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Experimental Hints for New Particles: Dark Matter

1933 Fritz Zwicky calculates the mass of the Coma cluster using the

Virial Theorem using galaxies on the outer edge, and comes up with

a number 400 times larger than the expected mass.



Experimental Hints for New Particles: Rotation Curves

1975 Vera Rubin notices the rotation curves of galaxies are 
at at

large radii. (Jungman, Kamionkowski, Griest)



Experimental Hints for New Particles: Bullet Cluster

X-ray gas, gravitational potential [Clowe et al. astro-ph/0608407];

Note the claim of disproving MOND is disputed: [Angus, Famaey,

Zhao astro-ph/0606216] requires addition of Hot Dark Matter: 2 eV

neutrinos.



Experimental Hints for New Particles: HEAT Excess

Implies Mχ >∼ 1 TeV

[Aguilar et al

astro-ph/0703154]



Experimental Hints for New Particles: WMAP Haze

[Finkbeiner, astro-ph/0409027]

Implies Mχ >∼ 100 GeV



Experimental Hints for New Particles: EGRET Excess
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extragalactic

Dark Matter
Pion decay
Inverse Compton
Bremsstrahlung

χ2: 3.5/6
χ2 (bg only): 178.8/7

[de Boer et al,

astro-ph/0408272]

Implies Mχ ' 50 − 100

GeV.

Inconsistent with galactic

positron measurements;

requires unusual dark

matter distribution.



Motivation

If our current particle picture of Dark Matter is correct, the LHC is
likely to be a Dark Matter factory. Realistic models containing a Dark
Matter particle tend to be very similar.

• A symmetry is added to keep Dark Matter stable → Dark Matter
is produced in pairs.

• Symmetries which keep Dark Matter stable are often taken from
other sources (because we prefer as simple a model as possible),
such as:

{ Proton Stability (R-Parity in SUSY)

{ Custodial Symmetry (solving Little Hierarchy Problem)

{ 5D momentum conservation (KK number conservation in UED)

\Other Sources" for the symmetry generically means \Other Par-
ticles".



Old Standby: Edges and Endpoints

�~q l�near ~�01q~�02 ~l�R l�far
Given some assumed topology in a 4-body decay (with one missing),

write down the three mass invariants among the visible particles. In

addition there is (at least) one other jet, and l±near cannot be separated
from l±far
Mll

Mql,high (larger of 2 choices)

Mql,low (smaller of 2 choices)

Mqll,max (larger of 2 choices)

Mqll,min (smaller of 2 choices)



Old Standby: Edges and Endpoints
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Existing Studies: Edges and Endpoints(
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Old Standby: Edges and Endpoints

As the mass spectrum

changes, these curves take

on various shapes.

• Mass determinations are

very sensitive to a small

number of events (those

occuring at in
ection

points and endpoints).

• Detector resolution

makes all these distribu-

tions look similar.

[Gjelsten, Miller, Osland

hep-ph/0410303]



Old Standby: Edges and Endpoints

My criticism:

What is done is essentially to write down some arbitrary f(p
µ
i ), and

derive its analytic relationship to mass. There is no reason to expect

that the chosen space of observables is a good one.

The missing momentum is not used.

The ease of measuring edges is deceptive due to the fact that ISR/FSR

is not included, nor possible extra jets from squark/gluino decay. As

a general rule, ISR/FSR in squark/gluon production has an energy

scale associated with the squark/gluon mass.



New Development 1: Discontinuities in MT2

Given the decay ~g → qqχ01, the MT2 variable is: [Lester, Summers

PLB 463 (1999) 99]

M2
T (mqqT ,mχ,p

qq
T ,p

χ
T ) = m2

qqT +m2
χ+2(E

qq
T E

χ
T − pqqT · p

χ
T )

M2
T2(mχ) = min

pχ(1)T +pχ(2)T =/pT

[
max

{(
m2
T

)
1
,
(
m2
T

)
2

}]
This variable has the property that if mχ = mχ01

, then M2
T2 ≤ m

2
~g .

Cho et. al. [arXiv:0709.0288] observed that as a function of mχ, MT2

contains a discontinuity at the point mχ = mχ01
.

Gripaios [arXiv:0709.2740] proved this for the 1 missing particle case

(leptonic W± decay).



New Development 1: Discontinuities in MT2

Mmax

T2 (mχ)

=
m2

~g−m2

~χ0
1

2m~g
+

√(
m2

~g−m2

~χ0
1

2m~g

)2
+m2

χ

=
(
m~g −m~χ0

1

)
+mχ

Two expressions coin-

cide at m~χ01
= mχ.

Expressions are de-

rived in speci�c

kinematic limits.

General proof not pub-

lished yet.



What is the BEST thing to do?

Most studies approach the problem as: Given that I have these 4-

vectors {pµi } that came out of my Monte Carlo or Experiment, what

function f({pµi }|λ) can I write down which will tell me some hypothesis
(parameter) λ?

The answer is that every function f({pµi }|λ) depends on the parame-

ters λ, and I'm left with the question: Which f({pµi }|λ) is \best" for

my purpose?

I approach this from the other side: the most powerful statistic for

di�erentiating two hypotheses λ and λ′ is the ratio of two Likelihoods
(Neyman-Pearson Lemma). Our Likelihood for n = 1..N events is

L(λ|{{pµj }n}) =
N∏
n=1

Pn({pµj }n|λ).

Pn({pµj }|λ) =
1

σ

dσ∏
i d

3~pi
=

(2π)4−3N

2NFσ
∏
iEi

∣∣∣M(p
µ
0, p

µ
i |λ)

∣∣∣2 δ4 (pµ0 −∑ip
µ
i

)
.

Now let me make systematic approximations to this ideal situation.



Polynomial Systems

In a hadron collider with missing energy, the PDF is de�ned as

P (p
µ
i |λ) =

∫
(2π)4−3N

2NFσ
∏
iEi

∣∣∣M(p
µ
0, p

µ
i |λ)

∣∣∣2 δ4 (pµ0 −∑ip
µ
i

)
dx1dx2d

3p1d
3p2

Now let us go into the narrow width approximation by replacing

1

(q2 −M2)2 −M2�2/4
→

π

M�
δ(q2 −M2)

in
∣∣∣M(p

µ
0, p

µ
i |λ)

∣∣∣2, for some hypothesis diagram (valid for ��M).

Alternatively, one can simply insert the appropriate delta functions

corresponding to a diagram, and view this as a variable change.

Note that this integral is 4 dimensional at a hadron collider. There-

fore, by specifying 4 masses, the integral is reduced to a discrete set

of solutions for the missing momenta.

A pair of simultaneous quadratics is not guaranteed to have a solution!



The General Recipe for using Polynomial Systems

• Write down a hypothesis diagram describing the visible �nal state

particles and missing energy you see.

• Combine resonances with entirely visible decay products and call

it a single �nal state particle.

• Count the missing particles N and the intermediate, on-shell par-

ticles M with missing particles \down-stream".

• M < 3N − 2: (\underconstrained") use kinks or edges.

• M = 3N − 2: (\exactly constrained") one can change variables

from the missing momenta into these masses. Each event de-

�nes a volume in mass space. See JHEP 0712:076,2007 and

arXiv:0811.2138

• M > 3N−2: (\overconstrained") it is possible to solve for discrete
values of the masses, by constructing a larger polynomial system

from multiple events, under the assumption that they contain the

same physics. See: Phys.Rev.Lett.100:252001,2008.



The General Recipe for using Polynomial Systems

Once your polynomial system is constructed, one can ask the question

if M = 3N − 2 (exactly constrained):

Is the Probability Density P zero or nonzero

for a given set of hypothesis masses?

The nonzero answer de�nes a volume in mass space, which one must

then devise an algorithm to extract the true mass from by combining

events.

If M > 3N − 2 (overconstrained):

Is the n-event likelihood Ln =
N∏
i=1

Pi zero or nonzero?

If these are nonzero, in the narrow width approximation, you have

just solved for a set of 4-momenta consistent with the event (and

therefore, all the intermediate masses too).



The General Recipe for using Polynomial Systems

These are systematic approximation to the \best" Likelihood method,

accurate to O
(
�
M

)
and ignoring spin. The only thing better is to use

a true Matrix Element Method, which also includes o�-shell e�ects.

The overconstrained case is the best option for small data. In prin-

ciple it works for as few as two events in SPS1a.

These methods need long chains: at least 5 on-shell intermediate

particles is overconstrained, 4 is exactly constrained.

These methods are probably not useful with 3 or more missing par-

ticles: this needs 7 on-shell intermediate resonances.

The intermediate particles must be on-shell.



Exactly constrained example

This topology can be applied

to many processes with 4

visible and 2 invisible particles.

For simplicity in analysis we

will further assume MY =MY ′,

MX =M ′X, and MN =M ′N .
Examples that �t this:

tt → bW+bW− → bl+νbl−�ν
~χ02~χ

0
2 → l~ll~l→ ll~χ01ll~χ

0
1

~q~q → q ~χ02q~χ
0
2 → ql~lql~l→ qll~χ01qll~χ

0
1

~t~t → b~χ+b~χ− → bW+~χ01bW
−~χ01



Changing Variables

If we want to talk about masses, the �rst thing we had better do is

change variables.

The t�t di-lepton topology at the LHC contains 4 kinematic unknowns,

which is nice because it also has 4 unknown masses.

a = (p2+ p4+ p6)
2

b = (p2+ p4)
2

c = (p1+ p3+ p5)
2

d = (p1+ p3)
2

0 = p/x − p1x − p2x
0 = p/y − p1y − p2y
0 =

√
sσ − pvz − p1z − p2z

0 =
√
sτ − Ev − E1 − E2

M2
1 = E2

1 − ~p
2
1

M2
2 = E2

2 − ~p
2
2

This variable change is non-linear, and incurs a Jacobian J (important
if you want to integrate your Probability Density in the mass basis!)



New Development 2: Polynomial Systems

The polynomial system of interest is contained entirely in the delta

functions and is a system of two quadratics in six variables. Take

these to be four masses, and the energies of the missing particles:

P ({pµi }|λ) = f({pµi }, λ)
∫
|M(λ, p

µ
0, . . . , p

µ
N)|

2

×δ4(pµ0 −
∑
ip
µ
i )

×2E1 δ(E2
1 −m

2
1 − |~p1|

2) 2E2 δ(E
2
2 −m

2
2 − |~p2|

2)

×dτ dσ d3~p1 d3~p2 dE1 dE2
Next expand the dimensionality by 4 and add 4 delta functions, cor-

responding to the 4 propegators.

P ({pµi }|λ) = f({pµi }, λ)
∫
|M(λ, p

µ
0, . . . , p

µ
N)|

2

× δ4(pµ0 −
∑
ip
µ
i )

×2E1 δ(E2
1 −m

2
1 − |~p1|

2) 2E2 δ(E
2
2 −m

2
2 − |~p2|

2)

× δ((p2+ p4+ p6)
2 − a) δ((p2+ p4)

2 − b)
× δ((p1+ p3+ p5)

2 − c) δ((p1+ p3)
2 − d)

× dτ dσ d3~p1 d3~p2 dE1 dE2 da db dc dd



New Development 2: Polynomial Systems

Now we wish to ask the question: Is P (p
µ
i , λ) zero or non-zero for a

single event?

The system of equations can be divided into two pieces: a linear part,

and a quadratic part. Any invariant containing exactly one missing

particle is linear in each component of the missing particle's 4-vector.

The δ4 is linear. This linear system of equations can be written in

matrix notation:

MV = C

with V = (p1x, p1y, p1z, E1, . . . ,
√
sσ,
√
sτ). M is a square matrix, and

can be inverted. (if it cannot, then you have speci�ed a perverse

system!)

With n intermediate masses, this dimension of M is n+4.

Thus the vector of unknowns is given by V =M−1C.



For Instance

MV = C
0 0 0 0 0 0 0

√
s

0 0 −1 0 0 −1
√
s 0

0 −1 0 0 −1 0 0 0
−1 0 0 −1 0 0 0 0
2p3x 2p3y 2p3z 0 0 0 0 0
2p5x 2p5y 2p5z 0 0 0 0 0
0 0 0 2p4x 2p4y 2p4z 0 0
0 0 0 2p6x 2p6y 2p6z 0 0




p1x
p1y
p1z
p2x
p2y
p2z
σ
τ

 =



Evis+ E1 + E2

pz,vis
p/y
p/x

M2
31 −M2

1 +2E1E3

M2
51 −M2

1 +2E1E5

M2
42 −M2

2 +2E2E4

M2
62 −M2

2 +2E2E6


Solves for unknowns V in terms of E1, E2 and new unknown masses

M31,M51,M42,M62,M1,M2 using visible 4-vectors p
µ
3, p

µ
4, p

µ
5, p

µ
6.

M is numeric so each unknown in V can be written with numeric

coe�cients αi

Vi = α · u; u = (E1, E2,M
2
1 ,M

2
2 ,M

2
31,M

2
51,M

2
42,M

2
62)

The remaning unknowns E1 and E2 are solved using the above solu-

tions in the mass shell constraints for p1, p2.

E2
1 − p

2
1x − p

2
1y − p

2
1z =M2

1

E2
2 − p

2
2x − p

2
2y − p

2
2z =M2

2

⇒ Now we have a system of 2 quadratics in 6 unknowns, where the

unknowns are masses.



New Development 2: Polynomial Systems

Example of a perverse system: p3 = p4. One can then do row

arithmetic onM to generate a zero row, guaranteeing that detM = 0.

Nojiri et al. provided a nice way to understand this. Each missing

vector can be expanded in terms of the visible vectors:

p1 = α ~p3+ β ~p4+ γ ~p3 × ~p4
The two dot-products coming from mass constraints (p1+ p3)

2 and

(p4+p1)
2 provide a basis in 3-space in which to solve for p1. In order

to have a basis, p1, p3 and p4 must be non-parallel.



New Development 2: Polynomial Systems

These quadratics are ellipses, and can also be written using the vector

xi = (E1, E2,1) as

A = xif
ijxj = 0, B = xig

ijxj

using the tensors

f ij =

 a11 a12 a1(m)
a12 a22 a2(m)

a1(m) a2(m) a0(m,m
2)

 gij =

 b11 b12 b1(m)
b12 b22 b2(m)

b1(m) b2(m) b0(m,m
2)


For determining masses, we only care about whether a solution exists,

not the actual values of E1, E2. Therefore, without loss of generality,

we are free to rotate, translate, and scale the vector xi.

f ij =

 1 0 0
0 1 0

0 0 −r2(m,m2)

 , x2+ y2 − r2(m,m2) = 0
(x−x0(m))2

a2
+ (y−y0(m))2

b2
−R2(m,m2) = 0

gij =

 1/a2 0 −x0(m)/a2
0 1/b2 −y0(m)/b2

−x0(m)/a2 −y0(m)/b2 −R2(m,m2) + x0(m)
2/a2+ y0(m)

2/b2





Polynomial Systems: J. Random Event



Polynomial Systems: Constructing an Algorithm

Each event de�nes a volume in mass space that is consistent with it.

One can then, in principle, construct a high dimensional histogram,

and �t it.

For instance, in a chain decay in which both sides are assumed to be

the same, one can reduce to 3 masses, and make a 3-D histogram.

It is important to note that we have projected into mass space. Irrel-

evant angles are removed, and all information available is used. If you

want to measure mass, you really want to be working in this space.

All other methods �nd a correlated variable, and derive its correlation

to mass. Since the correlation is not 1 : 1, these variables contain

non-mass information (such as angles) as well!

Practically, high dimensional histograms are di�cult to deal with, so

let us make a series of projections.



Multi-Event Likelihood

One can ask: What is the volume of mass space allowed simultane-

ously by multiple events?

This is essentially to ask if the narrow width, n-event likelihood:

Ln =
n∏
i

Pi({p
µ
j }i|λ)

is zero or non-zero.

This volume decreases in size as you increase the number of events.

But, it is always a volume.

The following plots are for pT = 0, no smearing, and

MX =MX ′ = 300GeV

MY =MY ′ = 200GeV

MN =MN ′ = 100GeV

(so, not realistic, but to give you an idea).
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Graphical Algorithm
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Fixing two of the masses, we scan in the third mass. Unfortunately an

analytic expression for these curves is probably intractable to derive.

For a large number of events, we want the largest MN compatible

with the event. Large pT cuts o� the zero mass solution, but the

high mass solution converges to the correct value faster, and our

understanding of pT in hadron colliders is poor. (e.g. MT used to

measure MW is designed to be pT insensitive)

But! Features are simple. We �t a line to the \corner" to determine

its location.



Iterate
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Iterate in each mass, �tting for each mass successively.

This procedure \walks up" the mass space, increasing the over mass

scale, and is not convergent. (e.g. there still exists a solution at

MN =∞ for most events)

But! We have not yet used the total number of events �t.
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3D projections with no smearing

(mY ,mX ,mN) = (180.8,147.1,85.2)
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3D projections with smearing

(mY ,mX ,mN) = (246.6,128.4,85.3)
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Contour Plot of Procedure
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Fit Results

For the point

(mY ,mX ,mN) = (246.6,128.4,85.3)

we reconstruct

mY = 252.2±4.3 GeV, mX = 130.4±4.3 GeV, mN = 86.2±4.3 GeV.

The statistical variations for the mass di�erences are much smaller:

mY −mX = 119.8± 1.0 GeV, mX −mN = 46.4± 0.7 GeV.

We smear momenta using ATLFAST's muon resolution, and a miss-

ing momentum resolution given by a gaussian with width 18 GeV.

This uses 2900 events (1900 after cuts), which corresponds to 90

fb−1 at the LHC for our chosen model point

µ = +300GeV, tanβ = 10, (M̃1, M̃2, M̃3) = (90,300,500)GeV

m̃
(1,2,3)
L = m̃

(3)
E = 1000GeV, m̃

(1,2)
E = 120GeV

m̃
(1,2)
Q = 400GeV, m̃

(1,2)
U,D = 300GeV, m̃

(3)
Q = m̃

(3)
U,D = 1000GeV



New Development 3: Combining Events

Kawagoe et al [hep-ph/0410160] suggested that if we have a long decay

chain such as

~g → ~bb2 → ~χ02b1b2 → ~̀b1b2`2 → ~χ01b1b2`1`2,

one can solve for the intermediate masses by combining several events.

This decay chain has 4 missing kinematic quantities (from the neu-

tralino 4-vector { initial state is given by the δ4), and 5 masses. Thus

each event describes a 4-dimensional hypersurface in a 5-dimensional

space. They demonstrate this by assuming the ~χ01, ~χ
0
2, and

~̀ masses

are known (thus giving them a one dimensional hypersurface in a 2

dimensional space to solve).

Again the neutralino mass shell condition gives a quadratic (in m2)

for each event. They then combine all possible pairs of events.

Q11m
4
~g +2Q12m

2
~gm

2
~b
+Q22m

4
~b
+2Q1m

2
~g +2Q2m

2
~b
+Q = 0,



Combining Events: our method

Given the decay ~q~q → qχ02qχ
0
2 → ql~lql~l → qllχ01qllχ

0
1 (as occurs in SPS

1a):

This process is underconstrained by 2. There are 4 kinematic un-
knowns and 6 unknown intermediate masses. So, not enough con-
straints to solve simultaneously for the masses and the kinematic
unknowns in one event.

But, under the assumption that the masses are the same on both
sides of the event, and the same between two events, one can solve
for the masses using a pair of events.

This is equivalent to asking: Is the 2-particle likelihood, in the narrow-
width approximation zero or non-zero?

L2 = P1({pi}1|{Mj})P2({pi}2|{Mj})

Naively this gives 4 quadratic equations. However one can use instead
three quadratics by relating momenta p21 = p22.

Another nice way to think of this is doing OSET's backwards.



Example Two: Overconstrained



Constraint Equations

(M2
Z =) (p1+ p3+ p5+ p7)

2 = (p2+ p4+ p6+ p8)
2,

(M2
Y =) (p1+ p3+ p5)

2 = (p2+ p4+ p6)
2,

(M2
X =) (p1+ p3)

2 = (p2+ p4)
2,

(M2
N =) p21 = p22.

(1)

px1+ px2 = pxmiss, p
y
1+ p

y
2 = p

y
miss.

q21 = q22 = p22,

(q1+ q3)
2 = (q2+ q4)

2 = (p2+ p4)
2,

(q1+ q3+ q5)
2 = (q2+ q4+ q6)

2 = (p2+ p4+ p6)
2,

(q1+ q3+ q5+ q7)
2 = (q2+ q4+ q6+ q8)

2 = (p2+ p4+ p6+ p8)
2,

qx1+ qx2 = qxmiss, q
y
1+ q

y
2 = q

y
miss.



Ideal Masses (without combinatorics)
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Application of Realism

• Combinatorics: There are 16 choices of where to assign the lep-

tons/jets per event for 4µ or 4e, or 8 for 2µ2e. Combinatorics are
fundamental and must be taken into account. There is no magic

cut which gets rid of them. Combinatorics also carry information

about mass.

• Backgrounds: This signal has no real SM background. We include

all SUSY backgrounds including τ̃ decays and χ̃02 not from squark

decay, and g̃ events (which have extra hard jets).

• Finite widths: �q̃ = 5 GeV, �χ̃02
= 20 MeV, �˜̀

R
= 200 MeV.

• Mass splitting: Di�erent 
avor squarks have di�erent masses by

6 GeV. Therefore, our squark mass result is an average of these

signals.

Note that these techniques work with very few events (e.g. ten).



Ideal Masses (with combinatorics)
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Application of Realism

We simulate all events with ATLFAST running in high-luminosity

mode. We assume 300 fb−1 of luminosity. We require

• 4 isolated (�R < 0.4) leptons with pT > 10 GeV, |η| < 2.5.

(
avors, charges chosen to match our χ̃02 → ˜̀→ χ̃01 topology.

• no b-jets and ≥ 2 jets with pT > 100 GeV, |η| < 2.5. The high-

est pT jets are taken to be particles 7,8 (extra jets from parton

shower/reconstruction are present).

• Missing pT > 50 GeV.



Absolute Masses
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Extra Cuts

We add new cuts to improve S/B and decrease bias

• We require that each combination c in each event i have solutions

with some combination in 75% of the other events. Npair(c, i) <

0.75Nevents

• We weight the �nal histogram by 1/N where N is the number of

solutions in a given pair.

• We cut on the mass di�erences (window de�ned by 0.6 of peak

height { e.g. Full Width at 0.6 Max)

There are many other interesting manipulations one can do, that are

quite di�erent from cutting on physical observables.



Mass Di�erences in SPS1a
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Absolute Masses SPS1a
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Absolute Masses UED @ SPS1a masses
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Results

We �t peaks using a gaussian+quadratic polynomial, and use the

maximum as our mass estimator. This is a biased estimator, but

can be used to estimate our statistical error by repeating the mea-

surement. Using 10 independent sets of Monte Carlo, for the SPS1a

point with masses {91.7,135.9, 175.7 558.0}

mN = 94.1± 2.8GeV,
mX = 138.8± 2.8GeV,
mY = 179.0± 3.0GeV,
mZ = 561.5± 4.1GeV.

(2)

There are 539 signal + 195 background events in this sample after

all cuts.

Precision is degraded by our \bias reduction" procedure. This is

great for getting the mass within 5% very quickly (without scanning

in masses), but �nal errors using these techniques is about a factor

2 better.



Code Availability

For the construction of the polynomial system, the problem can be

divided into two stages: a linear stage and a quadratic stage. (Don't

spend a lot of time with equations in Mathematica/Maple, there's

an easier way to do it, and it's just a matrix) Each missing particle

mass-shell constraint provides one quadratic, and any resonance with

two or more invisible particles downstream provides a quadratic.

Solving a system of 2 quadratics is straightforward (it can be reduced

to a quartic, and solved analytically).

Solving systems of n > 2 quadratics is highly nontrivial.

We have packaged up our code to solve a 2-quadratic system and

3-quadratic system, and the construction of the quadratic systems

described in our paper(s).

http://particle.physics.ucdavis.edu/hefti/projects/doku.php?id=wimpmass

I have some (un�nished) C++ classes which are very general and

could be used for any process with any number of quadratics. (I

need collaborators)



Les Houches 2009 Project

We've made a mess. There are O(30) variables and techniques on

the market, including the subset I've presented here.

Which are best? Which fail, under which circumstances? Which are

more/less sensitive to ISR/FSR? Which are sensitive to experimen-

tal uncertanties (e.g. Jet Energy Scale)? Which areas need more

attention?

We have generated Monte Carlo and background for SPS1a and UED

with SPS1a mass choices, including correct spin dependence (via

BRIDGE) correct matrix elements (via MadGraph), correct extra ra-

diation (ISR/FSR) via MadGraph matching, reasonable detector sim-

ulation (via Delphes), and public availability (via MCDB). Answering

as many of the above questions as possible is the goal for the Les

Houches 2009 report.

This is a public project. Anyone can join. We also encourage re-

use of the above Monte Carlo we painstakingly generated, in other

people's projects.

http://www.lpthe.jussieu.fr/LesHouches09Wiki/index.php/Mass methods


