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We always wonder...

« \What is the universe made of?
* How does the universe work?

 What are the things that holds the universe
together?

 What are the governing principles of the universe?
» How can we live in the universe well?
* Where do we all come from?

» High Energy Physics looks into smallest possible
things to find the answers to these deep questions
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High Energy Physics

* Definition: A field of physics that pursues understanding
the fundamental constituents of matter and basic
principles of interactions between them

* Known interactions (forces):

— Gravitational
— Electro-Weak
— Strong

* Current theory: The Standard Model of Particle Physics
— Unified Weak and Electromagnetic: SU(2)xU(1)
— Strong Interaction: SU(3)
— Currently:SU(3)xSU(2)xU(1)
— Meaning: 8+4 mediators for forces

Nov. 23, 2009 GEM Technology, J. Yu, UTA



The Standard Model of Particle Physics

 The Standard Model of Particle physics provides prescriptions for
fundamental constituents of matter and the forces between them
— So the secret and the birth of the universe

 The Standard Model has been extremely successful

 Three families of leptons and quarks together with 12 force mediators
=>» Simple and elegant!!!
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Good, but still lots we don't know...
Why are there three families of quarks and leptons?

Why is the mass range so large (0.1m, =175 m)?

How do matters acquire mass?
— Higgs mechanism but where is the Higgs, the God particle?

Why is the matter in the universe made only of particles?
— What happened to anti-particles? Or anti-matters?

Why are there only three apparent forces?
s the picture we present the real thing?
How is the universe created? Where do we come from?

Are there any other theories that describe the universe
better?
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What are the roles of particle accelerators?

* Acts as probing tool

— The higher the energy =» The shorter the
wavelength

— Smaller distance to probe

» Two method of accelerator based experiments:

— Collider Experiments: pp, pp, e*e, ep
+ CMS Energy: s =2,[E E,
» Hadron colliders act as discovery machines
* Lepton colliders are for precision measurements

— Fixed Target Experiments: Particles on a target

« CMS Energy: \/; = ./2E1MT

— Each probes different kinematic phase space 6



Fermilab Tevatron and LHC at CERN

. Present world’s Highest Energy proton- * vorld's Highest Energy proton-proton

anti-proton collider collider, turned on last Friday, Nov. 20 and
_ 4km circumference the first collision today!!!
~ E_=1.96 TeV (=6.3x107J/p=> 13M — 27km circumference (100m underground)
Joules on 10-?m?) — E,,=14 TeV (=44x10-"J/p=>» 1000M Joules
b Equivalent to the kinetic energy of a 20t on 10-?m?)

truck at the speed of 130km/hr

b Equivalent to the kinetic energy of a 20t
truck at the speed 1140km/hr

LHC PROJECT ~ UNDERGROUND WORKS
unt >







| The ATLAS Detector
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» Stands for A Torodal LHC ApparatuS
»  Weighs 10000 tons and 10 story tall
« Caninspect 1,000,000,000 collisions/second
Will record ~ 200 pp collisions/second

*  Will record over 2x10"° (2,000,000,000,000,000) bytes each year (2 PetaBytes).
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The International Linear Collider

An electron-position collider on a straight line

10~15 years from the approval of the project
Takes 10 years to build the accelerator and the detector

| L~31km |

~5 Km
-800 m bypass IR

{0 Km +~1.2 Km

General Layout Plan 500 GeV

o CMS Energy:0.5-1TeV
10 Km :Lg 5@“

Source
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How does an Event Look in a HEP Detector?
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Gas Electron Multipliers
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How does a GEM chamber work?
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Fig. 1: Schematics of a double-G EM detector,

How large is the electric
field across a GEM foil?

E=V/d
=400V/6x105cm~6.7x10°V/cm

Sensitive to a wide range of particles, from
low E y-rays and X-rays to several TeV
charged particles

Flexible with high position resolution and
high efficiency =» Good imaging device
Relatively low operational voltage

Can operate with normal operational gas -
ArCO, or other noble gasses (such as Xe)

Short response time ~ 50ns
High gain (102 /layer @400V)
Robust to high flux radiation
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GEM-based Digital Calorimeter Concept

GEM-BASED DHCAL concgpy  Use Double GEM layers

// 2

777,

NOT 17O SCALE
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UTA 30cm x 30cm 3M GEM foils

12 HV sectors on one side of each foil.

—y Magnified section of a 3M GEM foil.
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UTA GEI\/I Chamber Gain
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High Density KPiX Analog Readout for GEM DHCAL

Dynamic gain

e SeleCt-{GEM/SI)

1 of| 1024 pixels

\
\\
High Gain (default)

/ Resst H‘; Range Logic

TR eset

Range Register

scall
logic

Wilkinson
er and

%

Pulsesto Timing Latch,

Leakage
current
subtractio

Leakage Current/Servo
Event Thresh

T

Nov. 23, 2009

-

Simplified Timing:

nch Clock

CalDac

Range Latch, and Event

Control Logic

Counter

Latch (4x)

Reset

Track

B
calibration

Event triggered
by the ILC clock

There are ~ 3000 bunches separated by ~300 ns in a train, and trains are separated by ~200 ms.

Say a signal above event threshold happens at bunch n and time TO.
The Event discriminator triggers in ~100 ns and removes resets and strobes the Timing Latch (12 bit), range latch (1 bit) ar

The Range discriminator triggers in ~100 ns if the signal exceeds the Range Threshold.

When the glitch from the Range switch has had time to settle, Track connects the sample capacitor to the amplifier output. (
The Track signal opens the switch isolating the sample capacitor at TO +1 micro s. At this time, the amplitude of the signa
Reset is asserted (synched to the bunch clock) . Note that @ EM %eth He*agvm% anvwow@in/ent, wl
while processing an event) e !

The system is ready for another signal in ~1.2 microsec.

After the bunch train, the capacitor charge is measured by a Wilkinson converter.

)

b

Reset in
regular
period

1024 channel 13 bit ADC chip
*Developed for Si'W ECAL@ SLAC

torage until
nd of train.

Pipejjme depth
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# % GEM-DHCAL/KPIX boards with Interface and FPGA boards
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KPIX Self Trigger Threshold and Noise Scan
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Cosmic Ray Data with External T

rigger
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GEM+kPiX Fe* and Ru'% Spectra
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“Fe Spectrum vs HV and Chamber Gain

Feb55, Self Trigger Th=2.1V=8 fC
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Large GEM Foil Development with CERN

* The size of the foils are 33cmx100cm, the same as
the physical size of the unit chamber
— Active area is 33cmx100cm
— |s this realistic to think of constructing a chamber with
the same physical size foils?

* Foils will be delivered in eight weeks or so once the
design is completed and once the hole etching
technique is verified

— One-side hole etching technique development
completed
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UTA Large GEM Foil Design
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33cmx100cm DHCAL Unit Chamber
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UTA’s 100cmx100cm Digital Hadron Calorimeter Plane
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GEM DHCAL Beam Test Plans

Phase | =» Completion of 30cmx30cm characterization

Late 2009 - Early 2010: using one plane of 30cmx30cm double
GEM chamber with 64 channel KPiX7

Phase Il =» 33cmx100cm unit chamber characterization
Early 2010 — Late 2010 at MTBF, using 256 channel v8 KPiX
chips
Possible beam test and characterization of TGEM prototype
using 256 channel v8 KPiX chips

Phase Il =» 100cmx100cm plane GEM DHCAL performances in
the CALICE stack

Late 2010 — Mid 2011 at Fermilab’s MTBF

Five 100cmx100cm planes inserted into existing CALICE
calorimeter stack and run with either Si/W or Sci/W ECALs and
RPC planes in the remaining HCAL
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GEM Application Potential FAST X-RAY IMAGING

Using the lower GEM signal, the
readout can be self-triggered with
energy discrimination:

9 keV absorption
radiography of a small
mammal (image size ~
60 x 30 mm?)

X-COORDINATE

A. Bressan et al,
Nucl. Instr. and Meth. A 425(1999)254
F. Sauli, Nucl. Instr. and Meth.A 461(2001)47
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GIA, TiieCtomihes énod decEapttiier

* |mprove the resolution of small animal radiation imaging
using GEM based Image intensity Amplifier
— Replace small aperture microchannel-based image intensifier
with a GEM-based detector, increasing field of view
—Convert y-rays into electrons (photo converter)
—Amplify the electron signal by as large as needed w/ GEM
—Convert electron avalanche back to photons

—Feed this to CCD camera tatgl T I CCD

* Move into embedded digital readout of signal using
custom DAQ = computerized image - | | -4 |BA@
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GIA Chamber Design

GEM detecor
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GIA Prototype Chambe
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Conclusions

* High Energy Physics uses particle accelerators and
precision detectors to unveil the secret of the universe

* (Gas Electron Multiplier technology has a remarkable
potential to be used in high precision calorimetry

— And to be used in other types of radiation detectors
* Medical imaging, homeland security, etc

— GEM-KPiX readout giving good X-ray and MiP spectra

— Tmx33cm long foil development with CERN for 1mx1m unit
chambers =» Large area radiation detector

 Qutcome and the bi-product of HEP research impacts our
daily lives
- WWW came from HEP

* GIA chamber construction and initial test complete

» Ultimately we want to understand the rules of the universe
to make our lives better
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