

P(µ;x) =  lim 




µ

M
x
 




1–

µ
M

M–x
W(M,x), (19)

             

M→∞

where W(M,x) is the number of distinct ways in which x counts can occur in M sub-
intervals.

To find W , imagine the record of counts laid out as a series of M boxes with x balls
labeled 1 to x representing the counts placed in numerical sequence in the boxes
corresponding to the sub-intervals in which the count occurred.  That  series would
represent just one of many ways in which a record of x counts could occur.  Another way
would be represented by x balls numbered 1 to x  scattered at random without regard to
numerical order.  Ball #1 could be dropped in any of M boxes.  Ball #2 could be dropped
in any of the remaining M–1 unoccupied boxes, etc., so that the number of distinct series
without regard to numerical order is readily computed as M(M–1)(M–2)......(M–x+1).  But
this would be a gross over-estimate of the number of distinct ways in which x counts could
occur because,  if the labels were erased after the dropping, there would be no distinction
between all the possible series that had the same boxes occupied, but by balls with
permuted labels.  The number of possible permutations of x different label numbers is x!.
So the number of distinct series with unlabeled balls is less than the number of
distinguishable series with labeled balls by the factor 1/x!.  Thus

W(M,x) = 
M(M–1)(M–2)......(M–x+1)

x! (20)

In the limit M→∞, M(M–1)(M–2).....(M–x+1)→Mx, and  (1–µ/M)M–x → exp(–µ/M).
Combining equations (19) and (20) and taking the limit, we obtain for the Poisson
distribution the expression

P(µ;x) = 
µxexp(–µ)

x!  . (21)
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The distribution is properly normalized, i.e.,

∑
i=0

∞
P(µ;x) = exp(–µ)



1

0! +  
µ
1! +  

µ2

2! . . .   = 1. (22)

One easily finds for the mean and standard deviations

[x]= ∑
i=0

∞
xP(µ;x) = exp(–µ)



0

0! +  
µ
1! +

2µ2

2!  +  
3µ3

3!  +  . . . .

      =µ exp(–µ) 



1

0! +  
µ
1! +  

µ2

2! . . .   = µ , (23)

and,

σ = [(x – µ)2]= [x2] – µ2 = [x(x – 1)] + [x ] – µ2

   = µ2 + µ – µ 2 = µ . (24)

It is interesting to compare the error estimate based on the total count n  with an
error estimate derived from the counts recorded in each of N  sub-intervals of the total time
T.  Call ni the number of counts in the ith interval of duration ∆T=T/N. The sample mean,
sample standard deviation, and error of the mean would be, respectively,

mn = 
1
N  ∑

i=1

N
ni =

n
N (25)

sn = 
1

(N–1) ∑
i=1

N
(ni–mnn')2 (26)

smn
= 

sn

N
  . (27)

Since ni is a Poisson variate with an estimated mean mn, the estimate of  ∑
i=1

N
(ni–mn)2 is

Nmn=n = s2.  Thus the error of the mean of ni is related to the sample standard deviation of
n by

smn
= 

s
N(N–1)

 . (28)

The estimated rate and error estimate is
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r  =
mn±  smn

∆T

   = 
n 
T  ± 

N
(N–1) 

s
T . (29

Thus the error incurred by analyzing the data in N  time segments instead of all together is

larger by the factor 
N

(N–1) .

It can be shown that in the limit n →∞
P(µ;n) → G(µ, µ;n) (30)

Returning to the data analysis,  the only estimate of the mean number of counts in
100 seconds available from the data is the actual number of counts. So we take

 m=n=10,000.

Then
sn = m=100.

It can be shown (with the help of Stirling's approximation) that in the limit µ–>∞

P(µ;x) –> G(µ,σ; x),

where σ= µ.  Calculation of Poisson probabilities becomes unwieldy for large values of x
because of the need to evaluate x!.  For values of µ>20 the Gaussian approximation is
often good enough.  As an example, suppose you want to know the probability of
obtaining a count in the range from 121 to 130 when µ=100.  A good estimate would be

10G(µ,σ; x) with µ=100, σ=10, and x=125.

4. Error Estimate of the Source Strength
The source strength is expressed in terms of four uncorrelated measured quantities

by equation (1).  Assuming that the errors of those quantities are all Gaussian, we can
apply equation (13) to estimate the error in Q.  To find the partial derivatives it is
convenient first to take the natural log of both sides of equation (1).  Then, taking the
partial derivatives, one obtains





∂Q

∂n

2
= 





Q

n
2
,  





∂Q

∂x

2
= 





2Q

x
2
, 





∂Q

∂A

2
= 





Q

A
2
,  and 





∂Q

∂T

2
= 





Q

T
2
. (31)

Thus

sQ = Q 



sn

n
2
 +  



2sx

x
2
 +  



sA

A  
2
 +  



sT

T   
2
  . (32)

Evaluating Q and the fractional errors, we find
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Q =  
n
T 

4πx2

A  



1±

sQ
Q (33)

Q = 3452.6( )1± 0.00010 + 0.000083 + 0.000025 + 1.0e–10 

   = 3452.6 ± 49.8

The last term under the radical sign can be ignored. The result would be reported as

Q= (3.45± 0.05) x 103  disintegrations s–1. (34)

5. Curve Fitting by the Maximum Likelihood Method
The maximum likelihood method used in Section 2 can be extended to solve the

problem of fitting a "model" function to a set of data that consists of N measurements of
one quantity, yi, with measurement errors, σi,  as a function of another quantity, xi, which

is assumed to be exact. The data set would consist of N triplets of numbers (xi, yi, σi),
i=1, 2,...N .

We assume that the probability distributions of the yi  are Gaussians with standard

deviations  σi.  Suppose there is reason to believe that y is related to x  by the equation
y=f(a,b, ...;x), where the values of the parameters a, b, ... are not known. The function f is
called the model, and the aim of the analysis is to determine the values of the model
parameters that would have yielded N   values of y in the ranges  yi±∆ywith maximum
probability.  Adapting equation (7), we express the probability  as

       ∏
i

G(a,b, . . . ,σi;yi)∆y = 







∏

i

∆y

σi 2π
exp 







–∑

i

 
[yi–f(a,b, ...,xi)]2

2σi
2

. (35)

The condition of maximum likelihood requires, as before, that the summation be
minimized. Setting

χ2 = ∑
i

 
[yi–f(a,b, ...,xi)]2

σi
2

, (36)

we require

∂χ2

∂a
 = 0,    

∂χ2

∂b
 = 0,  ........ (37)

(χ2 is called "chi-square").

To illustrate the method we consider the case of a data set that can be modeled by a
linear relation
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y = a + bx. (38)

According to equations (37) we require

∂χ2

∂a
  = –2 ∑

i

 
[yi–a–bxi]

σi
2

 = 0, (39a)

∂χ2

∂b
  = –2 ∑

i

 
xi[yi–a–bxi]

σi
2

 = 0. (39b)

This yields two simultaneous equations in a and b,

 ( )∑1/σi
2 a  +   ( )∑xi/σi

2 b = ∑yi/σi
2 (40a)

 ( )∑xi/σi
2 a  + ( )∑xi

2/σi
2 b  = ∑yixi/σi

2 (40b)

which are easily solved by determinants.
As an example, suppose the exact quantities are the durations in seconds of

measurements of the activity of a long-lived radioactive source.  The quantities subject to
random error (i.e., statistical fluctuations) are the corresponding numbers of counts
recorded by the detector. Since the number of counts is a Poisson variate, the one-sigma
errors are equal to the square roots of the numbers of counts.  To test the method, the
Gaussian approximation of equation (30) was used to generate a set of 100 variates yi  with
mean values

µ i = 100xi,  xi  =  1, 2, 3, ...,100,

and corresponding one-sigma errors (based on the "measured" values rather than the µi)

σi = yi .

The maximum likelihood values of a and b in the model function of equation (38) were
computed by the program LINFIT listed in Bevington & Robinson (1992).  Figure 2 is a
plot of the data and the fitted model.  The results demonstrate an essential fact about the
relation between a data set with correctly estimated error bars and a smooth curve fitted to
the data, namely, approximately one-third of the error bars should not be intersected by the
curve.

The maximum likelihood method of curve fitting is readily extended to fitting a
multi-parameter non-linear function.  Assume that one has fairly good initial guesses a0, c0,
b0 for the approximate values of the parameters.  Expand the function in a Taylor series
about those values, keeping only the linear  terms in ∆a, ∆b,  ∆c, ..., and substitute the
expanded form of f in equation (35).  Numerical derivatives can be computed if analytical
ones are too complicated or impractical.  The numerator will then be
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







yi–f(a0,c0,b0;xi )–
∂f

∂a
∆a– 

∂f

∂b
∆b–   ...

2
(41)

Setting the partial derivatives of χ2 with respect to  ∆a, ∆b,  ∆c, ... to zero, one obtains a
set of simultaneous equations that can be solved for the increments to the parameters that
improve the fit.  The process is then repeated with the incrementally improved parameter

values till   χ2  no longer decreases.  This is the method employed in several of the Junior
Lab curve-fitting programs.  Details of this procedure with implementing codes can be
found in Bevington and in Press, et al.

Fig. 2. Illustration of a maximum-likelihood fit of a linear relation to data produced
by the Gaussian variate generator GASDEV of Press et al. (1989).  The mean was xi=100i,

i=1 to 100, and the standard deviation was xi .  Note that the number of data error bars

(yi± yi )intersected by the fitted line is 66, which is, as expected, about 2/3 of 100.
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