Search for New Physics at LHC with ATLAS Detector

Hai-Jun Yang University of Michigan, Ann Arbor

Seminar at Southern Methodist University October 20, 2008

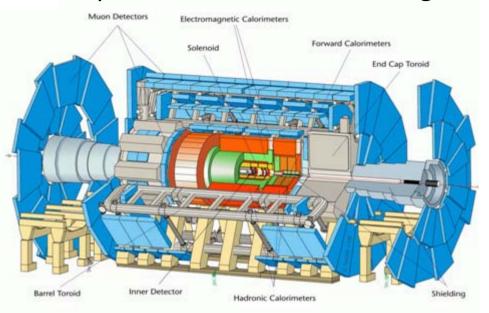
Outline

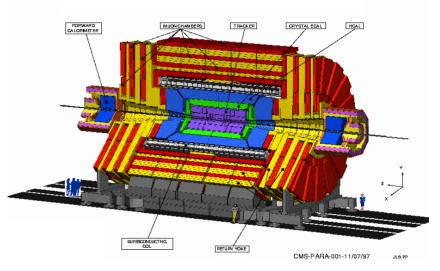
• Introduction


'Re-discover' the Standard Model with early LHC data

- Studies on vector gauge bosons
- Indirect Search for new physics through anomalous Triple-Gauge-Boson Couplings
- Search for new physics through diboson and ttbar events
 - − SM Higgs \rightarrow WW \rightarrow IvIv
 - Z' → ttbar → bbWW → bbjjlv

• Development of advanced particle identification algorithm


- Boosted Decision Trees, Event Weight Training Technique
- A general search strategy to improve physics discovery potential
- Materials presented in this talk are based on LHC physics studies by H. Yang with the Michigan ATLAS group members


Proton-Proton Collisions at LHC to discover the mysteries of EWSB, Dark-Matter, ...

Two general purpose experiments at LHC

> 10 years of hard work in design and constructions, ready for beams

ATLAS

Length : ~45 m Diameter : ~24 m Weight : ~ 7,000 tons Electronic channels : ~ 10⁸ Solenoid : 2 T Air-core toroids

Excellent Standalone Muon Detector

CMS

Length : ~22 m Diameter : ~14 m Weight : ~ 12,500 tons Solenoid : 4 T Fe yoke Compact and modular

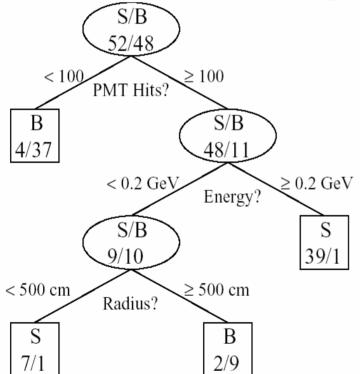
Excellent EM Calorimeter 4

LHC Physics Run in 2008-2009

- Single beam injection on September 10, 2008
- pp collisions at 10 TeV will start in April 2009, Luminosity would ramp up to 10³³ cm⁻²s⁻¹
- Integrated luminosity: a few fb⁻¹
 - Detector calibration to 1-2% accuracy
 - Detector performance validation by measuring cross sections of SM processes (dijets, W, Z, ttbar, diboson)
 - Serious searches with a few fb⁻¹ include:
 - Higgs \rightarrow WW (M_H from 150 GeV 180 GeV)
 - W' and Z' in TeV mass region
 - SUSY signature
 - ...

Re-discover Standard Model

A Steppingstone to Discover New Physics


Our search for new physics at LHC will start with

- W and Z productions: the standard candles
 - demonstrate the detector performance
 - constrain the PDF
- Diboson (WW, WZ, ZZ, Wγ, Zγ) **ATL-COM-PHYS-036(041)**
 - test the SM in high energy region
 - probe the anomalous triple-gauge boson couplings
 - understand the diboson background for new physics signature
- Two methods used in the analysis
 - Cut-based (classical method)
 - Boosted Decision Trees (a new multivariate analysis tool developed at U. of Michigan by H. Yang et al.)

Boosted Decision Trees

Relatively new in HEP – MiniBooNE, BaBar, D0(single top discovery), ATLAS
 Advantages: robust, understand 'powerful' variables, relatively transparent, ...

"A procedure that combines many weak classifiers to form a powerful committee"

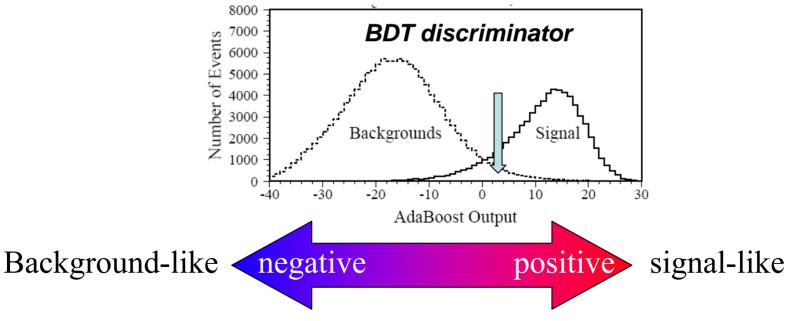
BDT Training Process

•Split data recursively based on input variables until a stopping criterion is reached (e.g. purity, too few events)

- Every event ends up in a "signal" or a "background" leaf
- Misclassified events will be given larger weight in the next decision tree (boosting)

H. Yang et.al. NIM A555 (2005)370, NIM A543 (2005)577, NIM A574(2007) 342

A set of decision trees can be developed,


each re-weighting the events to enhance identification of backgrounds misidentified by earlier trees ("boosting")

For each tree, the data event is assigned

+1 if it is identified as signal,

- 1 if it is identified as background.

The total for all trees is combined into a "score"

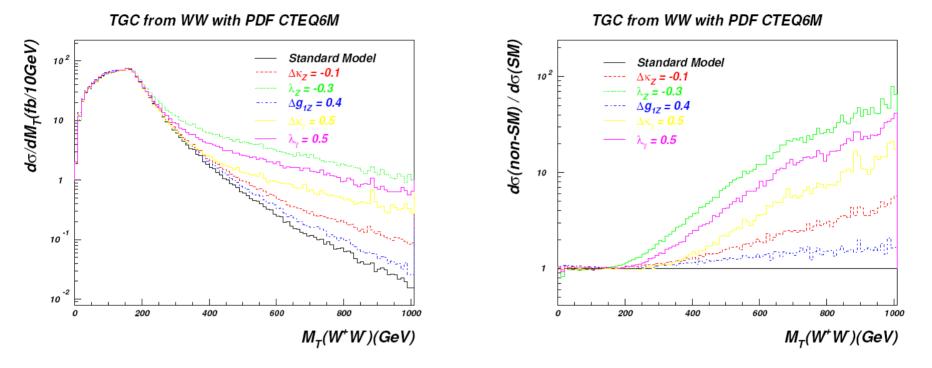
SM Diboson Studies in ATLAS

ATL-COM-PHYS-2008-036, ATL-COM-PHYS-2008-041

Diboson	Signature	Physics
$W^+W^- \rightarrow I_V I_V$	2 opposite sign leptons + Missing E _T	Std Model WW production Std Model Higgs; Z'decays; anomalous TGC
W±Z → Iv II	3 leptons + Missing E _T	Std Model WZ; SUSY; Technicolor; anomalous TGC
$W^{\pm}\gamma \rightarrow I_{V}\gamma$	Lepton + photon + ME _T	Std Model Wγ; anomalous TGC
ZZ → II II or II vv	4 leptons 2 lepton+ME _T	Std Model ZZ & Higgs anomalous neutral TGC; GMSB
Zγ → II γ	2 leptons + photon	Std Model Ζγ; anomalous neutral TGC; GMSB

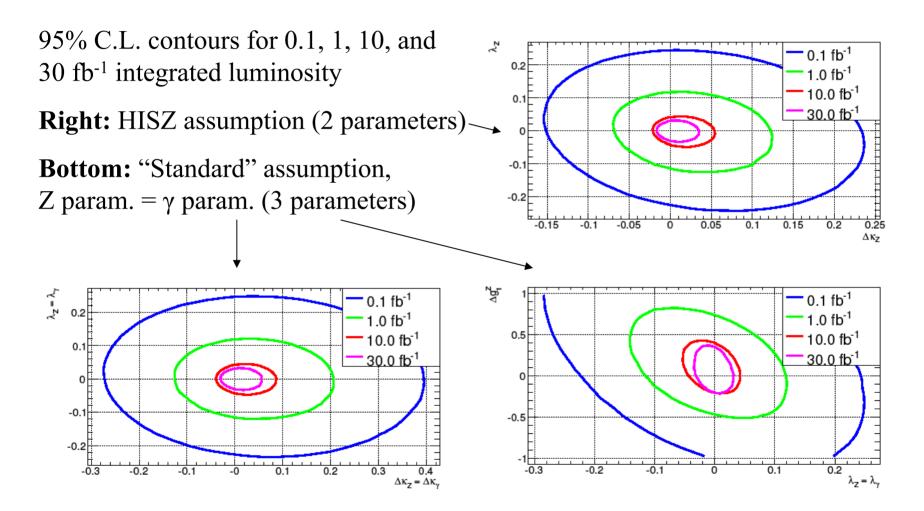
Diboson Detection Sensitivity with ATLAS for 1 fb⁻¹ Integrated Luminosity

High sensitivity results come from the analysis based on BDT technique


Diboson mode	Signal	Background	Signal eff.	σ^{signal}_{stat}	<i>p</i> -value	Sig.
$W^+W^- ightarrow e^{\pm} \nu \mu^{\mp} \nu$	347±3	64±5	12.6% (BDT)	5.4%	3. 6×10^{-166}	27.4
$W^+W^- ightarrow \mu^+ u \mu^- u$	70 ± 1	17 ± 2	5.2% (BDT)	12.0%	8. 8×10^{-30}	11.3
$W^+W^- \rightarrow e^+ \nu e^- \nu$	52 ± 1	11 ± 2	4.9% (BDT)	13.9%	1.9×10^{-24}	10.1
$W^+W^- \rightarrow \ell^+ \nu \ell^- \nu$	103 ± 3	17 ± 2	2.0% (cuts)	9.9%	1.4×10^{-54}	15.5
$W^{\pm}Z \rightarrow \ell^{\pm} \nu \ell^{+} \ell^{-}$	$\begin{array}{c} 128\pm2\\ 53\pm2\end{array}$	$\begin{array}{c} 16\pm 3\\ 8\pm 1\end{array}$	15.2% (BDT) 6.3% (cuts)	8.8% 13.7%	3. 0×10^{-76} 3. 1×10^{-30}	18.4 11.4
$\begin{array}{l} ZZ \rightarrow 4\ell \\ ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu} \end{array}$	$\begin{array}{c} 17\pm0.5\\ 10\pm0.2 \end{array}$	$\begin{array}{c}2\pm0.2\\5\pm2\end{array}$	7.7% (cuts) 2.6% (cuts)	24.6% 31.3%	6. 0×10^{-12} 7. 7×10^{-4}	6.8 3.2
$W \gamma ightarrow e u \gamma \ W \gamma ightarrow \mu u \gamma$	$\begin{array}{c} 1604\pm65\\ 2166\pm88 \end{array}$	$\begin{array}{c} 1180 \pm 120 \\ 1340 \pm 130 \end{array}$	5.7% (BDT) 7.6% (BDT)	2.5% 2.1%	significance > 30 significance > 30	
$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 367\pm12\\ 751\pm23 \end{array}$	$\begin{array}{c} 187\pm19\\ 429\pm43 \end{array}$	5.4% (BDT) 11% (BDT)	5.2% 3.6%	$\begin{array}{l} 1.\ 2 \times 10^{-91} \\ 5.\ 9 \times 10^{-171} \end{array}$	20.3 27.8

Search for **new physics** by probing anomalous triple-gauge-couplings

- In the standard model $g_1^{V} = \kappa_V = 1$ and $\lambda_V = 0$. The goal is to measure these values, usually expressed as the five anomalous parameters Δg_1^{Z} , $\Delta \kappa_Z$, λ_Z , $\Delta \kappa_\gamma$, and λ_γ
- In many cases the terms have an s dependence which means the higher center-of-mass energies at the LHC greatly enhance our sensitivity to anomalous couplings
- Complementary studies through different diboson channels


Production	Δ κ _z , Δ κ _γ term	∆g ₁ ^z term	$\lambda_{z}, \lambda_{\gamma}$ term
WW	grow as ŝ	grow as \$ ¹ / ₂	grow as ŝ
WZ	grow as $\hat{s}^{1\!\!\!/_2}$	grow as \hat{s}	grow as ŝ
Wγ	grow as $\hat{s}^{\frac{1}{2}}$		grow as ŝ

Anomalous spectra and reweighting ratio

- Left: the M_T(WW) spectrum for W⁺W⁻ events with anomalous coupling parameters using the BHO Monte Carlo.
- Right: the 'ratios = $d\sigma(non-SM)/d\sigma(SM)$ ' used to reweight fully simulated events.
- The ATLAS sensitivities on anomalous TGC couplings are extracted by comparing the 'mock SM data' with the anomalous spectra using binned likelihood fit on $M_T(VV)$ and $P_T(V)$ distributions.

2D anomalous TGC sensitivity using M_T (WW)

Anomalous charged TGCs: Expected 1-D 95% CL limits

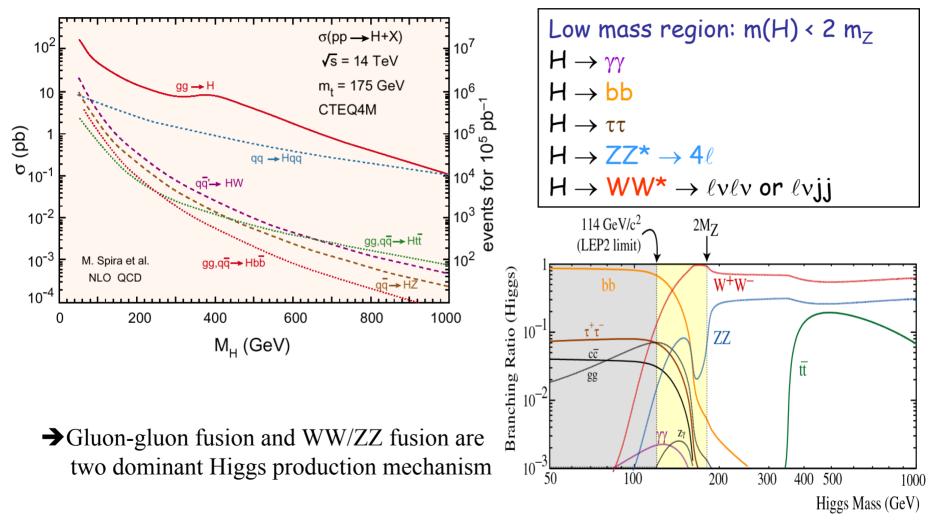
Source	Lumi fb ⁻¹	λ _z wz	$\Delta \kappa_1^{\ z}$ WW	Δg_1^{Z} WZ	$\frac{\Delta \kappa_1^{\gamma}}{WW}$	λ_{γ} W γ
ATLAS	0.1	[062,.056]	[44,.61]	[063,.119]	[47,0.51]	X
ATLAS	1	[028,.024]	[117,.187]	[021,.054]	[24,.25]	[09,.04]
CDF/D0	1.9/.16	[13,.14]	[82,1.27]	-	[88,.96]	[2,.2]
	10	[015,.013]	[.015,.013]	[011,.034]	[26,.07]	[05,.02]
	30	[-0.012,.008]	[026,.0048]	[005,.023]	[056,.054]	[.02,.01]

Anomalous neutral TGC 95% CL limits

Lumi	f ₄ ^Z	f ₅ ^Z	f ₄ ^γ	f ₅ γ
1	[018,.018]	[018,.019]	[022,.022]	[022,.022]
30	[006,.006]	[006,.007]	[008,.008]	[008,.008]
LEP	[3,.3]	[34,.38]	[27,.19]	[32,.36]

Search for New Physics with Diboson and ttbar Events

>We do not really know what new physics could be discovered at LHC


➢Many theoretical models predict that the new physics signature would show up in diboson, top-rich and large MET events.

➤Two examples will be presented based on UM group's studies

1) Search for SM Higgs \rightarrow WW

(H. Yang et.al., ATL-COM-PHYS-2008-023)

Direct Search for SM H \rightarrow WW \rightarrow IvIv

MC Higgs Signal Used in Study

Pythia Generator (Gluon-Gluon Fusion)
 H → WW → evev, μνμν, evμν

$GGF\:H\toWW$	Dataset #	MC Events	$\sigma imes$ BR (fb)
M _H = 150 GeV	3010	97400	767
M _H = 165 GeV	3025	96200	866
M _H = 170 GeV	5329	167200	825
M _H = 175 GeV	3035	193450	770
M _H = 180 GeV	3040	96250	716

- Above Higgs samples were produced at UM using jobOptions similar to official jobOption DS5320 (with diff. M_H and separate the ggF and VBF production)
- UM Pythia Higgs samples were compared to Higgs dataset 5320 by separating the ggF and the VBF events, they are in good agreement.
- UM samples are available at BNL Tier-1 center.

MC Backgrounds Used in Study

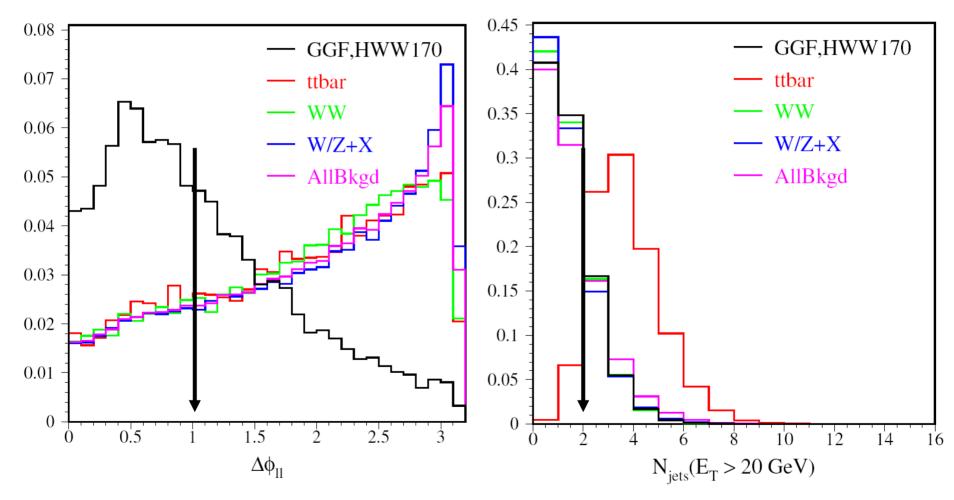
(SM samples were used for ATLAS diboson CSC note)

Backgrounds Dataset #		MC Events	$\sigma imes$ BR (fb)
$qq \rightarrow WW$	2821 – 2829	210 K	12503
$gg \rightarrow WW$	5921 – 5929	370 K	648
ttbar	5200	529 K	4.6E5
WZ	5941, 5971	281 K	688
W + X:			5.75E7
W→In	5250 – 5255	5.25 M	5.62E7
W+Jets(E>80)	4288, 4289	595 K	1.3E6
Z + X:			6.9E6
ZZ	6356, 5980	181 K	84
Drell-Yan	4295 - 4297	10.5 M	6.8E6
Z+Jets(E>80)	4293, 4294	597 K	52800
Zbb	5175 – 5177	200 K	48720

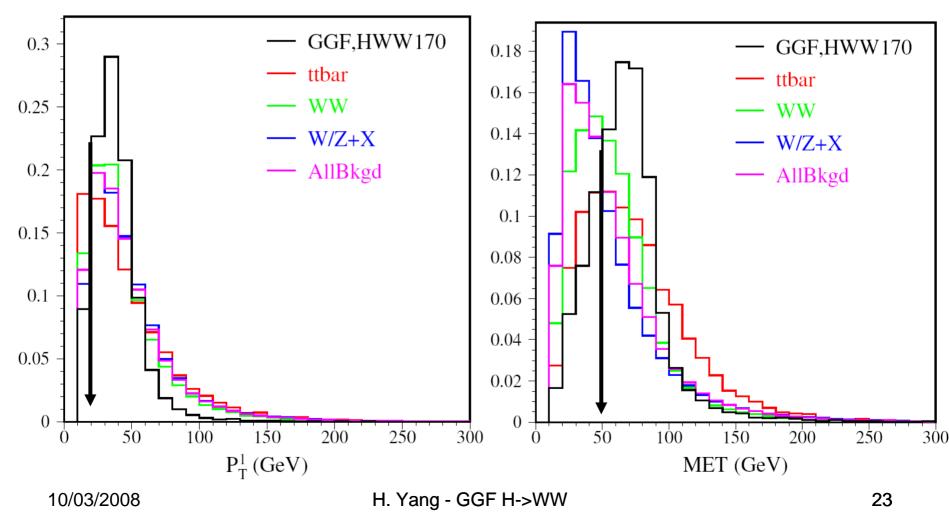
Event Pre-selection for $H \rightarrow WW \rightarrow IvIv$

- Two leptons with opposite charges; each lepton with $P_T > 10 \text{ GeV}$
- Missing $E_T > 15 \text{ GeV}$
- Events must pass one of lepton trigger requirements: 2E10, 2MU6, E25I, MU20
- Physics objects:
 - Electron ID based on likelihood ratio > 0.6
 - Muon ID based on Staco algorithm

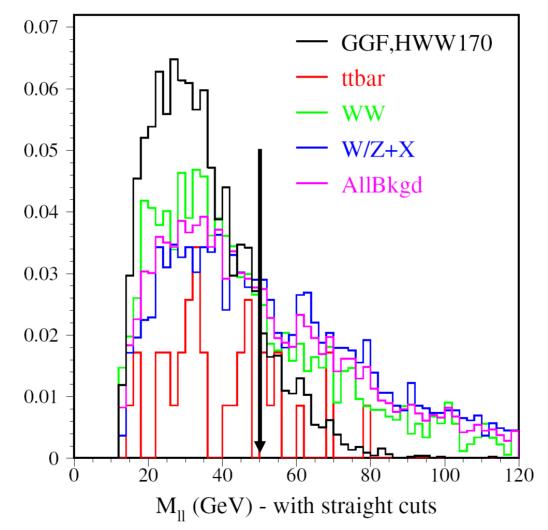
– Jet class: C4TopoJet ($E_T > 20 \text{ GeV}$)


Detection Sensitivity Studies Based on Pre-selected Events

- Cut-based analysis
 - Optimize the straight cuts for better sensitivity
- Analysis based on Boosted Decision Trees (BDT)
- Consider two leptons with 0-jet and 1-jet events
- Results from cut-based and BDT analyses


Select $H \rightarrow WW \rightarrow I_V I_V$ with Straight Cuts

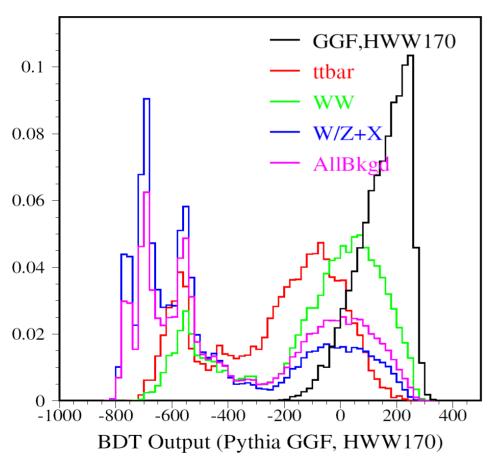
- Pt (I) > 20 GeV; Max (Pt(I1),Pt(I2)) > 25 GeV
- Lepton Isolation
 - In R=0.4 cone, $\Sigma Pt(\mu) < 5 \text{ GeV}$
 - $\ln R=0.4 \text{ cone}, \Sigma Pt(e) < 8 \text{ GeV}$
- MET > 50 GeV
- N_{jet} (Et>20 GeV) = 0 or 1
- ∆\u03c6 (|1,|2) < 1.0
- 12 < M(I1,I2) < 50 GeV


Some Variable Distributions After Pre-selection

Some Variable Distributions After Pre-selection

Invariant Mass of two leptons (applied all cuts except M_{\parallel} cut)

Results from Cut-based Analysis (1/fb)

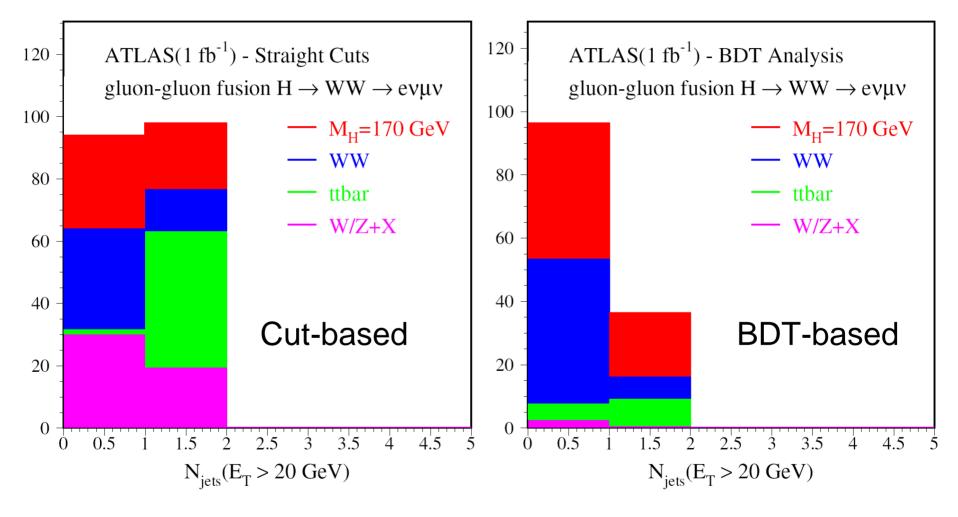

H→WW→IvIv Events / fb	M _H =150 GeV	M _H =165 GeV	M _H =170 GeV	M _H =175 GeV	M _H =180 GeV	Bkgd
Cuts (eµ + 0 jet)	18.8	33.3	28.5	24.9	19.7	64.2
Cuts (eµ + 1 jet)	12.4	25.2	20.3	17.8	14.9	76.8
Cuts (eµ)	31.2	58.5	48.8	42.7	34.6	141.0
Cuts (µµ + 0 jet)	10.1	18.5	15.7	13.3	10.3	33.3
Cuts (µµ + 1 jet)	7.0	13.3	11.2	10.4	8.7	58.4
Cuts (μμ)	17.1	31.8	26.9	23.7	19.0	91.7
Cuts (ee + 0 jet)	6.3	11.3	9.9	8.1	6.8	80.6
Cuts (ee + 1 jet)	4.3	9.0	7.9	6.4	5.3	38.7
Cuts (ee)	10.6	20.3	17.8	14.4	12.1	119.3
Cuts (ee+μμ+eμ) Efficiency	58.9 7.7%	110.6 12.8%	93.5 11.3%	80.8 10.5%	65.7 9.2%	352.0

BDT Analysis (H. Yang et.al., ATL-COM-PHYS-2008-023)

- Signal for Training: PYTHIA Gluon-Gluon fusion $H \rightarrow WW$
- Backgrounds for Training: WW, ttbar, WZ, W+X and Z+X
- Input variables for training:
 - Energy and Momentum
 - $p_T(\ell), p_T(\ell, \ell)$
 - MET, total recoil E_T
 - scalar $\sum E_T(jet)$, vector $\sum E_T(\ell, MET)$
 - Lepton Isolation
 - Number of tracks in $\Delta R < 0.4$ cone around ℓ
 - Sum of track p_T in $\Delta R < 0.4$ cone around ℓ
 - Sum of jet E_T in $\Delta R < 0.4$ cone around ℓ

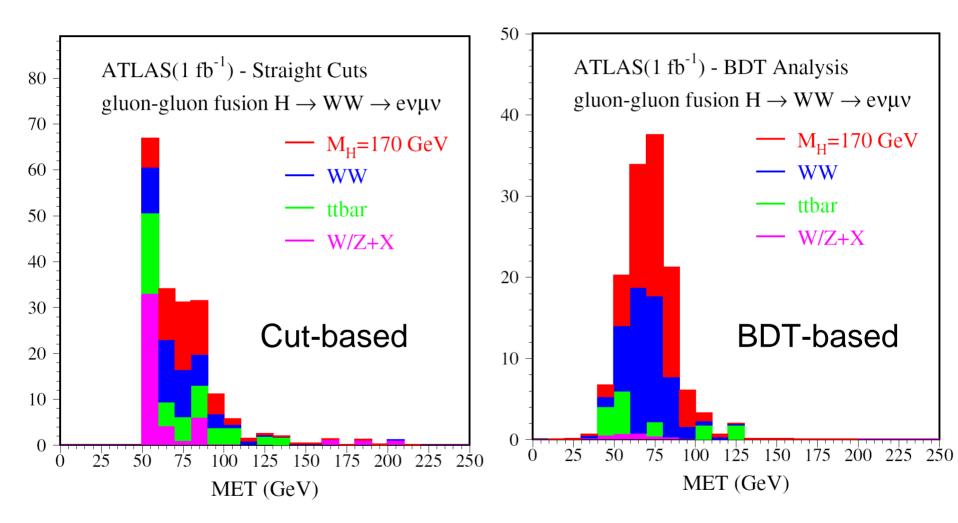
- Event Topology
 - Number of Jets with $E_T > 20 \text{ GeV}$
 - $E(\ell)/P(\ell)$
 - A0 (impact parameter) of ℓ , $\Delta A0(\ell, \ell)$, $\Delta Z(\ell, \ell)$
 - $\Delta R(\ell, \ell), \Delta \phi(\ell, \ell), \Delta \phi(\ell, MET)$
 - $\Delta \Omega(\ell,\ell)$ opening angle of two leptons
- Mass Information
 - Invariant mass(ℓ, ℓ)
 - Transverse mass($\ell\ell$,MET)
 - Transverse mass(ℓ ,MET)

BDT Discriminator



BDT discriminator is the total score of the BDT output as shown in left plot.

Event Selection: 1) For 0-jet events: BDT >=200 2) For 1-jet events: BDT >=220


Detection sensitivity is defined as Significance = $N_S/\sqrt{N_B}$ (With or without systematic error)

Results (1/fb): Straight Cuts vs BDT

28

Results (1/fb): Straight Cuts vs BDT

BDT Results: $H \rightarrow WW \rightarrow I_V I_V (1/fb)$

H→WW→IvIv	M _H =150	M _H =165	M _H =170	M _H =175	M _H =180	Bkgd
Events / fb	GeV	GeV	GeV	GeV	GeV	
BDT (eµ-0 jet)	22.5	45.1	41.0	36.6	29.4	53.6
BDT (eµ-1 jet)	9.3	21.8	19.2	16.4	13.3	16.3
BDT (0 jet+1 jet)	31.8	67.0	60.2	53.0	42.7	69.8
BDT (µµ-0 jet)	13.2	25.3	22.8	20.6	17.1	39.1
BDT (µµ-1 jet)	7.9	16.3	13.1	11.4	8.4	19.3
BDT (0 jet+1 jet)	21.1	41.6	35.9	32.0	25.5	58.4
BDT (ee-0 jet)	11.2	17.8	16.7	15.1	14.2	56.8
BDT (ee-1 jet)	6.3	12.8	11.0	9.2	7.8	33.2
BDT (0 jet+1 jet)	17.5	30.6	27.7	24.3	22.0	90.0
BDT (ee+μμ+eμ)	70.4	139.2	123.8	109.3	90.2	218.2
	9.2%	16.1%	15.0%	14.2%	12.6%	

$\mathsf{H} \rightarrow \mathsf{WW} \rightarrow \mathsf{IvIv} \text{ Selection}$

statistical sensitivity (1/fb) for each dilepton channel

GGF H→WW N _s / √N _b (1/fb)	M _H =150 GeV	M _H =165 GeV	M _H =170 GeV	M _H =175 GeV	M _H =180 GeV
Cuts (eµ)	2.6	4.9	4.1	3.6	2.9
Cuts (μμ)	1.8	3.3	2.8	2.5	2.0
Cuts (ee)	1.0	1.9	1.6	1.3	1.1

BDT (eµ)	3.8	8.0	7.2	6.3	5.1
BDT (μμ)	2.8	5.4	4.7	4.2	3.3
BDT (ee)	1.8	3.2	2.9	2.6	2.3

$H \rightarrow WW \rightarrow I_V I_V$ Selection Combined Statistical Sensitivity (1/fb)

GGF H→WW	M _H =150	M _H =165	M _H =170	M _H =175	M _H =180	Bkgd
Events / fb	GeV	GeV	GeV	GeV	GeV	
Cuts (ee+μμ+eμ)	58.9	110.6	93.5	80.8	65.7	352.0
Efficiency	7.7%	12.8%	11.3%	10.5%	9.2%	
N _s / √N _b (no syst) Cuts (ee+ μμ +e μ)	3.1	5.9	5.0	4.3	3.5	N/A

BDT (ee+μμ+eμ)	70.4	139.2	123.8	109.3	90.2	218.2
Efficiency	9.2%	16.1%	15.0%	14.2%	12.6%	
N _s / √N _b (no syst) BDT (ee+μμ+eμ)	4.8	9.4	8.4	7.4	6.1	N/A

Systematic Uncertainties

Understand the systematic errors is crucial for $H \rightarrow WW$ detection, which is a 'Counting' experiment, no shape mass peak! Major uncertainties come from

- 1) Signal modeling (cross-sections, spin-spin correlations, ...)
- 2) Detector response modeling (resolutions, energy scale, efficiencies...)
- 3) The background model (cross-sections, distribution shapes,...)

Systematic uncertainties based on theoretic papers, Tevatron experience and our own studies are listed below:

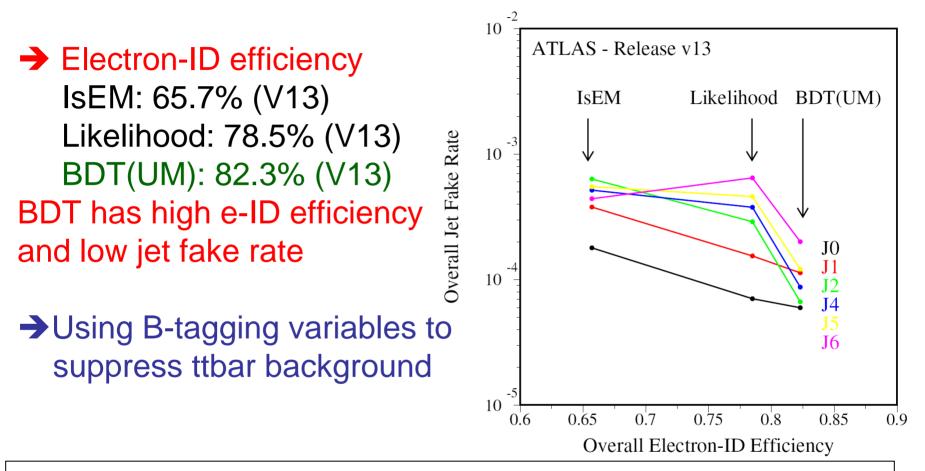
- 6.5% Luminosity uncertainty (ref. Tevatron)
- 5% Parton Density Function uncertainty
- 3% Lepton identification acceptance uncertainty
- 5% Energy scale uncertainty (3% on lepton energy and 10% on hadronic energy)
- 6% BDT training uncertainty due to energy scale uncertainty and MC cross section uncertainties of major backgrounds
- 15% background estimation uncertainty due to limited MC data sample statistics (W/Z+X)

Study the background model uncertainties

- To estimate systematic uncertainty caused by background model uncertainties both in cross-sections and in overall distribution shapes, we vary the major background cross-sections in the BDT training process (reweighting), which effectively changing the overall background distributions.
- WW and ttbar weighting are changed by $\pm 20\%$ for BDT training. The relative change of background acceptance with fixed signal efficiency are listed in the table.

Relative change	H→WW	H→WW	H→WW	
of background	(evµv)	(μνμν)	(evev)	
σ _{ww} +20%	4.6%	2.0%	2.3%	
σ _{ww} - 20%	6.8%	6.8%	8.4%	
σ_{ttbar} +20%	2.4%	4.0%	3.1%	
σ _{ttbar} - 20%	5.7%	1.1%	1.2%	

Uncertainty from lepton and Jet Energy Scale and Resolution


• To estimate the systematic uncertainties due to detector modeling, all energy-dependent variables in testing samples are modified by adding additional energy uncertainty, 3% for lepton and 10% for jets. The relative changes of signal and background efficiencies are calculated by using same BDT cut.

Relative change	H→WW	H→WW	H→WW	
	(evµv)	(μνμν)	(evev)	
Signal (resolution)	<0.1%	0.1%	<0.1%	
Signal (Scale)	1.1%	1.7%	2.6%	
Background (resolution)	0.4%	0.9%	0.4%	
Background (Scale)	3.1%	2.0%	5.6%	

$H \rightarrow$ WW Detection Sensitivity (1/fb, with 20% systematic error)

GGF H→WW N _s / √N _b (1/fb)	M _H =150 GeV	M _H =165 GeV	M _H =170 GeV	M _H =175 GeV	M _H =180 GeV
Cuts (eµ)	1.0	1.9	1.6	1.4	1.1
Cuts (μμ)	0.8	1.5	1.3	1.1	0.9
Cuts (ee)	0.4	0.8	0.7	0.5	0.5
BDT (eμ)	2.0	4.1	3.7	3.3	2.6
BDT (μμ)	1.5	3.0	2.6	2.3	1.8
BDT (ee)	0.9	1.5	1.4	1.2	1.1

Further Improvement is Achievable

→Ref: H.Yang's talk on 'Electron Identification Based on Boosted Decision Trees' at ATLAS Performance and Physics Workshop on October 2, 08 <u>http://indico.cern.ch/conferenceDisplay.py?confld=39296</u>

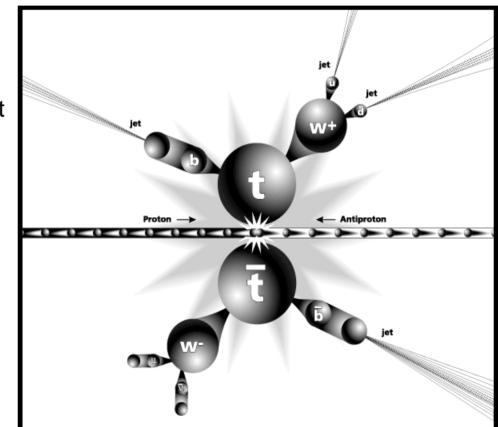
2) Search for Z' \rightarrow ttbar

- Physics motivation
- W / Top reconstruction from jets
- Event selections
- Z' \rightarrow ttbar search strategies
- Expected detection sensitivities

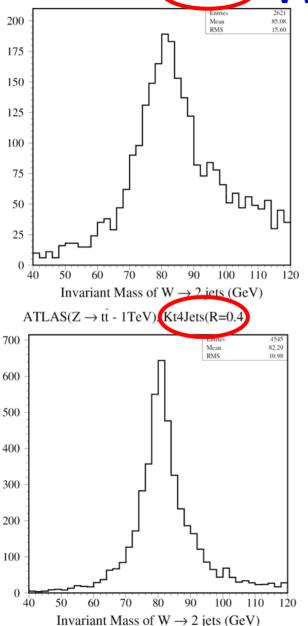
Physics Motivation

- There are many models predict the signatures with top-rich events. $Z' \rightarrow$ ttbar has been used as the *benchmark* for such studies.
- Additional U(1)' gauge symmetries and associated Z' gauge boson are one of many motivated extensions of the SM (Ref: Paul Langacker, arXiv:0801.1345v2). Searches for Z' via leptonic decay productions (ee, $\mu\mu$) have been conducted at LEP and Tevatron (current limit: $M_{Z'} > 850$ GeV from CDF, Ref: Phys. Rev. D70:093009, 2004).
- But, the searches through leptonic channels do not rule out the existence of a Z' resonance with suppressed decays to leptons, so called "leptophobic" Z'. Several models (RS Kaluza-Klein states of gluons, weak bosons and gravitons; Topcolor leptophobic Z'; Sequential Z' etc.) suggest that Z'-like state would decay predominantly to heavy quark-antiquark pairs, e.g. ttbar if the Z' mass is larger than 2 M_{top.}

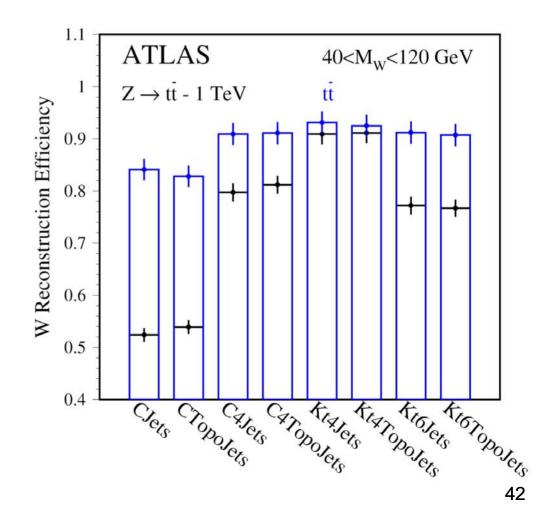
MC Samples Used in Our Study

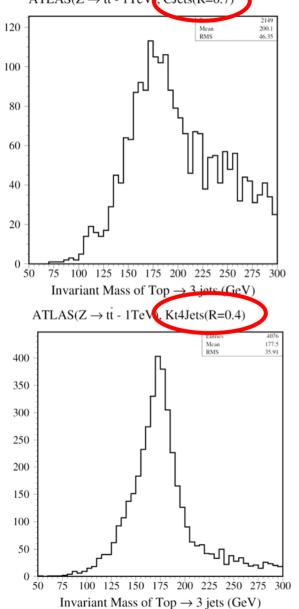

- Signal: Z' \rightarrow ttbar \rightarrow bbww \rightarrow bbjjlv
 - Dataset: 6231, 20000 Events, M_Z' = 1.0 TeV
 - Dataset: 6232, 19500 Events, M_Z' = 1.5 TeV
 - Dataset: 6233, 20000 Events, M_Z' = 2.0 TeV
 - Dataset: 6234, 19500 Events, M_Z' = 3.0 TeV
- Major Backgrounds:
 - Ttbar: 5200(>=1 lep), 450100 Events
 - Ttbar: 5204(W hadronic decay), 97750 Events
 - Single Top: 5500(Wt,14950 Events), 5501(s-channel, 9750 Events), 5502(t-channel, 18750 Events)
 - W/Z+Jets (1.1 Million Alpgen Events)
 - Dijets: 5014(14500 Events), 5015 (381550 Events)

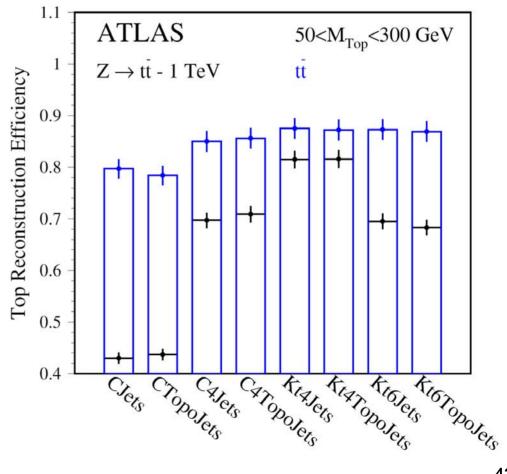
W and Top Reconstruction with jets final states


➔ With the increase of Z' mass, the energy of Top/W from Z' decay increase and the decay jets are boosted and located in a relative small region. In order to reconstruct Top/W efficiently, it's critical to use a suitable jet finding algorithm.

→ATLAS employs two jet finding algorithms (Cone, Kt),


- CJets (R=0.7)
- CTopoJets (R=0.7)
- C4Jets (R=0.4)
- C4TopoJets (R=0.4)
- Kt4Jets (R=0.4)
- Kt4TopoJets (R=0.4)
- Kt6Jets (R=0.6)
- Kt6TopoJets (R=0.6)


$\underset{\text{Label}}{\text{ATLAS}(Z \rightarrow t\bar{t} - 1 \text{TeV}(CJets(R=0.7))} W \rightarrow jet-jet \text{ Reconstruction}$


Efficiency of W \rightarrow jj Reconstruction

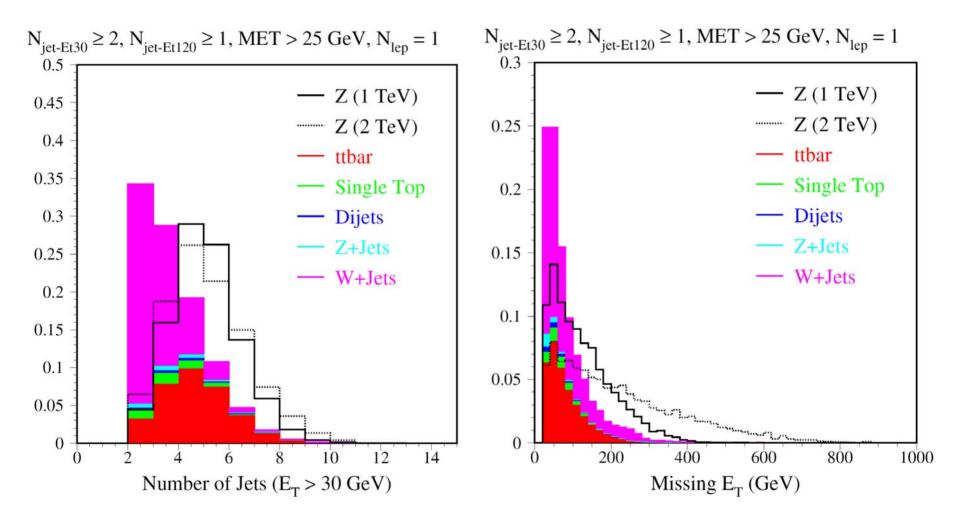
$\frac{\text{Top} \rightarrow bW(\rightarrow jj) \text{ Reconstruction}}{\text{ATLAS}(Z \rightarrow ti - 1TeV, CJets(R=0.7)}$

Efficiency of Top \rightarrow bjj Reconstruction

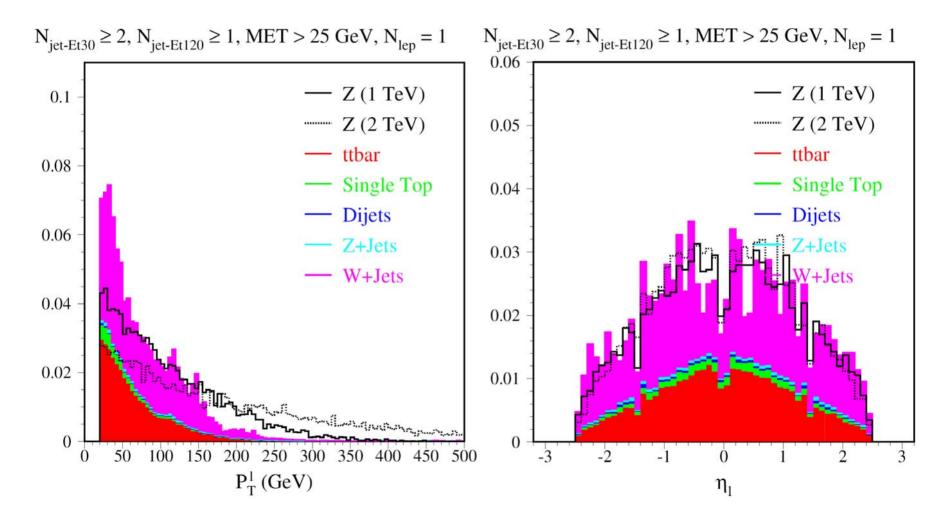
43

Analysis Strategy

- Event selection (to suppress most of background events):
 - Pre-selection cuts
 - Cut-based analysis for further event selection
 - BDT multivariate technique for event selection, training the initial decision trees using Z' with the combination of various mass (1, 1.5, 2, 3 TeV)
- Scan the "mass window" to find the most interest region (IR) in Mass(lep,jets) spectrum after selection, then enlarge or shrink mass window to optimize the "signal" sensitivity.
- To extract possible "signal" by fitting the background distributions.
- If an interesting "signal" is found (e.g. >3σ), we will use Z' with estimated mass as signal to re-train the BDT to confirm if the 'signal' being 'real'.

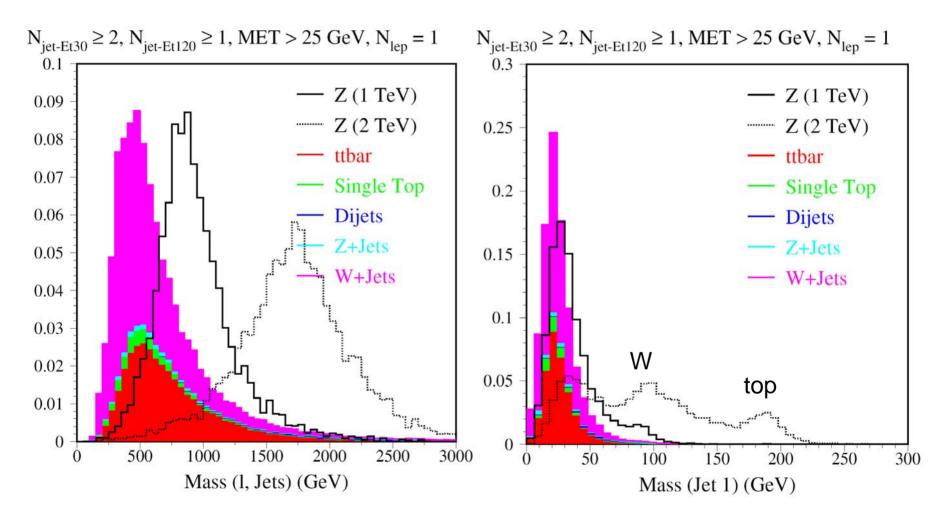

Event Pre-selection

• At least 2 jets with Et > 30 GeV

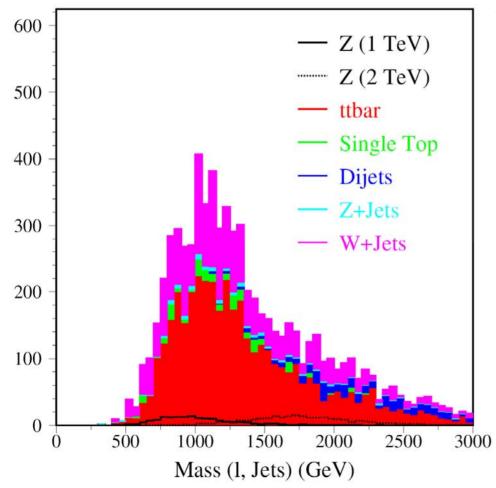

- At least 1 jet with Et > 120 GeV
- Missing transverse momentum > 25 GeV

• Only one lepton (e or μ) with Pt > 20 GeV

Variable Distributions After Pre-selection Number of Jets and MET



Lepton Pt and Eta



47

Mass of the 1st Energetic Jet

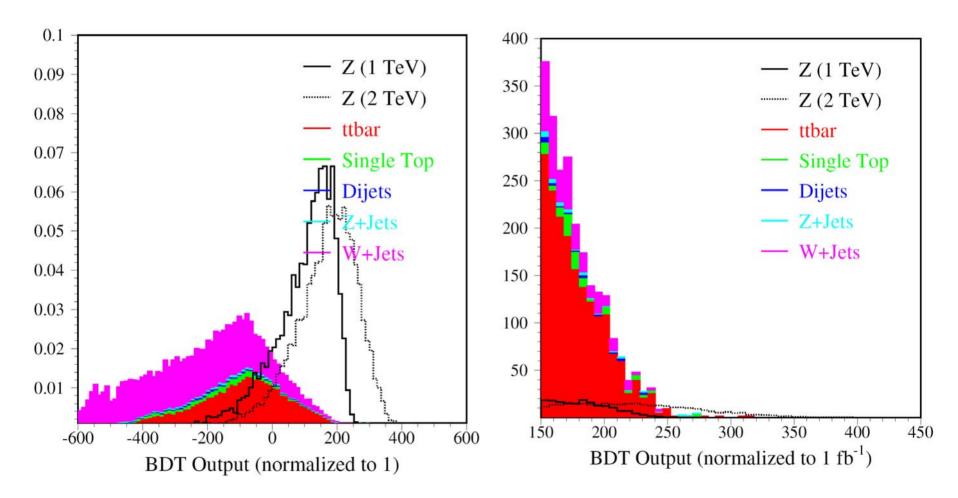
Z' Selection with Straight Cuts (normalization to 1/fb)

- $40 \leqslant M_W \leqslant 120 \text{ GeV}$
- $50 \leqslant M_{Top} \leqslant 300 \text{ GeV}$
- Et(J1) > 200 GeV
- Ht(L,Jets,MET) > 800 GeV
- Vt(L,MET) > 150 GeV

→Z' Signal (assuming σ =1pb)

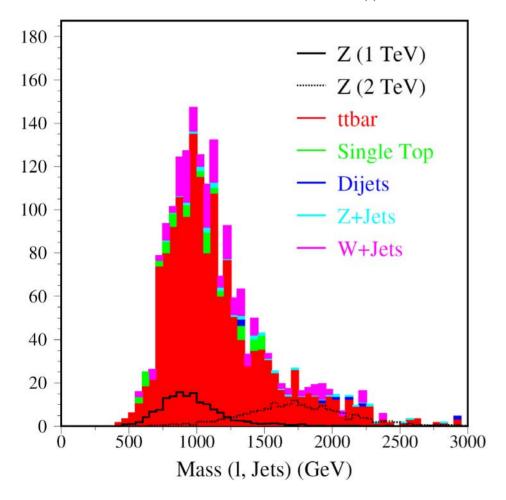
- 170 from Mz' = 1.0 TeV
- 269 from Mz' = 1.5 TeV
- 261 from Mz' = 2.0 TeV
- 215 from Mz' = 3.0 TeV

→Backgrounds (7258)


- 4188 from ttbar
- 247 from single top
- 500 from dijet
- 2189 from W+Jets
- 134 from Z + Jets

Z' Selection with BDT Analysis (A)

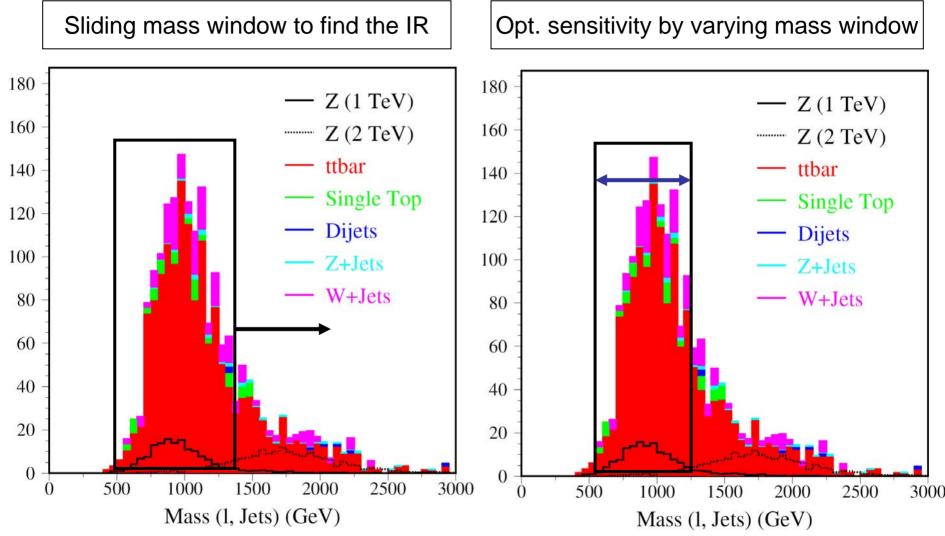
with 24 input variables for training


- P_t^{L} , $N_{track}(R=0.2)$, $\sum P_t(track) / E_t^{L}(R=0.2)$
- N_{jet}(Et>30GeV), Size(J1), E_{em}(J1)
- E_t(J1), E_t(J2), E_t(L,MET), MET
- M(J1), M(Jets), M(Jets,L), M_t(L,MET)
- H_t(L,Jets), H_t(L,Jets,MET), V_t(L,MET)
- $\Delta \phi$ (J1,J2), ΔR (J1,J2), ΔR (J1,J3)
- $\Delta \phi$ (J1,L), $\Delta \phi$ (J2,L), ΔR (J1,L), ΔR (J2,L)

BDT Analysis Discriminator (A)

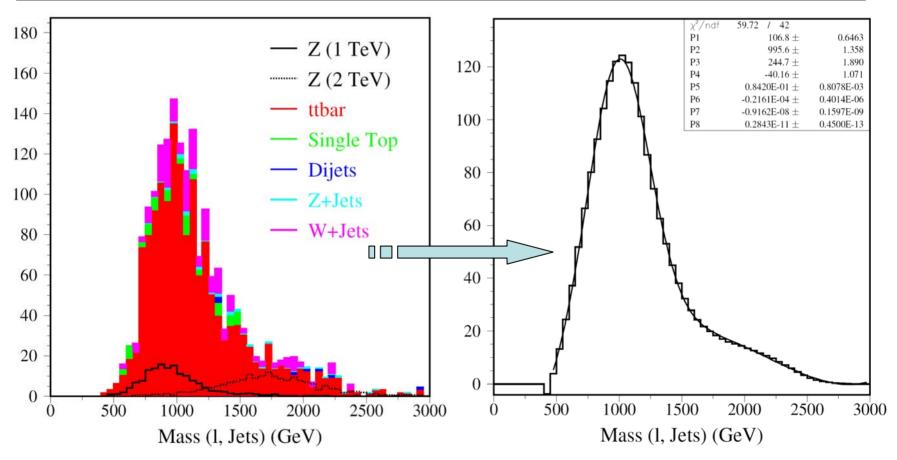
Selected Events (1 fb⁻¹)

BDT $\ge 150, 40 \le M_W \le 120, 50 \le M_{Top} \le 300 \text{ GeV}$

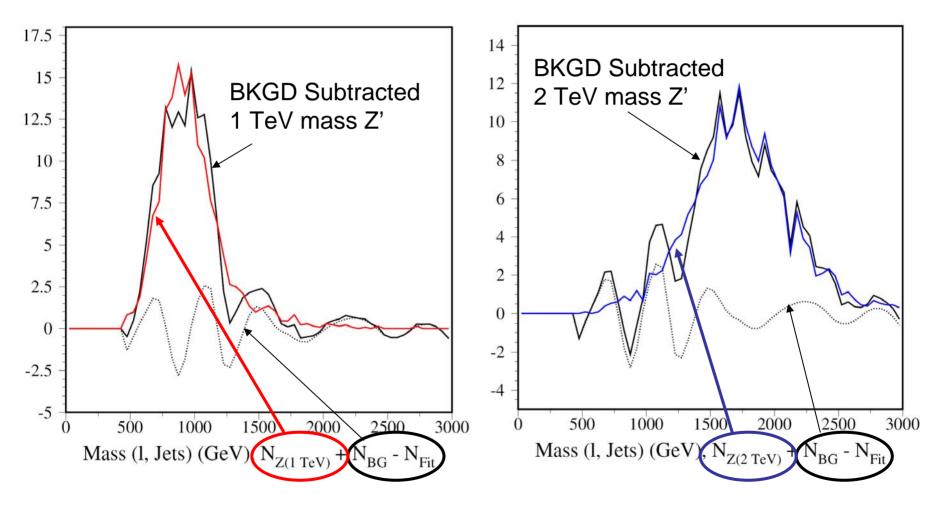


Signal (assuming σ =1 pb): \rightarrow Z' (1.0 TeV) - 150.5 Events \rightarrow Z' (1.5 TeV) - 215.2 Events \rightarrow Z' (2.0 TeV) - 186.2 Events \rightarrow Z' (3.0 TeV) - 124.9 Events

Backgrounds (1844):


- → Ttbar 1536 Events (83.3%)
- \rightarrow Single top 65 Events(3.5%)
- \rightarrow W+ Jets 209 Events(11.3%)
- \rightarrow Z + Jets 24 Events(1.3%)
- \rightarrow Dijets 10 Events(0.54%)

Scan the Mass Window



Fitting Background Events

1. Smooth background events; 2. Fit background using gaussian + polynomial

Extracting Signal by Subtracting Background From Fitting

Further BDT Training (B)

 If an interesting "signal" is found (>3σ), we will use Z' with estimated mass as signal to re-train BDT (B) which could enhance the signal sensitivity if it's real.

Assuming cross section of $Z' \rightarrow$ ttbar is 1 pb & for 1 fb⁻¹ int. lumi.

• Z'(1.0 TeV): Ns = 128.9, Nb = 3183, N σ = 2.3 (Cuts) Ns = 129.0, Nb = 1186, N σ = 3.75 (BDT-A) Ns = 123.3, Nb = 1076, N σ = 3.76 (BDT-B) • Z'(1.5 TeV): Ns = 99.0, Nb = 399.0, N σ = 5.0 (Cuts) Ns = 106.0, Nb = 250.0, N σ = 6.7 (BDT-A) Ns = 102.2, Nb = 135.2, N σ = 8.8 (BDT-B) • Z'(2.0 TeV): Ns = 22.4, Nb = 12.2, N σ = 6.4 (Cuts) Ns = 41.7, Nb = 7.2, N σ = 15.5 (BDT-A) Ns = 40.7, Nb = 3.1, N σ = 23.0 (BDT-B) • Z'(3.0 TeV): Ns = 39.1, Nb = 4.8, N σ = 17.8 (Cuts) Ns = 50.8, Nb = 4.6, N σ = 23.7 (BDT-A) Ns = 66.6, Nb = 3.1, N σ = 38.0 (BDT-B)

5σ Discovery X-section for Z' \rightarrow tt

Signal	SM-like cross	σ _{Z'} ×Br(Z'→tt) (1fb ⁻¹)	σ _{Z'} ×Br(Z'→tt) (10fb ⁻¹)	σ _{Z'} ×Br(Z'→tt) (100fb ⁻¹)
	section	(110)		
Z'(1.0 TeV)	190 fb	> 1330 fb	> 420.6 fb	> 133 fb
Z'(1.5 TeV)	37 fb	> 570 fb	> 180.3 fb	> 57 fb
Z'(2.0 TeV)	10 fb	> 220 fb	> 69.6 fb	> 22 fb
Z'(3.0 TeV)	1 fb	> 130 fb	> 41.1 fb	> 13 fb

95% C.L. Limits for $Z' \rightarrow t\bar{t}$

Signal	SM-like cross section	95% C.L. Ex. Limit (1fb ⁻¹)	95% C.L. Ex. Limit (10fb ⁻¹)	95% C.L. Ex. Limit (100fb ⁻¹)
Z'(1.0 TeV)	190 fb	< 446 fb	< 139.5 fb	< 44.6 fb
Z'(1.5 TeV)	37 fb	< 196 fb	< 60.7 fb	< 19.6 fb
Z'(2.0 TeV)	10 fb	< 74 fb	< 24.6 fb	< 7.4 fb
Z'(3.0 TeV)	1 fb	< 45 fb	< 15 fb	< 4.5 fb

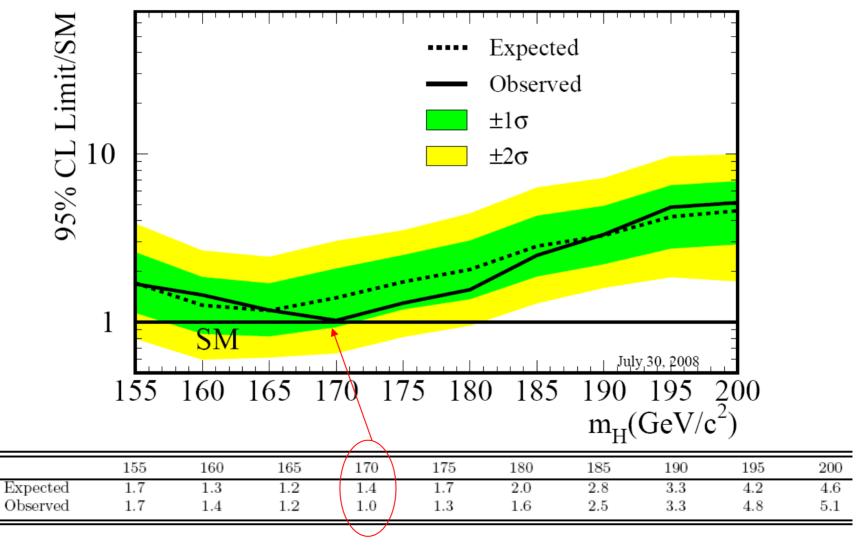

Summary

- It is very important to establish the SM signals at LHC with the first fb⁻¹ data. Vector-boson productions are key to demonstrate the large, complex detector performance.
- Indirect search of new physics will be performed through the anomalous triple gauge boson coupling studies at ATLAS. The sensitivities from LHC/ATLAS can be significantly improved over the results from Tevatron and LEP using a few fb⁻¹ data.
- The discovery of the SM Higgs via W-pair leptonic decay modes could be achieved by using a few fb⁻¹ integrated luminosity if 150<M_H<180 GeV.
- The discovery of Z' →ttbar is possible if non-gaugecoupling involved with Z' mass around a few TeV.

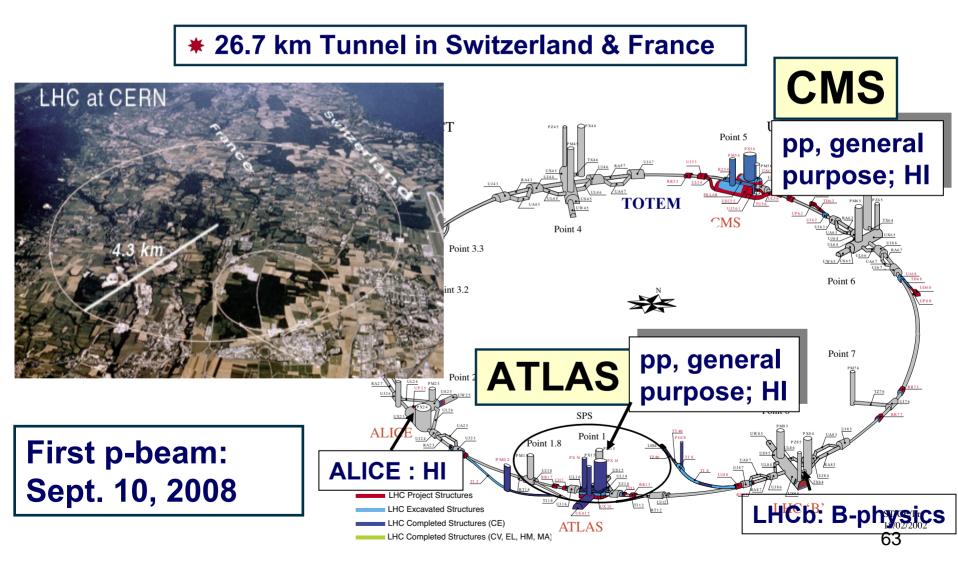
The most exciting and challenge phase of LHC is coming!

Backup Slides

Standard Model


- Gauge sector and matter sector are very successfully tested! But the Higgs sector which describes the EWSB is totally dark.
- To find the mystery of EWSB is one of the major motivations for experimental high energy physics (LEP, Tevatron, LHC ...).

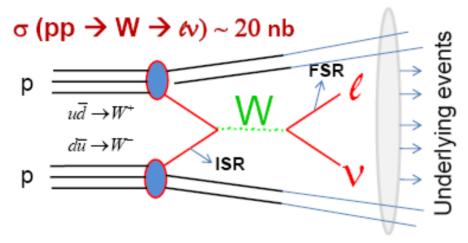
Higgs Mechanism


- Spontaneously break
 - electroweak symmetry
- Generate masses

SM Higgs Searches at Tevatron (Ref: arXiv:0808.0534)

Tevatron Run II Preliminary, L=3 fb⁻¹

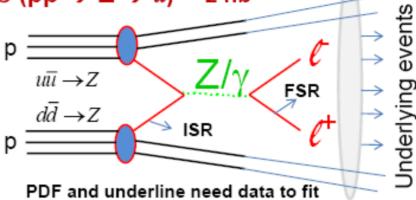
The Large Hadron Collider at CERN CME = 14 TeV, Lumi = 10^{34} cm⁻² s⁻¹



Physics Reach as Integrated Lumi. Increase

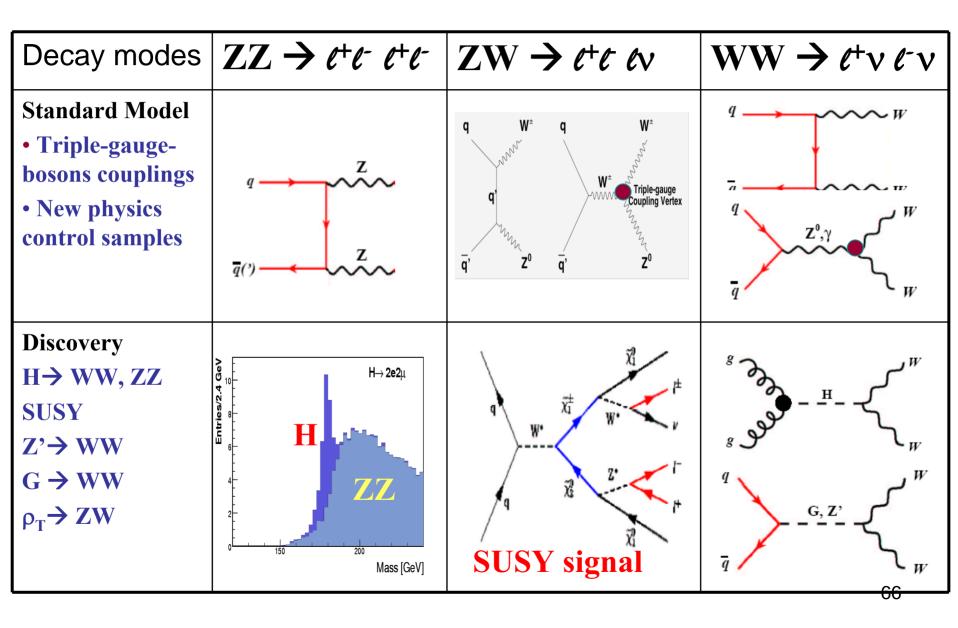
Luminosity 1 mon run	Int. Lumi. (1/fb)	Interest proc. (with e, μ , γ)	X-section	Events for calibration and measurements
10 ²⁹	0.0001 (100 nb ⁻¹)	W→μν, eν(DY) J/ψ, y→μμ, ee	σ _{μν} ~20nb	Detect 1000 μ (W→μv) ~800 J/ψ, ~100 y
1030	0.001 (1 pb ⁻¹)	Z→ µµ, ee ttbar	σ _{μμ} ~ 2nb σ _{tt} ~ 750pb	Detect 1500 µµ from Z Detect 800 tt
1031	0.01 (10 pb ⁻¹)	Z+jet $\gamma\gamma$, W γ , Z γ	σ _{qµµ} ~ 40 pb σ _{γγ} ~ 24 pb	400 Zjet events, JE cali. 250 γγ with M>60 GeV
1032	0.1 (100 pb ⁻¹)	WZ, WW, Z+ n jets	σ _{eµ} ~2.4pb	~50 eµ from WW selection ~10 trilepton events (WZ)
1033	1.0 (10M W \rightarrow Iv) (1M Z \rightarrow II) Understand detect ~2%	$ZZ \rightarrow 4I$, $IIvv$ H \rightarrow WW ? W' $\rightarrow e/\mu v$? Z' $\rightarrow ee$, $\mu\mu$? SUSY?	σ _{4I} ~ 0.08pb	~ 11 ZZ \rightarrow 4I, 10 ZZ \rightarrow IIvv Searches: Single μ M _T > 1 TeV dilepton mass > 1 TeV Higgs \rightarrow WW (~165 GeV) SUSY \rightarrow multi-leptons

W and Z Productions in Hadron Colliders


EW theory predicts '*hard scattering*' well, but in hadronic collisions, the process is complicated by parton-distributions inside protons, and associated underlying events

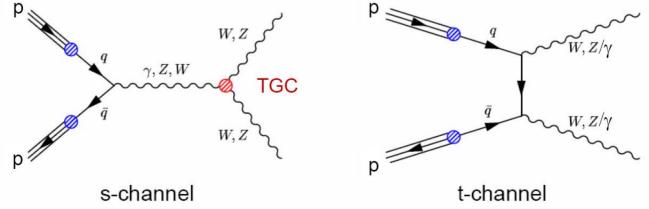
Standard W Candle

- > σ(W→ μν) as the 1st standard candle to set LHC Luminosity
- First energy scale: M_T(W) tail
- W+/W- charge asymmetry: PDF fit
- Searches:
 - M_T spectrum
 - P_T spectrum


 σ (pp $\rightarrow Z \rightarrow \ell$) ~ 2 nb

Standard Z Candle

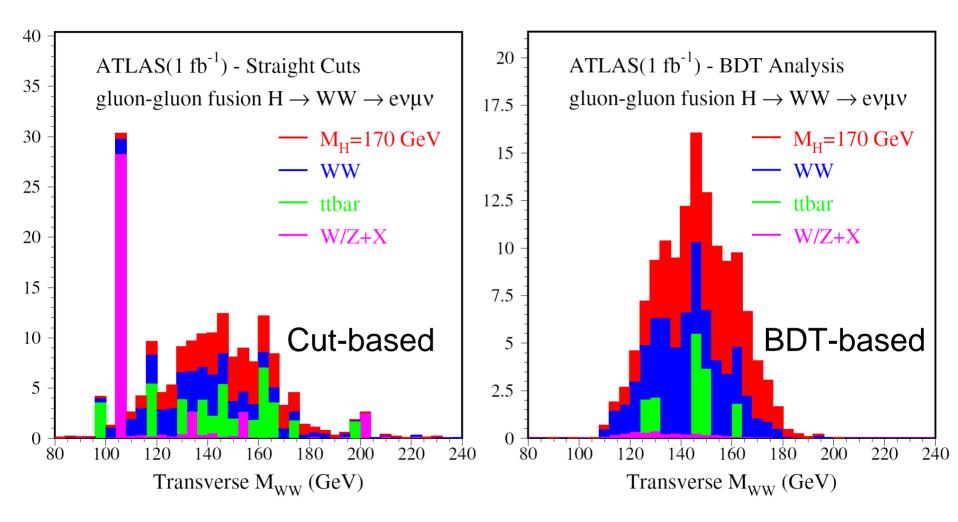
- σ(Z→ μμ) as the standard candle
 to determine LHC Luminosity
- Energy scale: M_{µµ, ee}(Z) peak
 - calibration
- η_Z, P_T(Z) : PDF fit
- Detection effs. (ε_{Trigger}, ε_{ID}, ε_{Isolation}...)
 - Tag-Probe method
- Searches: dilepton inv. high mass


Di-Boson Analysis – Physics Motivation

Physics Motivations - Diboson

ATL-COM-PHYS-2008-036, ATL-COM-PHYS-2008-041

- It's related to some fundamental questions:
 - Why massive bosons?
 - What is the source of the EWSB?
- There should have some new physics leading to EWSB through searching for
 - Direct evidence of new particles (Higgs, SUSY etc.)
 - Indirect evidence of observing anomalous TGCs
 - SM diboson are important control samples for new physics

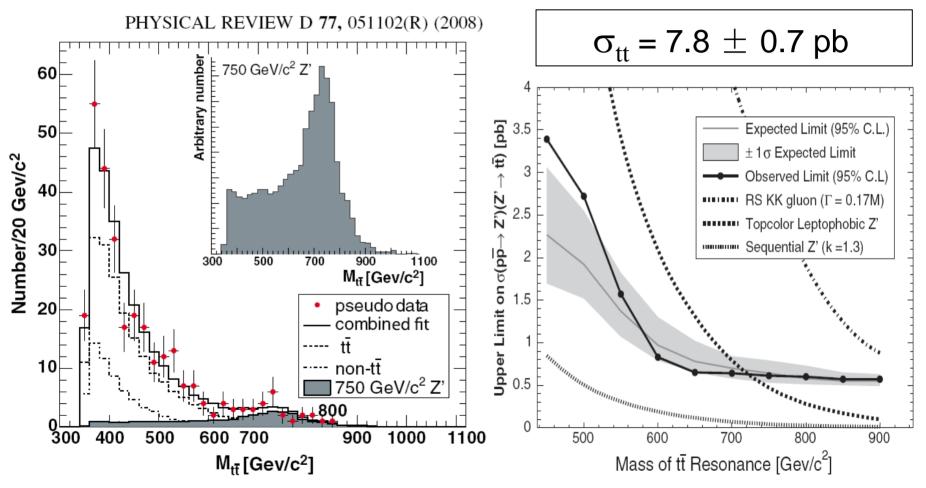

Diboson Production Cross Sections

Diboson mode	Conditions	$\sqrt{s} = 1.96 \text{ TeV}$	$\sqrt{s} = 14 \text{ TeV}$
		$\sigma[pb]$	$\sigma[pb]$
W^+W^- [14]	W-boson width included	12.4	111.6
$W^{\pm}Z^{0}$ [14]	Z and W on mass shell	3.7	47.8
$Z^{0}Z^{0}$ [14]	Z's on mass shell	1.43	14.8
$W^{\pm}\gamma$ [15]	$E_T^{\gamma} > 7 \text{ GeV}, \Delta R(\ell, \gamma) > 0.7$	19.3	451
$Z^0\gamma$ [16]	$E_T^{\overline{\gamma}} > 7 \text{ GeV}, \Delta R(\ell, \gamma) > 0.7$	4.74	219

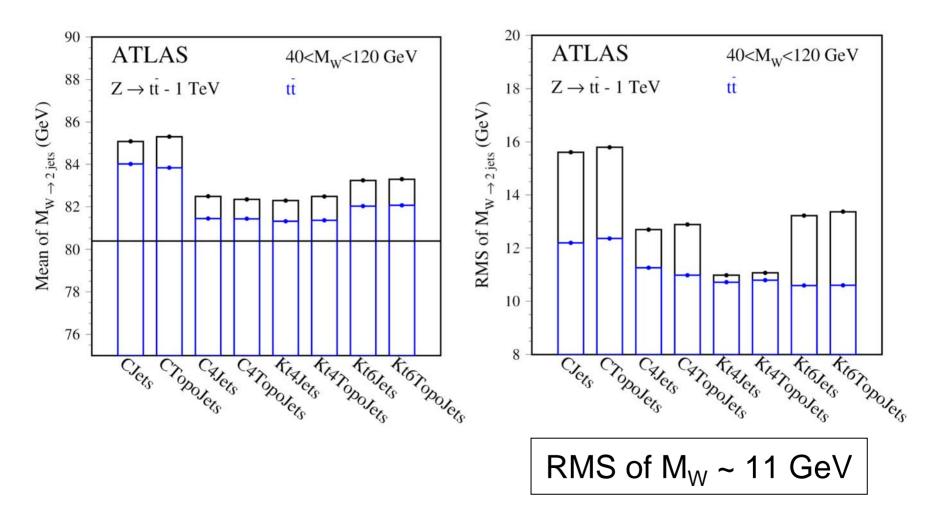
Production rate at LHC will be at least 100x higher at Tevatron. 10x higher cross section and 10-100x higher luminosity.

Probes much higher energy region, so sensitive to anomalous TGCs.

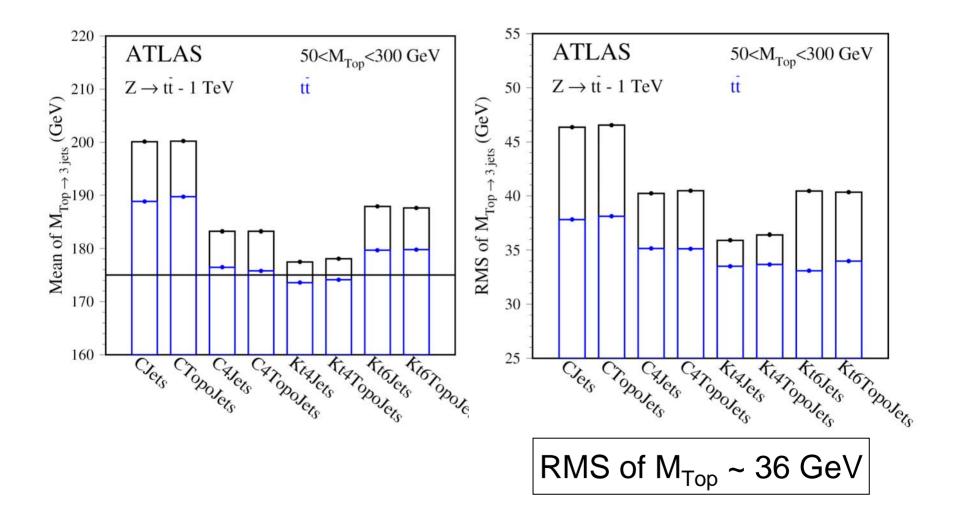
Results (1/fb): Straight Cuts vs BDT



$H \rightarrow$ WW Detection Sensitivity (1/fb, with 20% systematic error)


GGF H→WW	M _H =150	M _H =165	M _H =170	M _H =175	M _H =180	Bkgd
Events / fb	GeV	GeV	GeV	GeV	GeV	
Cuts (ee+μμ+eμ)	58.9	110.6	93.5	80.8	65.7	352.0
$N_{s} / \sqrt{N_{b}} + (0.2 N_{b})^{2}$	0.8	1.5	1.3	1.1	0.9	N/A
Cuts (ee+μμ+eμ)						
$N_{s} / \sqrt{N_{b}} + (0.2 N_{b})^{2}$	1.0	1.9	1.6	1.4	1.1	N/A
Cuts (eµ)						

BDT (ee+μμ+eμ)	70.4	139.2	123.8	109.3	90.2	218.2
N _s / √N _b +(0.2*N _b) ² BDT (ee+μμ+eμ)	1.5	3.0	2.7	2.4	2.0	N/A
$N_{s} / \sqrt{N_{b}}$ + $(0.2*N_{b})^{2}$ BDT (eµ)	2.0	4.1	3.7	3.3	2.6	N/A


Search for $Z' \rightarrow t\bar{t}$ at CDF

Mass Reconstruction of W \rightarrow jj

Mass Reconstruction of Top \rightarrow bjj

W / Top Mass Reconstruction

- Algorithm-A1, W \rightarrow 2 jets, Top \rightarrow 3 jets
- Algorithm-A2, $W \rightarrow 1,2$ jets, Top $\rightarrow 1,2,3$ jets
- Tight cuts: 60<M_w<100 GeV, 125<M_{top}<225 GeV

MC(1000 Events)	A1	A2	Ratio
ttbar	652	652	1.0
Z' – 1TeV	660	687	1.04
Z' – 1.5TeV	573	703	1.23
Z' – 2 TeV	436	641	1.47
Z' – 3 TeV	348	586	1.68