Interplay of B Physics, Higgs Physics and Dark Matter constraints in MFV MSSM

Arjun Menon Illinois Institute of Technology

Based on:

M. Carena, A. Menon, R. Noriega-Papaqui, A. Szynkman and C. Wagner, Phys. Rev. D74:015009,

[arXiv:hep-ph/0603107];

M. Carena, A. Menon and C. Wagner, Phys.Rev.D76:035004,2007,. [arXiv:0704.1143];

M. Carena, A. Menon and C. Wagner, Phys. Rev. D79:075025,2009,. [arXiv:0812.3594]

November 3, 2009

Outline

Motivation for the Supersymmetry

The Minimal Supersymmetric Standard Model

Minimal Flavor Violation in the MSSM

Higgs Physics Constraints

Dark Matter Constraints

Combined constraints on the MSSM parameter space

Outline

Motivation for the Supersymmetry

The Minimal Supersymmetric Standard Model

Minimal Flavor Violation in the MSSM

Higgs Physics Constraints

Dark Matter Constraints

Combined constraints on the MSSM parameter space

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

The Standard Model

• Gauge group: $SU_C(3) \times SU_L(2) \times U_Y(1)$ RY ENTA PARTICLES eptons Ve Three Generations of Matter

	Measurement	Fit	O ^{meas} _O ^{ff} /o ^{meas} 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_z)$	0.02758 ± 0.00035	0.02766	
m _z [GeV]	91.1875 ± 0.0021	91.1874	
Γ _z [GeV]	2.4952 ± 0.0023	2.4957	
σ_{had}^0 [nb]	41.540 ± 0.037	41.477	
R	20.767 ± 0.025	20.744	
A ^{0,1}	0.01714 ± 0.00095	0.01640	
A _I (P ₂)	0.1465 ± 0.0032	0.1479	▶
R _b	0.21629 ± 0.00066	0.21585	
R _c	0.1721 ± 0.0030	0.1722	
A ^{0,b}	0.0992 ± 0.0016	0.1037	
A ^{0,c}	0.0707 ± 0.0035	0.0741	
Ab	0.923 ± 0.020	0.935	
Ac	0.670 ± 0.027	0.668	
A _I (SLD)	0.1513 ± 0.0021	0.1479	
sin ² θeff (Qp)	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.392 ± 0.029	80.371	
Г _w [GeV]	2.147 ± 0.060	2.091	
m,[GeV]	171.4 ± 2.1	171.7	▶

◆ロ▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The Higgs and Flavor sector in the Standard Model

- The *H* doublet acquires a vev $\begin{pmatrix} 0 \\ v \end{pmatrix}$ at minimum.
- H gives the gauge bosons their mass and longitudinal components.
- Yukawa interactions with H give the quarks their masses.
- ► H couples to both u and d ⇒ no FCNCs flavor changing neutral currents.
- ► Mismatch of the U_L and D_L rotations ⇒ u_LW⁺d_L flavor changing couplings ∝ V_{CKM} ~ 1.
- All flavor physics observables are in good agreement with the SM.

Experimental and Electroweak Precision Limits

► Electroweak precision observables prefer $m_h \sim 100$ GeV, while the LEP Higgs mass bound $\Rightarrow m_h \ge 114.6$ GeV

Theoretical Limits: Naturalness and Triviality

• Unitarity of vector boson scattering $\Rightarrow m_h \lesssim O(1 \text{ TeV})$.

<ロ> (四) (四) (三) (三) (三) (三)

- ► Triviality and stability of the Higgs potential ⇒ 130 GeV $\lesssim m_h \lesssim$ 200 GeV.
- ▶ Naturalness: For $m_h \sim \mathcal{O}(1 \text{ TeV}) \Rightarrow \Lambda \sim 1 \text{ TeV}$.

Outline

Motivation for the Supersymmetry

The Minimal Supersymmetric Standard Model

Minimal Flavor Violation in the MSSM

Higgs Physics Constraints

Dark Matter Constraints

Combined constraints on the MSSM parameter space

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

The Supersymmetric Extension of the Standard Model

- ► Relative sign between squark and quark loops \Rightarrow cancellation of the quadratic dependence of m_h on Λ .
- The superpotential characterizes SUSY interactions

 $W_{MSSM} = \bar{u} Y_u Q H_u - \bar{d} Y_d Q H_d - \bar{e} Y_e L H_d + \mu H_u H_d$

MSSM parameters: Tree-level Higgs Sector

- ► Neutral components of the Higgs boson doublets acquire vevs v_d and v_u and their ratio is $\tan \beta = v_u/v_d$.
- Neglecting CP violation in the Higgs sector, electroweak breaking leaves:

1 CP odd Higgs A 1 charged Higgs *H*⁺, and 2 CP even Higgs bosons h, H

The angle α rotates the CP-even Higgs mass matrix to give the eigenvalues

$$\Rightarrow M_{h,H}^2 = \frac{1}{2} \left(M_A^2 + M_Z^2 \mp \sqrt{(M_A^2 + M_Z^2)^2 - 4M_Z^2 M_A^2 \cos^2 2\beta} \right)$$

while the charged Higgs mass is $M_{H^+}^2 = M_A^2 + M_W^2$.

The modified tree-level couplings of these Higgs bosons to gauge bosons are:

$$\frac{1}{\phi VV} \begin{pmatrix} (hVV)_{MSSM} \\ (HVV)_{MSSM} \\ (AVV)_{MSSM} \end{pmatrix} = \begin{pmatrix} \sin(\beta - \alpha) \\ \cos(\beta - \alpha) \\ \sin(\beta - \alpha) \\ \cos(\beta - \alpha) \\ \sin(\beta - \alpha) \\ \cos(\beta - \alpha) \\ \sin(\beta - \alpha) \\ \sin($$

MSSM parameters: Sfermions and Neutral(charg)inos

Squark mass matrices:

$$M_{U,D}^2 = \begin{pmatrix} \mathbf{\hat{M}}_{\mathbf{\tilde{u}}_{L},\mathbf{\tilde{d}}_{L}}^2 & \frac{v_{u,d}}{\sqrt{2}} X_{u,d} \mathbf{\hat{Y}}_{u,d} \\ \frac{v_{u,d}}{\sqrt{2}} X_{u,d}^* \mathbf{\hat{Y}}_{u,d}^{\dagger} & \mathbf{M}_{\mathbf{\tilde{u}}_{R},\mathbf{\tilde{d}}_{R}}^2 \end{pmatrix}.$$

where $X_u = \left(A_u - \frac{\mu}{\tan\beta}\right)$ and $X_d = \left(A_d - \mu \tan\beta\right)$ flip squark chirality.

- Neutralino states: μ controls amount of Higgsino component in LSP ⇒ strong constraints from DM searches on low values of μ
- Chargino states: μ flips chirality between \tilde{h}_u^+ and \tilde{h}_d^- .

Number of parameters $\sim 10^2$! How are experimental observables and SUSY parameters?

Outline

Motivation for the Supersymmetry

The Minimal Supersymmetric Standard Model

Minimal Flavor Violation in the MSSM

Higgs Physics Constraints

Dark Matter Constraints

Combined constraints on the MSSM parameter space

Synopsis of this Section

• The B Physics observables:

1. $b \rightarrow s\gamma$: either needs a cancellation between the charged-Higgs and chargino-stop contributions or small individual contributions.

2. $B_u \rightarrow \tau \nu$: two regions are allowed (i.e. where Standard contribution \gg MSSM one or vice verse).

3. $B_s \rightarrow \mu^+ \mu^-$: prefers low or moderate values of the stop trilinear A_t .

4. ΔM_s : correlation with $B_s \rightarrow \mu^+ \mu^-$ prevents large SUSY contributions.

• Hints of the scale of SUSY breaking may be observed in B physics observables.

The MSSM Flavor Problem and Minimal Flavor Violation

No tree-level flavor changing neutral currents as:

$$\mathcal{L} = \bar{\mathsf{Q}}_L(\hat{\mathsf{Y}}_d \Phi_d d_R + \hat{\mathsf{Y}}_u \Phi_u u_R) + h.c.$$

- Flavor structure of soft SUSY breaking terms can induce large flavor changing effects through loops.
- ► Flavor Problem: O(1) flavor violation leads M_{SUSY} ~ 100 TeV.
- Minimal Flavor Violation is the scheme in which in the only source of flavor and CP violation is the CKM matrix.
- Flavor violating effects can be large due to loop suppression being offset by large tan β.

RGE evolution of the soft squarks masses

Corrections due to running soft squark masses:

$$\Delta M_{\tilde{Q}}^2 \propto -\frac{1}{8\pi^2} \left[\left(2m_0^2 + M_{H_u}^2(0) + A_0^2 \right) \, Y_u^{\dagger} \, Y_u \right. \\ \left. + \left(2m_0^2 + M_{H_d}^2(0) + A_0^2 \right) \, Y_d^{\dagger} \, Y_d \right] \log \left(\frac{M}{M_{SUSY}} \right)$$

M. Dugan et. al., '85.

- M ~ M_{SUSY} corrections are small and the squark masses remain diagonal.
- M ~ M_{GUT} corrections are significant and the down squark mass matrix is approximately diagonal in the basis

$$\tilde{d}_L^i
ightarrow U_L d_L^i$$

rather than in the basis

$$\tilde{d}_L^i \to D_L d_L^i$$

MSSM: Tree-level flavor violating charged currents

- Both M ∼ M_{SUSY} and M ∼ M_{GUT} have V_{CKM} proportional couplings in the charged Higgs-top-strange quark (H⁺ts) vertex and in the chargino-stop-strange (x̃[±]t̃s) vertex.
- Additionally, for $M \sim M_{GUT}$ there is a flavor violating gluino vertex:

$$\mathcal{L}_g \supset \sqrt{2}g_3 ilde{g}^a \left((V_{CKM})^{JI} (ilde{d}^*_L)^J \mathcal{T}^a d_L^I - (ilde{d}^*_R)^I \mathcal{T}^a d_R^I
ight)$$

In this basis additional off-diagonal L-R down squark mass terms:

 $\mathcal{L}_{mass} \supset (\tilde{d}_L^*)^I (m_Q^2)^I (\tilde{d}_L)^J + (\tilde{d}_R^*)^I (m_R^2)^I (\tilde{d}_R)^J + \tilde{\mu}^* (\tilde{d}_L^*)^I V_{CKM}^{IJ} m_{d_J} (\tilde{d}_R)^I + h.c.$

MSSM: Flavor Changing Neutral Currents

Including 1-loop effects both quarks couple to both the Higgs bosons so that:

and have the structure:

$$\begin{aligned} \epsilon_0^{l} &\approx \frac{2\alpha_s}{3\pi} M_3 \mu C_0(m_{\tilde{d}_1}^2, m_{\tilde{d}_2}^2, M_3^2) \\ \epsilon_Y &\approx \frac{1}{16\pi^2} A_t \mu C_0(m_{\tilde{t}_1}^2, m_{\tilde{t}_2}^2, \mu^2) \end{aligned}$$

Kolda, Babu, Buras, Roszkowski...

- ► ϵ'_0 and ϵ'_Y for up-type quarks completely parameterize all FCNC effects.
- Low scale flavour structure of the squark masses determines the flavor structure of ε-loop factors.

$b \rightarrow s\gamma$: Standard Model vs Experiment

► SM prediction: Left-right operator $\Rightarrow BR(b \rightarrow s\gamma) = (3.15 \pm 0.23) \times 10^{-4}$

M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007)

• Experimental measurement: $\mathcal{BR}(b \rightarrow s\gamma) = (3.55 \pm 0.24^{+0.09}_{-0.10} \pm 0.03) \times 10^{-4}$ [Heavy Flavor Averaging Group (HFAG)], arXiv:hep-ex/0603003 $b \rightarrow s\gamma$: MFV MSSM

 $\propto \mu A_t \tan \beta$

 $\propto h_t - \delta h_t \tan \beta$ where $\frac{\delta h_t}{h_t} \propto \frac{\alpha_s}{2\pi} \mu M_3 \epsilon'_0$

M. Carena et. al. Phys. Lett. B 499, 141 (2001)

 $\propto \mu M_3(m_0^2-m_{Q_3}^2) aneta$ only for the $M \simeq M_{GUT}$ scenario.

(日)

$B_u \rightarrow \tau \nu$: Standard Model vs MSSM and Experiment

- ► SM prediction: $\mathcal{BR}(B_u \to \tau \nu) = (1.09 \pm 0.40) \times 10^{-4}$.
- ► Belle measurement: $\mathcal{BR}(B_u \to \tau \nu) =$ $(1.79^{+0.86}_{-0.49}(\text{stat})^{+0.46}_{-0.51}(\text{syst})) \times$ 10^{-4} .
- ▶ Babar measurement: $\mathcal{BR}(B_u \rightarrow \tau \nu) = (1.20 \pm 0.54) \times 10^{-4}$.
- Experimental Average: $\mathcal{BR}(B_u \to \tau \nu)^{\text{Exp}} =$ $(1.41 \pm 0.43) \times 10^{-4}.$

• SUSY: $R_{B\tau\nu} = \frac{\mathcal{BR}(B_u \to \tau\nu)^{\text{MSSM}}}{\mathcal{BR}(B_u \to \tau\nu)^{\text{SM}}} = \left[1 - \left(\frac{m_B^2}{m_{H^{\pm}}^2}\right) \frac{\tan^2\beta}{1 + \epsilon_0 \tan\beta}\right]^2$

Review of $B_s - \bar{B}_s$ mixing

► The mesons $B_s = (\overline{bs})$ and $\overline{B}_s = (\overline{bs})$ mix in the presence of flavor violation through the matrix

$$\mathsf{H} = \mathsf{M} - \frac{\mathsf{i}}{2}\mathsf{G}$$

where *M* and Γ are hermitian matrices with CPT invariance forcing $M_{11} = M_{22} = M$ and $\Gamma_{11} = \Gamma_{22} = \Gamma$.

 |Γ₁₂| ≪ |M₁₂| in the Standard Model because the charm box diagram is the dominant contribution to Γ₁₂. Therefore the mass splitting in the B_s meson eigenstates is

$$\Delta M_{s} = 2\Re \left(\sqrt{(M_{12} - \frac{i}{2}\Gamma_{12})(M_{12}^{*} - \frac{i}{2}\Gamma_{12}^{*})} \right)$$

\$\approx 2|M_{12}|\$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

ΔM_s in the Standard Model and Experiment

- ► CKMfitter SM prediction: 13.6 ps⁻¹ $\leq (\Delta M_s)^{SM} \leq 28.6 \text{ ps}^{-1}$ at 2σ
- UtFit SM prediction: $\Delta M_s = 20.9 \pm 2.6 \text{ ps}^{-1}$ at 95 % C.L.

• Experimental measurement: $\Delta M_s = (17.77 \pm 0.10(\text{stat}) \pm 0.07(\text{syst})).$

S. Giagu [CDF Collaboration], arXiv:hep-ex/0610044.

・ロット (雪) (日) (日) (日)

ΔM_s in the MSSM with MFV

- ► In MFV MSSM the dominant △M_s contribution comes from double penguin diagrams.
- For uniform squark masses: $(\Delta M_s)^{DP} \propto \frac{|X_{RI}^3|^2}{M^2}$

$$X_{RL}^{32} \propto \frac{\epsilon_{\rm Y} \tan^2 \beta}{(1 + \epsilon_0^3 \tan \beta)(1 + \epsilon_3 \tan \beta)} V_{\rm eff}^{33*} V_{\rm eff}^{32}$$

When M ~ M_{GUT}:

$$X_{RL}^{32} \propto \frac{(\epsilon_0^3 + \epsilon_Y - \epsilon_0) \tan^2 \beta}{(1 + \epsilon_0^3 \tan \beta)(1 + \epsilon_3 \tan \beta)} V_{eff}^{33*} V_{eff}^{32}$$

Stop-Chargino Contributions to ΔM_s in MFV

 Light stops and charginos can give substantial contributions to ΔM_s even for low values of tan β.

- These kinds of SUSY particle spectra can also induce large contributions to e_K.
- The Experimental value of $\epsilon_{\kappa} = (2.282 \pm 0.014) \times 10^{-3}$

$B_s \rightarrow \mu^+ \mu^-$ in the Standard Model vs Experiment

- ▶ SM prediction: $\mathcal{BR}(B_s \rightarrow \mu^+\mu^-) = (3.8 \pm 0.1) \times 10^{-9}$
- ► Experimental prediction: $\mathcal{BR}(B_s \to \mu^+ \mu^-) < 5.8 \times 10^{-8}$ at 95% C.L.

・ロト ・ 一 マ ト ・ 日 ト ・ 日 ト

э

$B_s \rightarrow \mu^+ \mu^-$ in the MSSM with MFV

- ► In MFV MSSM, $\mathcal{BR}(B_s \to \mu^+ \mu^-)$ gets an extra contribution which comes from penguin diagrams.
- For uniform squark masses:

$$\mathcal{BR}(B_s o \mu^+ \mu^-)_{MSSM} \propto rac{|(X^A_{RL})^{32}|^2 \tan^2eta}{M^4_A} \propto rac{ an^6eta}{M^4_A}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Correlation between ΔM_s and $B_s \rightarrow \mu^+ \mu^-$

For uniform squark masses the correlation between ΔM_s and BR(B_s → μ⁺μ⁻) is:

$$\frac{|(\Delta M_s)_{DP}^{SUSY}|}{\mathcal{BR}(B_s \to \mu^+ \mu^-)_{SUSY}} \sim \frac{0.034 (\mathrm{ps})^{-1}}{10^{-7}} \frac{M_A^2}{M_W^2} \left(\frac{50}{\tan\beta}\right)^2$$

The bound on BR(B_s → μ⁺μ⁻) implies an atmost 2 ps⁻¹ double penguin contributions to ΔM_s ~

B Physics observables and SUSY Parameters

- Large values of pseudo-scalar mass M_A and low values of tan β are not greatly constrained by flavor physics.
- $\mathcal{BR}(B_u \to \tau \nu)$ independent of μ and X_t
- For large $\tan \beta$ and small M_A B physics constraints are important, especially for searches at the Tevatron.

Observable($M \sim M_{SUSY}$)	μ	X_t
$m{b} ightarrow m{s}\gamma$	large or moderate	small or moderate
$B_{ m s} ightarrow \mu^+ \mu^-$	small	small
Observable($M \sim M_{GUT}$)		
$m{b} ightarrow m{s}\gamma$	moderate	small or moderate
$B_{ m s} ightarrow \mu^+ \mu^-$	moderate	moderate

Outline

Motivation for the Supersymmetry

The Minimal Supersymmetric Standard Model

Minimal Flavor Violation in the MSSM

Higgs Physics Constraints

Dark Matter Constraints

Combined constraints on the MSSM parameter space

Synopsis of this Section

- Loop corrections to the Higgs mass are controlled by the stop trilinear X_t
- Non-standard Higgs bosons have $\tan \beta$ enhanced couplings to bottom quarks and τ leptons.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Loop corrected Higgs mass in the MSSM

Tree-level SM-like Higgs mass < M_Z < LEP Higgs mass bound.

For large values of the CP odd Higgs mass M_A the SM-like Higgs has a mass

$$(m_h^{max})^2 = M_Z^2 \cos^2(2\beta) \left(1 - \frac{3m_t^2}{8\pi^2 v^2}t\right) + \frac{3m_t^4}{4\pi^2 v^2} \left[\frac{1}{2}\tilde{X}_t + t + \frac{1}{16\pi^2} \left(\frac{3m_t^2}{2v^2} - 32\pi\alpha_3\right) (\tilde{X}_t t + t^2)\right]$$

where $\tilde{X}_t = 2a^2(1 - a^2/12)$, M_{SUSY} is the uniform squark mass scale, $a = X_t/M_{SUSY}$ and $X_t = A_t - \mu/\tan\beta$.

Benchmark scenarios in the MSSM

M. Carena et. al., Prog. Part. Nucl. Phys. 50, 63 (2003).

- ► Maximal mixing scenario ⇒ maximum value of the Higgs mass ⇒ X_t ~ 2.4M_{SUSY}.
- ► Minimal mixing scenario \Rightarrow minimum value of the Higgs mass $\Rightarrow X_t \sim 0$.

Non-standard Higgs boson production and decay

$$g_{Abb} \simeq rac{m_b an eta}{(1+\epsilon_3 an eta) v}; g_{A au au} \simeq rac{m_ au an eta}{v}; \ \mathcal{BR}(A o au^+ au^-) \simeq rac{(1+\epsilon_3 an eta)^2}{9+(1+\epsilon_3 an eta)^2};$$

$$\sigma(b\bar{b}, gg \rightarrow A) imes \mathcal{BR}(A \rightarrow au au) \propto rac{\tan^2 eta}{(1 + \epsilon_3 \tan eta)^2 + 9}$$

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・ ・

э

SM-like Higgs boson production and decay

- ► At the Tevatron, for $m_h \lesssim 135$ GeV the channel $q\bar{q} \rightarrow Wh(h \rightarrow b\bar{b})$ is dominant, where the Higgs is produced in association with W and decays into $b\bar{b}$.
- ► At the LHC, for $m_h \lesssim 135$ GeV the $gg \to h(h \to \gamma\gamma)$ and $q\bar{q} \to q\bar{q}h(h \to \tau\bar{\tau})$ channels are important.

Outline

Motivation for the Supersymmetry

The Minimal Supersymmetric Standard Model

Minimal Flavor Violation in the MSSM

Higgs Physics Constraints

Dark Matter Constraints

Combined constraints on the MSSM parameter space

Synopsis of this Section

• The size of neutralino-nucleon spin-independent cross-section is mostly determine by the amount of Higgsino component in the Lightest SUSY Particle or the size of μ .

Neutralino Spin-Independent Cross-section

The neutralino mass matrix

$$\mathcal{M}_{N} = \begin{pmatrix} M_{1} & 0 & -M_{Z}c_{\beta}s_{\theta_{W}} & M_{Z}s_{\beta}s_{\theta_{W}} \\ 0 & M_{2} & M_{Z}c_{\beta}c_{\theta_{W}} & -M_{Z}s_{\beta}c_{\theta_{W}} \\ -M_{Z}c_{\beta}s_{\theta_{W}} & M_{Z}c_{\beta}c_{\theta_{W}} & 0 & -\mu \\ M_{Z}s_{\beta}s_{\theta_{W}} & -M_{Z}s_{\beta}c_{\theta_{W}} & -\mu & 0 \end{pmatrix}$$

- ► Non-standard Higgs mediated scattering: $\sigma_{SI} \propto |N_{11}|^2 |N_{13}|^2 \frac{\tan^2 \beta}{(1+\epsilon_0 \tan \beta) M_A^4}$
- Squark mediated scattering: $\sigma_{SI} \propto |N_{11}|^2 |N_{13}|^2 \frac{\tan^2 \beta}{(1+\epsilon_0 \tan \beta)m_{\pi}^4}$

・ 日 マ チ 全 司 マ チ 山 マ

э

Direct Dark Matter Detection in the MSSM

Outline

Motivation for the Supersymmetry

The Minimal Supersymmetric Standard Model

Minimal Flavor Violation in the MSSM

Higgs Physics Constraints

Dark Matter Constraints

Combined constraints on the MSSM parameter space

Combined Higgs Searches at the Tevatron and LHC CPX Benchmark: $M_{SUSY} = 500 \text{ GeV}$, $|A_t| = 1 \text{ TeV}$, $\mu = 2 \text{ TeV}$, $M_{1,2} = 200 \text{ GeV}$ and $M_3 = 1 \text{ TeV}$ Tevatron Current/Projected LHC Projected.

Draper et. al. '09

Most of MSSM parameter space will be probed 95% C.L. at the Tevatron!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

B Physics and Dark Matter Constraints

 $(X_t, \mu) = (-400 \text{ GeV}, 800 \text{ GeV})$

 $(X_t, \mu) = (0, 1000 \text{ GeV})$

 $M_3 = 800 \text{ GeV}, \, \tilde{m}_{Q_3} = 800 \text{ GeV},$ $ilde{m}_{d_i} = ilde{m}_{\mathsf{Q}_1} = ilde{m}_{\mathsf{Q}_2} = \mathsf{1} \; \mathsf{TeV}$

Region allowed by B Physics for $M \sim M_{SUSY}$ Region allowed by B Physics for $M \sim M_{GUT}$ Region below allowed by Direct Dark Matter Searches

・ロット (雪) (日) (日) (日)

Conclusions

- ▶ Within minimal flavor violating MSSM the double penguin contribution to ΔM_s is small due to $B_s \rightarrow \mu^+ \mu^-$ constraint.
- We have showed that RG evolution has an impact of flavor observables and some interesting information about the scale of SUSY breaking maybe extracted from them.
- ► B-physics and Non-standard Higgs search constraints disfavor scenarios of large X_t like Maximal Mixing, making the SM-like Higgs mass ≤ 120 GeV.
- SM-like Higgs boson searches at the Tevatron should be able to probe all of the allowed region of parameter space with 10 fb⁻¹.
- Scenarios like Minimal Mixing with X_t ~ 0 look more promising and non-standard Higgs searches at the Tevatron may still be able to probe regions of low M_A and large tan β in the near future.