Electroweak Baryogenesis in the MSSM and its signatures

A. Menon

Illinois Institute of Technology

December 7th, 2009

Anti-Matter and the Dirac Sea

1928: Dirac showed relativity + quantum mechanics \Rightarrow of the positron.

1932: Anderson discovered the positron.

The Standard Model and Experiment

• Gauge group: $SU_C(3) \times SU_L(2) \times U_Y(1)$

	Measurement	Fit	O ^{meas} _O ^{nt} /o ^{meas} 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_z)$	0.02758 ± 0.00035	0.02766	
m _z [GeV]	91.1875 ± 0.0021	91.1874	
Γ _z [GeV]	2.4952 ± 0.0023	2.4957	
σ ^o had [nb]	41.540 ± 0.037	41.477	
R	20.767 ± 0.025	20.744	
A ^{0,1}	0.01714 ± 0.00095	0.01640	
A _I (P ₂)	0.1465 ± 0.0032	0.1479	
R _b	0.21629 ± 0.00066	0.21585	
R _c	0.1721 ± 0.0030	0.1722	
A ^{0,b}	0.0992 ± 0.0016	0.1037	
A ^{0,c}	0.0707 ± 0.0035	0.0741	
A _b	0.923 ± 0.020	0.935	
A _c	0.670 ± 0.027	0.668	
A _I (SLD)	0.1513 ± 0.0021	0.1479	
sin ² θeft(Q _{ID})	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.392 ± 0.029	80.371	
Г _w [GeV]	2.147 ± 0.060	2.091	
m _t [GeV]	171.4 ± 2.1	171.7	▶
		

• Each particle in matter sector has an anti-particle.

The Electroweak sector in the Standard Model

• The *H* doublet acquires a VEV $\begin{pmatrix} 0 \\ v \end{pmatrix}$ at the minimum, breaking $SU(2)_L \times U(1)_Y \to U(1)_{EM}$ by giving mass to the *W* and *Z* bosons

- Yukawa interactions with H give the quarks their masses.
- Mismatch of the U_L and D_L rotations $\Rightarrow u_L W^+ d_L$ CP violating couplings $\propto \arg(V_{CKM})$.
- The massive gauge bosons mediate for short range weak forces that lead to beta decay

 $n \rightarrow p + e + \bar{\nu}$

Baryon and Lepton Number in the SM

• Two U(1) global symmetries:

Baryon number (B): under which quarks are charged. Lepton number (L): under which leptons are charged.

• Baryon number violation leads to proton decay

 $p \rightarrow e + \gamma^0(\pi^0 K^0).$

• B and L are conserved quantites at the classical level.

The puzzle of Baryon Asymmetry of Universe

- CPT invariance implies matter and anti-matter have the same masses and lifetimes.
- Observable Universe is composed of matter.
- Anti-matter is only observed in colliders and cosmic rays.
- Rate of observation of anti-matter in cosmic rays is consistent with secondary emission of antiprotons.

$$rac{n_{ar{p}}}{n_p}\sim 10^{-4}$$

Sources of Baryon Asymmetry observation

- Information of the baryon asymmetry comes from two sources:
- 1. Big Bang Nucleosynthesis (BBN)
- 2. Cosmic Microwave Background Radiation (CMBR)
- The combined observed abundances of the primodial light elements along with BBN give us

$$\eta = \frac{n_B}{n_\gamma}.$$

• CMBR tells gives us $\Omega_B \equiv \frac{\rho_B}{\rho_c}$ where $\rho_c = 10^{-5}h^2 \frac{GeV}{cm^3}$, in which case $\eta = 2.6810^{-8} \Omega_B h^2$.

The observed Baryon Asymmetry

• Baryon number density in the Universe:

$$\eta = \frac{n_B}{n_\gamma} = (6.5 \pm 0.3) \times 10^{-10}$$

WMAP '06

- Baryons and anti-baryons annihilate very efficiently so what is the source of this Baryon asymmetry?
- Is this asymmetry primodial or dynamically generated as the early Universe cools?
- If the asymmetry is dynamically generated, what is the mechanism?

The Sakharov Conditions for Baryon Asymmetry

- Necessary conditions for generating baryon asymmetry (BAU) are:
 - 1) Baryon number *B* violation
 - 2) CP violation
 - 3) Violation of thermal equilibrium
- *B* violation clearly necessary for generating BAU

• B is odd under C and CP \Rightarrow BAU

• *B* is also odd under $T \Rightarrow BAU$

The Electroweak Baryogenesis Scenario

• Baryon production occurs at the electroweak phase transition.

[Kuzmin, Rubakov, Shaposhnikov '85]

- Electroweak symmetry breaking occurs as the Universe cools, nucleating bubbles of broken phase.
- Baryon production occurs near the walls of the expanding bubbles.

The Electroweak Phase Transition

• The Higgs VEV $\langle \phi \rangle$ is the order parameter

 $\langle \phi \rangle = 0 \Rightarrow SU(2) \times U(1)_Y$ Unbroken $\langle \phi \rangle \neq 0 \Rightarrow SU(2) \times U(1)_Y \rightarrow U(1)_{em}$

• Effective potential at finite temperature ${\boldsymbol{T}}$

$$V_{eff} = (-\mu^2 + \alpha T^2)\phi^2 - \gamma T\phi^3 + \frac{\lambda}{4}\phi^4 + \dots$$

Bubble Nucleation

• First order phase transition

• Bubbles of broken phase nucleate when $T \lesssim T_c$

Baryon Production

- CP violation in bubble wall \Rightarrow chiral flux into the unbroken phase.
- Sphaleron transitions in the unbroken phase converts the chiral flux into baryons.
- Baryons produced at the bubble wall, enter the bubble as it expands.

Sphalerons

• $U(1)_{B+L}$ is anomalous in the SM and is violated by quantum effects.

• T = 0 Instanton effects drive transitions

$$\Gamma \sim e^{-16\pi^2/g_2^2} \simeq 10^{-320}.$$

• $T \neq 0$ Thermal fluctuations (sphaleron) drive transitions

 $\Gamma \sim \begin{cases} T^4 e^{-4\pi \langle \phi \rangle / gT} & \langle \phi \rangle \neq 0 \quad \text{[Arnold,Mclerran '87]} \\ \alpha_w^4 T^4 & \langle \phi \rangle = 0. \quad \text{[Bodeker,Moore,Rummukainen '99]} \end{cases}$

EWBG in the Standard Model

• Electroweak phase transition is first-order only if [Kajantie et. al.'98]

 $m_h \lesssim$ 70 GeV

• LEP experimental mass bound

 $m_h > 114.4 \text{ GeV}$

• Not enough CP violation is SM [Gavela et. al. '94]

EWBG does not work in the Standard Model.

The Minimal Supersymmetric Standard Model

Motivation for Supersymmetry

• Resolves the Hierarchy problem.

• Supersymmetry contains the generator for space-time translations a necessary ingredient for theory of quantum gravity.

• Gauge coupling unification is achieved with the Minimal supersymmetry extension of the Standard Model.

• Starting from positive scalar masses at the high scale, electroweak symmetry breaking is induced radiatively.

• If R-parity $P = (-1)^{3B+L+2S}$ is imposed, the Lightest SUSY Particle (LSP) is stable and is an excellent cold Dark Matter particle.

Parameters in the MSSM

• Supersymmetric interactions:

 $W = Y_u Q H_u \bar{U} - Y_d Q H_d \bar{D} - Y_E L H_d E + \mu H_u H_d$

• Soft supersymmetry breaking terms:

Name	Lagrangian Terms		
Gaugino Masses	$-rac{1}{2}M_i ilde\lambda_i ilde\lambda_i$		
Trilinear parameters	$\bar{a_{ijk}\phi_i\phi_j\phi_k}$		
Soft masses	$m_{ij}\phi^{*i}ar{\phi}_j$ and $b_{ij}\phi_i\phi_j$		

• After supersymmetry breaking: 3 Higgs bosons h, H, A and charged Higgs H^{\pm} with $\tan \beta = v_u/v_d$.

EWBG MSSM: First Order Phase Transition

• For a first order phase transition for

$$V_{eff} = (-\mu^2 + \alpha T^2)\phi^2 - \gamma T\phi^3 + \frac{\lambda}{4}\phi^4 + \dots$$

we need

$$rac{\langle \phi(T_c)
angle}{T_c} \simeq rac{\gamma}{\lambda} > 1$$

• γ is generated bosonic loops and the dominant contribution in the MSSM is from a light mostly right-handed stop. [Carena,Quiros,Wagner]

• Larger stop mass \Rightarrow large $\lambda \Rightarrow$ larger m_h .

contd...

• The finite temperature effective Higgs potential in the MSSM has a term

$$V_{eff}^{MSSM} \subset -\frac{N_c T}{6\pi} (m_{\tilde{t}}^2 + \Pi_R(T)^2)^{3/2}$$

where $\prod_{R}(T)^2$ is the positive self energy contribution and

$$m_{\tilde{t}}^2 \sim m_{U_3}^2 + y_t^2 \phi^2 \left(1 - \frac{|X_t|^2}{m_{Q_3}^2}\right)$$

• Generating a ϕ^3 term needed for a first order phase transition $\Rightarrow m_{U_3}^2$ cancels $\Pi_R(T)^2$ and $X_t \ll m_{Q_3}$.

EWBG MSSM: Light Stop Implications

• $\Delta \rho$ limits \Rightarrow light stop mass must be mostly right handed.

• For a strong first order phase transition and to avoid color breaking minima

$$-(100 {
m GeV})^2 \lesssim m_{U_3}^2 \lesssim 0; \quad X_t/m_{Q_3} \lesssim 0.5$$

 $\Rightarrow 120 \lesssim m_{\tilde{t}_1} \lesssim 170 {
m GeV}.$

• Avoiding LEP limit on Higgs mass:

 $\begin{array}{ll} m_{Q_3} \gtrsim 2 {\rm TeV}; & M_A \gtrsim 200 GeV; & 5 < \tan\beta & < 10 \\ \Rightarrow m_h \lesssim 125 {\rm GeV} & . \end{array}$

• Light stop search limits for $m_{\tilde{t}_1} \leq m_t$:

 $(m_{\tilde{t}_1} - m_\chi) \lesssim 30 \text{GeV}.$

as decay products are soft and difficult to find.

• Light stop coannihilations with Bino LSP \Rightarrow viable Ωh^2 for $m_{\tilde{t}_1} - m_{\chi} \lesssim 30$ GeV. [Balazs, Carena, A.M., Morrissey, Wagner '05].

EWBG MSSM: CP Violation

• Higgsino is an important source of MSSM CP violation phase

$$M_{\tilde{\chi}^{\pm}} \sim \begin{pmatrix} |M_2| & g_2 v_u(z) \\ g_2 v_d(z) & e^{i\phi} |\mu| \end{pmatrix}$$

where ϕ is the $Arg(\mu M_2)$.

• CP violation in bubble wall modifies the transmission and reflection coefficients leading the current

 $\langle J_{\mu}^{ ilde{H}}
angle \propto Im(\mu M_2)$

• $\langle J^{\tilde{H}}_{\mu} \rangle$ in turn sources B violating process through sphalerons.

EWBG MSSM: Implications of CP Violation

• Generating baryon asymmetry:

 $Arg(\mu M_{1,2}) \gtrsim 10^{-2}$ $\mu M_{1,2} \lesssim 400 \text{ GeV}$

[Carena,Quiros,Seco,Wagner '02, Lee,Cirigliano,Ramsey-Musolf '04]

• EDM constraints:

 $|d_e| < 1.6 \times 10^{-27}$ e CM [Regan et. al. '02] $|d_n| < 2.9 \times 10^{-26}$ e CM [Baker et. al. '06]

• One loop EDM constraints $\Rightarrow m_{\tilde{f}}^2>2-5~{\rm TeV}$ or the first two generations are decoupled. [Nath,Ibrahim '98]

contd ...

• Two-loop contribution: $\propto Im(\mu M_2)$ [Chang, Chang, Kueng '02; Pilatfsis '02]

• EDM constraints weaker for $M_A \gtrsim 1$ TeV.

Split Stop Supersymmetry

• EDM constraints \Rightarrow large sfermion and pseudo scalar masses.

 $m_{\widetilde{f}}\gtrsim 5~{
m TeV}$

LEP Higgs mass limit ⇒ heavy mostly left-handed stop

 $m_{ ilde{t_2}} \gtrsim$ 2 GeV.

• EWBG \Rightarrow light charginos, neutralinos and right handed stops.

 $m_{LSP} < m_{\tilde{t_1}} \lesssim m_t$

⇒ Stop Split Supersymmetry. [Carena, Nardini, Quiros, Wagner '09]

Direct light stop searches: Tevatron

• Light stop searches the in $\tilde{t} \to c \tilde{\chi}^0$ channel: [Balazs, Carena, Wagner '04]

Direct light stop searches: LHC

• \tilde{t}_1 produced copiously, but decays into soft jets so hard to find.

• Possible channels $\tilde{t}_1 \to c\chi_1^0$, $\tilde{t}_1 \to bW^*\chi_1^0$, $\tilde{t}_1 \to b\chi_1^{+*}$. [Balazs et. al. '04; Demina et. al. '99; Hiller, Nir'08]

• Can be seen in gluino pair production and decay into same sign leptons, jets and MET with 30 fb⁻¹ for $m_{\tilde{q}} \lesssim 1$ TeV. [Kramel, Raklev '05,06]

- For small mass splitting, searches in the j + MET or $\gamma + MET$ can probe EWBG scenario with 100 fb⁻¹. [Carena et. al. '08]
- Parameter space determination is generally challenging.

Direct light stop searches: Stoponium

- $\eta_{\tilde{t}_1} = \tilde{t}_1 \tilde{t}_1^*$ can form as $\Gamma_{\tilde{t}_1 \to c\chi_1^0} \ll$ binding energy of $\eta_{\tilde{t}_1}$. [Nojiri, Dress '95]
- $\eta_{\tilde{t}_1} \to \gamma \gamma$ may be observable with 100 fb⁻¹ for $m_{\eta \tilde{t}_1} \lesssim$ 250 GeV. [Martin '08]

Precise measurement of stoponium mass.

Indirect light stop effects on Higgs Searches

• Light stops can modify Higgs production cross-sections. [Kane et. al. '95; Dawson et. al. '96; Djouadi '98; Dermisek, Low '07]

• Effective light stop Higgs coupling in EWBG

$$g_{h\tilde{t}_1\tilde{t}_1} \sim m_t^2 \left(1 - \frac{|X_t|^2}{m_{Q_3}^2} \right)$$

where $Q = \sqrt{2} v g_{h \tilde{t}_1 \tilde{t}_1}$

• Stronger first order EW phase transition \Rightarrow larger $g_{h\tilde{t}_1\tilde{t}_1}$ coupling, if $X_t \ll m_{Q_3}$.

Light stop loop effects on Higgs Branching Ratios

contd ...

Light stop effects on Higgs searches at the Tevatron

- For $m_h \lesssim 135$ GeV: Associated Higgs production $Wh \to Wb\overline{b}$ is dominant
- For $m_h \gtrsim 135$ GeV: $gg \rightarrow h \rightarrow WW^*$ dominant.

Improvements in analysis $\Rightarrow 2 - 3\sigma$ observation of the Higgs?

Light stop and Higgs searches at LHC

• 5 σ Higgs discovery in $gg \rightarrow h \rightarrow \gamma\gamma$ with 30fb^{-1} and error in Higgs mass 0.2 GeV. [ATLAS Collaboration'09; CMS Collaboration '07]

• 30 % error in Γ_{hgg} with 200fb⁻¹ of data. [Zeppenfeld et. al. '00,02; Belyaev, Reina '02; Duhrssen et. al. '04]

• 20 % error in $\Gamma_{h\gamma\gamma}$ with 200fb⁻¹ of data. [Zeppenfeld et. al. '00,02; Belyaev, Reina '02; Duhrssen et. al. '04]

Large enhancements of Γ_{hgg} in EWBG \Rightarrow deviations in $\Gamma_{ggh}/(\Gamma_{ggh})_{SM}$ should be observable with 200fb⁻¹ at 3σ .

• Finding deviations in $\Gamma_{h\gamma\gamma}$ is more challenging.

Summary

• EWBG MSSM is a very predictive scenario \Rightarrow stop split SUSY - light stop, charginos and neutralinos with the remaining scalars being heavy.

- Observing this scenario at the LHC is very challenging.
- Higgs branching fractions are a potential indirect probe of this scenario and could lead to an enhancement of the signal significance at the Tevatron.

Future avenues

• Stoponium decays into leptons are velocity suppressed but lower backgrounds in this channel may make it a viable channel at the LHC.

• Light charginos and neutralino decays involving intermediate stops could be an additional way of probing this scenario at the LHC.