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Particle Physics

[1 What are the fundamental building blocks (elementary
particles) from which all matter is made?

[l What are the interactions between them that govern how
they combine and decay?

Questions being asked since BC...
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Rutherford scattering
Gold foil
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In 19t century, atoms
were considered to be
elementary particles.

In 1930’s, protons,
neutrons, and electrons
were considered to be
elementary particles.

And, now...
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Standard Model

0 Our current best answers to these H f)
questions are given by the
“Standard Model”

B Quantum Chromodynamics (QCD)
for strong interactions

Force carriers: gluons

B  Quantum Electrodynamics (QED)
for electroweak interactions | | | | |

Force carriers: photons, W, 2 Three Generations of Matter

7y

'
[0 Matter particles § U\ Cl\lt 7/ %
B Three generations of Quarks and -
Leptons O d S b g %
O Forces = VIV IV 7 %
o eN UNT T o
o S
a e W £

And, probably the Higgs boson remains

. H . H )
to be discovered. .. Are we satisfied with the Standard Model?

Not really...
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Questions in the Standard Model

OO0 0O O OO0 O

4+ &

What is the origin of the mass and electroweak symmetry breaking?
B |s the Higgs mechanism the right answer? Technicolor?

Can the electroweak and strong forces be unified?

How can we incorporate gravity into the Standard Model?

B Why is the gravity so weak compared to other forces?

Why are there many different kinds of elementary particles?

B Are the quarks and leptons composite particles?

What is dark matter?

B Are there unobserved stable particles?

What happened to the anti-matter?

Further test Standard Model predictions

Look for undiscovered particles and/or phenomena, which hopefully
offer answers to some of these questions
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Fermilab Tevatron pp Collider

Vs = 1.96 TeV

Booster = e T

o

Tevatron

> w -
D source - S

Main Injector
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Proton-Antiproton Collision

Proton Antiproton

e ——
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Proton-Antiproton Collision

Partons inside (anti)proton:
Parton Distribution Functions (PDF’s)

Proton / \ Antiproton
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0.0 Livuut PN
10° 107

X = p(parton)/p(proton)

00
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Proton-Antiproton Collision

Dominant hard process:

QCD 2 — 2 scattering of partons
Proton 4.8 Antiproton
4,8

q,g@d_

U X, P, X2 P> U
9.8
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Proton-Antiproton Collision

\ Each final state parton becomes
Jet a jet of observable particles

Dominant hard process:
QCD 2 — 2 scattering of partons
Proton 4.8 Antiproton

_,_/\qg qg/\ )

X1P1 xzpz
4,8
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Proton-Antiproton Collision

\ Each final state parton becomes
Jet a jet of observable particles

Dominant hard process:
QCD 2 — 2 scattering of partons
Proton 4.8 Antiproton

_,_/\qg qg/\+

X1 P xzpz

O = Zjdxldxzﬁ (x,, ,Uz)fj (3, /le)aij (X1, %, 5, € (1))

PDF’s QCD hard scattering
Cross section

Test QCD predictions and constrain PDF’s with jets!
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New Physics Searches with Jets (1)

space

CDF Run II Preliminary

NLO QCD

QCD

— Ex0|ted quarks

0
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3

q.9

time 10°F

New Particle Production 10°k ; e
1000 1200

o 4.9 B [Ge\h'cz]
>L< DET g : é é :

— dijet mass resonances

Signal / QCD

Many new physics models predict new
particles decaying into dijets!
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New Physics Searches with Jets (2)

Proton  Quark  Preons?
e"e oen = HCT A, (A=4 TeV, r~5-1020 m)
QCD Existence of substructure below A,

q.9 >©/ a.9 leads to contact interactions
a.9 ™~ a.9 -

A Ao

space

time — / ‘
Contact Interaction
g g

Search for new physics phenomena with Jets!
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Collider Detector at Fermilab (CDF)

Central calorimeter ==

4 EL T,

— &, Silicon vertex detector

L |
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Calorimeters

[0 Sampling calorimeter:
B Scintillating tiles
B Lead/iron absorbers
B Projective tower geometry
0 Granularity:
B An~0.1
B A¢ =30° (159)

0000000000000 00000
0009000000000V V0000

Tracking

> Chamber
S~ N o
o7 7

Silicon Detector
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h Mass Dijet Event

19

H

Calorimeter

1N

ision

Coll

17

>
[
O
-
o
A
-
L
o
e
',
>
O

January 12, 2009




Measurement of
Inclusive Jet Cross Section

Phys. Rev. D 74, 071103(R) (2008).
Phys. Rev. D 78, 052006 (2008).

Work with C. Group™* (U. Florida — FNAL), G. Flanagan®* (MSU — Purdue U.),
A. Bhatti (Rockefeller U.), F. Chlebana (FNAL), J. Huston (MSU), G. Latino (INFN)

*) Ph.D. Thesis on this measurement



Inclusive Jet Cross Section

dzO' N jet
< VS. Pr
dp, dy Ap; -Ay-g-j Ldt
Ap; — p; binsize g — selection efficiency
Ay — ybinsize det — Integrated luminosity

Njet — # of jets in the bin
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Motivation

ey
o
o

Test QCD predictions over ~8
orders of magnitude in
differential cross section

Probe the running of the strong
coupling constant, ag

Sensitive to new physics

-
=]
B

Inclusive jet cross section

ey
o
w

Cone algorithm R_,,.=0.7

0.1<|y|<0.7

'y
=]

d’s/dp.dy [pb/(GeV/c)]
- 2,
| IIIIIII| 1 IIIIIII| | IIIIIII| | IIIIIII| 1 IIII|'|T| | IIIIIII| | IIIIIII| T T

10™
B Probing distance scale of order ,
10-19 m 10
. : 107 NLOJET
Constrain PDF in the proton "
10* s =1960 GeV
105:||||||||||||||||||||||||||||||||||
0 100 200 300 400 500 600 700
p; (GeVic)
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A Little History

Excitement(?) at 10 years-ago
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T | T
inclusive jets: Tevatron Run Il |
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Forward Jets

[0 Forward jets probe high-x at lower Q2 (= -g?) than central jets
B Q2 evolution given by DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)
B Essential to distinguish PDF and possible new physics at higher Q2

[0 Also, extend the sensitivity to lower x

E T RN | LR | T T LAY |
=[] D@ central + Forward Jets (In| < 3.0)

CDF/D@ Central Jets (|n| < 0.7)

ZEUS 95 BPC+BPT+SVTX &
H195SVTX + H1 96 ISR

[ [ ] zEUS 96-97 & H194-97 prel
150- E665
4100, N

Tower E. > 0.5 GeV

SEOIOOUCOOOCEOC

rward jets!

2|
=[] 1.ABE97-010

- [ ] Bcowms
= [7]] nmc
SLAC Y
CDF RUN 11 - o
Run 163064 E
Event 6753986 10°  10°  10° 107 107 107
X
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et Production

[0 Jets are collimated sprays of particles
(mostly hadrons) originating from
quarks/gluons coming from the hard
scattering (Jets are experimental
signatures of quarks and gluons)

[J Unlike photons, leptons etc, jets
— have to be defined by an algorithm
\ Hadronization T .
! for quantitative studies

Hadron-level jets - X
\

[0 Need a well-defined algorithm that
gives close relationship between
calorimeter-level jets, hadron-level
jets, and parton-level jets

Detailed discussions in e.g. “Jets in hadron-hadron collisions”,
Prog. Part. Nucl. Phys. 60, 484, with S. Ellis, J. Huston,

Underlying event P. Loch, M. Tonnesmann,
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Jet “Definitions” — Jet Algorithms

Midpoint cone-based algorithm Infrared unsafety:
[0 Cluster objects based on their soft parton emission changes jet clustering
proximity in y-¢ space
[0 Starting from seeds (calorimeter
towers/particles above threshold),
find stable cones
(pr-weighted centroid = geometric center).

[0 Seeds have been necessary for speed, however source of infrared
unsafety.

[0 Inrecent QCD studies, we use “Midpoint” algorithm, i.e. look for
stable cones from middle points between two adjacent cones

—> Infrared safety restored up to NNLO
[0 Stable cones sometime overlap
- merge cones when overlap > 75%
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Jet Corrections:

Calorimeter-level to Hadron-level

p°(calorimeter) # p®{(particles):
[

Calorimeter’s non-compensating nature
(e/h>1)
Hadron-le\;el jets

/
\

Non-uniformity
\ Hadronizatioml

Particles from other pp interactions

O 00O

Particles below calorimeter noise level

Particles curved outside the clustering
cone due to magnetic field

k

Jet Corrections

Underlying event

January 12, 2009
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Jet Corrections:

Calorimeter-level to Hadron-level

Calorimeter-level jets

e

d

—

\

/

L \ .
| Hadmonic showers —
\

\

\

AW B\

1

aviH

T

EM showprs

\

Hadron-level jets
\

Underlying event

\ || 1
1 1
\\ \: |‘I[
= ||,' \III

\ Hadronization

Correction Steps:

[0 Calorimeter non-uniformity
B Two-jet p; balance

0 Energy from additional pp interactions
B Subtract p; as function of
N(interactions)-1

[0 Average energy loss and resolution
effect in calorimeter energy
measurement:

B Average p; correction from <p.(cal)>
versus <p;(had)>

B Unfolding correction
o(calorimeter —level jets)
o(hadron—level jets)

in MC (jj event generator + detector
simulation).

® Shower simulation tuned to data

U(p]et ]et) —

January 12, 2009
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Calorimeter Response Tuning

=» Tune individual particles’
response (E/p)

I+

Charged e
hadrons

(Eip)

{Ep}

Charged hadrons (r*, K=, p, ...)

o8
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0.2
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115

1.1

1.05

0.95

0g

e

3 T Single track data ]
————— ]
i o Single track MC B
n Minimum bias data
3 o Minimum bias MC
1 " EEG&M’.-‘G]
Electromagnetic particles
(electrons, photons, n9, ...)
= W-— evMC :
- = W—evData 3
& Jhy— e’e MC
a s Jhpy— e'e Data .
a o, £
e —
;awmmm#ﬁﬁ E
Shape due to W & J/y selections
0 20 : 0
p (GeVic)
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Calorimeter Response Tuning

=» Tune individual particles’
response (E/p)

Charged
hadrons

e

Accuracy of the tuning
— jet energy scale uncertainty

(Eip)

(2-3% in the central rapidity region)

Nucl. Instrum. Method A 566, 375 (20006).

o8

08

04

0.2

12 p

115

1.1

1.05 |

095

0g

Charged hadrons (n£, K%, p, ...)

o]

u]

—m # Single track data _

Single track MC

Minimum bias data

Minirmum bias MC

1 10

I 1
f1}D {GeVic)

Electromagnetic particles
(electrons, photons, n9, ...)

L

Shape due to W & J/y selections

= = & 0

#ﬁ#ﬁ*ﬁ* o

W—ev MC 1
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wﬂﬁaﬂmgﬁ

20
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Non-Central Jets

[0 The single particle response
tuning is limited in precision in
non-central regions due to
detector geometry / limited
tracking coverage.

» dijet p; balance method
[0 Equalize jets outside the

central region to central jets. (5= PP™ 1™ = (2 <APIE= ) (2 <aPtF>) | |:1=o_7
n T3¢ ; ; ; ; f
Trigger jet: central region 12p
Probe jet: anywhere T e
1B
robe rigger Lo
Ay £ PP 0l
p T f ave probe trigger /2 -
pr Py + pr®) 081
, 0.7 ;_ ..... .................... ............. + Data .................... .........
ﬂ— p?m ¢ 2+<Apr> [)_5;_ ..... .................... ............. —5~ MC (PYTHIAN- v =
tri er_ _5:..i....i....i....i....i....l....i..
pr 2 —<Apr> 0 3 2 4 0 1 2 3
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Non-Central Jets

[0 The single particle response ¥ trigger
tuning is limited in precision in s B
non-central regions due to
detector geometry / limited
tracking coverage.

» dijet p; balance method

[0 Equalize jets outside the
central region to central jets.

Trigger jet: central region

. [ B=Pt™ Pt = (24 <APtF>)/(2-<APtF>) | R=0.7

Probe jet: anywhere S s S S S
probe trigger 1.05 ; .....
Ap,f = APy = pr T b

ave probe trigger

pre (pr™ +pr)12 o

09 [ 5 MC (PYTHIA) |t

_ p]pirobe B 2 +<Apr> A = - o ; 2 g

'B o trigger

Pr B 2_<Aprf>
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Jet Energy Scale Validations

Jet energy scale is validated with:
[0 Photon(Z)-jet p; balance
0 W= jjin tt production

tt - (WbYWb), W > Ilv,W — jj

0 Z — bb production Nucl. Instrum. Meth. A 596, 54-367 (2008)

g 120001 cor s corm) % oo " With J. Donini, T. Dorigo
3 C [ ] Bestosckgrauna § Y, 2 400 (Padova), M. Shochet
o - - . * & 300 .
: 10000 - [ zoz6 mo \ oot (Chicago) et. al.
I~ £ + background " 35
% 8000 ‘ wué " :
LE B - -100f
5000/ S VDO DO DU DO SOVt It IO
- " 0 20 40 &0 80 100120 140 160 180 200
» . GeVict
4000 kY B 10.017
- i . |JES(datal MC) =/0.974 £0.011(stat.)’, ., (syst.)
EDDD:— . '-.'":\“F‘m-—-
.Du (] |2|u| ' |4|u’ 1 |E‘Jﬂ.+ A G T s o SR | [ 1

80 100 120 140 160 180 200
Dijet mass M, (GeVic’)
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Systematic Uncertainties

S0 B
(a) Jet Energy Scale (b) Jet Energy Resolution
— [ I _/
> \ T —
o i |
DE
8 50 . . —
E
8 10~ (c) Dijet Balance - (d) Unfolding
= / I
: — A
Q (1] = =
l;
m | ———
E L —
QL o -
7))
- -
N | (e)Pileup | (f) Reweighting
~— _-__ /
o — — e ——
\
s =
3 700 700 00 700 700 500

0.1<|yY<0.7

p#ET (GeVIc)

pr (GeVic)
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Inclusive Jet Cross Sections

 p—— 13 [
© 10°F —— CDF data (1.13 ™)
2 % 10"° [ ]| Systematic uncertainty
O . E —— NLO pQCD
L ] — I_'-.-
= i "-l-_._ . . _ _
b % 10°E . — Midpoint: R=0.7, fmerge—0.75
h-‘c >- :: -l-.-.-"'_._ ++—-—
T 0F -, e —
| '.-i-_._ +—-—
102 . — T —— ly[<0.1 (x10°)
10°F . . T 0.1<[y[<0.7 (x10")
108 ; i"'* g 0.7<|y|<1.1
- T ==
10" = === 1.1<|y|<1.6 (x10")
104 E 1.6<|y|<2.1 (x10)
— 1 1 1 | L1 1 1 | L1 1 1 I L1 1 1 | | I I | | 11 1 1 | L1 1 1 |

0 100 200 300 400 500 600 700
Py (GeVic)

(6% luminosity uncertainty not included)
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UE & Hadronization Correction

Currently-available state-of-the-art next-to-
leading-order QCD predictions do not take
into account:

O Underlying event (UE)
0 Hadronization

Y T R These effects are estimated using Monte
* ||: |l/l 1 .
Hadron-level jets i N Carlo event generator (Pythia) tuned to data.
‘. Hadronization o 15¢
E 1.4F Parton to Hadron Level Corrections
- £ e Underlying Event
Q 13k o
Q O Hadronization
s °F . Total
O 11 1‘1-|.h,__
T e
N g
0.8 0.1<|Y" |<07
0.7}
o6
0 100 200 300 400 500 600 700
Underlying event P5T [GeV/c]
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Inclusive Jets: Data vs QCD Predictions

3.5' 1.2F L 1.2

1.5}
1
0.5}

2ol .:.__:‘:_:_ ly]<0.1 i - 1.1<|y|<1.6
i BT Sl ' Choa
ok
45L 0 180 20 ] ——
0.5} ,
a\ 3.5F o
atk ——— T s ey S SLLLLLLI Y
8 1 0.1<|y|<0.7 P ——_L 1.6<|y|<2.1
250 B L
2- - o -
—
8
1]
(]

50 100 150 200 250 300 350 400 450
piET (GeVic)

— = CDF Data (1.13 ™) /NLO

3.5
3t

0.7<|y|<1.1

25
ol —— PDF Uncertainty
2 wnssenn - MRST 2004 / CTEQS.1M
'1 [ sSystematic uncertainty
-~ I Including hadronization and UE
0 100 200 300 400 500 600 700 Midpoint: R=0.7, fmerge=0'75

pIET (GeVic)
Data consistent with QCD predictions in all regions (x?/ndf = 94/72)
B No excess at high p; in the central region

Experimental uncertainty in the forward region smaller than PDF
uncertainty — further constrain PDFs (next generation of CTEQ PDF)
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Searches for New Particles
Decaying Into Dijets

arXiv:0812.4036 [hep-ex], Submitted to Phys. Rev. D.

Work with A. Bhatti (Rockefeller U.), R. Harris (Fermilab)



Motivation

Finding a resonance in mass spectrum is a most convincing way to
find a new particle.

The Tevatron is still the world highest energy collider and
accumulating more data.
B Allow us to explore the unprecedented high mass region.

Dijet Resonances are predicted in many new physics models.

Excited quark AX|unon/CoIoron Techni-p

>“FPT8
; ; 9.8
9.8 9.
(il D (Df) G
9@ 9@ f 0.9

W&z E_M RS graviton

\./
/\/’\
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Analysis Strategy

[0 Use the same strategy as the inclusive jet cross section
measurement for forming dijet mass spectrum

B Jet p; — Dijet invariant mass
B Jet cross section — Dijet pair cross section

[0 Search for a resonant structure over a smooth function fit
B BG is dominated by QCD dijets

B Model QCD dijet mass spectrum by a smooth functional form fitted to
data rather than relying on the theory prediction(s)
[0 Predictions on QCD dijets have large uncertainties

B Use a function which fits the predictions from Pythia, Herwig event
generators, & (N)LO perturbative QCD calculations .

Z—G:po(l—xyllxp2+p3'°g("), x=mlls
m
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Dijet Mass Differential Cross Section

— 10*

“o 10° ~e— CDF Run Il Data (1.13 b
% 102 [ ] Systematic uncertainties
g 10 -5~ NLO pQCD, CTEQ6.1M
-g_ 1 @@E corrected to hadron level
= 10" @@ﬁ n=p,= PT"(et1,2)12
T 10? * .
~ 3 —o-

8 10 —io-
10 &=
10° (a)

200 400 600 800 1000 1200 1400
2
m, [GeVic]

Data / Theory

g
N [ ()

-
[2))

0.5

—@— CDF Run Il Data (1.13 fb™') / NLO pQCD, CTEQ6.1M

I:l Systematic uncertainties
—— PDF uncertainty
---- 6(MRST2004) / 6(CTEQB.1M)

6(2 X Ug) / o(Ug)

(b)

200 400 600 800 1000 1200
2
m, [GeVic]

Consistent with NLO QCD predictions (y?/n.d.f.=21/21)

January 12, 2009

39

1400



Search for Resonances

—~ 10°
"o 10°F -, —@— CDF Run Il Data (1.13 fb")
% 102 s. ----- Fit
) ..o
= 10 ‘e,
E 3
o] 1 'S
o .y
I_:'=10-1 3@\&,\' .
% 107 500 GeVic
o 10°
10+
10°° (a)
10°k_1
i - 0.04
~ 08 o3
= 0.6 of
i o, F 002
S ool 200 300 400 500 600 70D
s O F
=] -OM
02F  (b) f
0.4L L

200 400 600 800

1000 1200 1400

m, [GeVic]

Fit form:

do

d—zpo(l—x)pl/xp2+p3'°g(x), x=mlAls
m

No convincing resonance found in
the measured dijet mass spectrum
(x?/n.d.f.=16/17).

» Set 95% C.L. upper limits
on new particle production
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Dijet Resonance Models

0.5

[0 Dijet mass distributions for
B Excited quark (q*)

B RS graviton (G)

"W

m 7

modeled by Pythia MC.

[0 Gluons make the dijet mass
resonance shape wider.

(~20% effect on resonance cross
section sensitivities)

0.4

_4q

----- RS graviton
Z!

0.3

Arbitrary

0.2

0.1

0 Determine 95% CL limits using
signal shapes from these four
models separately

[0 For other models, compare
predictions with one of these limits ud,s,c,b
that are applicable to each model
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c-B A (pb)

o-B - A (pb)

Upper Limits @ 95% CL

10?

10

10"

10?

10

IIIIIIII| ||||||'|n IIIIIIII| Il'l

== 05% C.L. limits
====: RS graviton
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e,
]
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‘o,
"
e,
ta,
e
(N
.
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wen AXigluon/Coloron
E; diquark

"y,
;;;;
;;;;

T
Mass [GeV/c?]

200 500 300 7000

101

== 95% C.L. limits

||||||'IT| ||||I'I'I'I'| ||||||'IT| ALY

1H]
-

||||||'I7| ||\||I!'I'| ||||||'I'I'| T

-~
..

7000

1200 7400
Mass [GeV/c’]

200 500 800

Dijet resonance models are excluded at the 95% C.L. in the
mass region above the black curves.
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Exclusions for Resonance Models

Mass Exclusions (GeV/c?)

Models — :
Existing This Search
q* 260 <m < 775 260 <m < 870
Axigluon/ | s < m < 980 260 < m < 1250
coloron
Ore 260 < m < 480 260 <m < 1100
E, diquark| 290 <m < 420 290 < m < 630
< m < 800
Wy, 500 <m <80 280 < m < 840
(m<1000 from W' —lv)
400 < m < 640
Zen 00 <m 320 < m < 740

(m<889 from Z'—ll)

[1 Constraining many theoretical models.
[0 Mass exclusions up to 1.2 TeV/c?!

> World best

limits

World best
limits
in jj channel
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Future Prospects



Tevatron — Large Hadron Collider

-

e ;

T

“Large Hadron Collider

Geneva, Switzerland
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Inclusive Jets at LHC

Y
=]
1)

d’s/dp,dy [pb/(GeV/c)]
359833 .233%33
|||| IIIII“‘ IIII||||| IIIII||7| IIIIIII1 IIII|||7| IIIII||7| IIIIIII1 I

—
=
5

Inclusive jet cross section
Cone algorithm R_.=0.7, 0.1 < |y| < 0.7

Tevatron
— LHC

NLOJET++

S

500 1000 1500 2000 2500 3000 3500
p; (GeVic)

4000
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LHC Sensitivity to Dijet Resonances

Sensitivity for 5o discovery

CMS CMS
100 pb** 1 fb!

E6

Excited i i i i
Quark L .
Axigluon :

or Coloron

Technirho

0 1 2 3 4 5
Mass (TeV)

[0  Possibility to discover particles up to 5
TeV/c?in 10 fb! of data

[0 If the new particles are not there,
will extend Tevatron exclusions

Sensitivity for 95% CL Exclusion

Exclusion (Dijets)

CMS
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More Physics with Jets at LHC

[0 Higgs boson searches
B qgH (H-tt—lj), qgH (H-WW*Slvjj), ...
[0 Top quarks

B High statistics tt events great sample to calibrate jets from W—jj
B New physics searches with top quarks: FCNC, tt resonances, ...

[0 Searches for SUSY:

B Squark/gluino production
— missing E; + multi-jets ( + lepton(s) )

Solid understanding of jets will be essential for new discoveries
to be made at the LHC.
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Summary & Remarks

High energy jets produced by the Tevatron offer great opportunities to:
[0 Test QCD predictions in the widest kinematic range

[0 Constrain parton distribution functions (PDFs) in the proton

[0 Search for new physics beyond the Standard Model

Measurement of the inclusive jet cross sections
[0 Detailed jet energy scale calibrations ( uncertainty < 3% )
[0 Provide constraints on proton PDFs (especially high-x gluons)

Searches for new particles decaying into dijets
[0 Significantly extend the limits from the previous searches

The LHC era is approaching:

[0 We expect new discoveries at the LHC (Higgs?, SUSY?, compositeness?,
new symmetries?, something unexpected?), and jets will play a key role.

Let’s get ready for new discoveries!
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My Research in the Past

0 Selected Publications:

Dijet resonance search, arXiv:0812.4036 , submitted to PRD (2008).
Measurement of inclusive jets including forward region, PRD (2008).
Measurement of Z—bb, NIM A (2008).

Jets in hadron-hadron collisions, Prog. Part. Nucl. Phys (2008).
Measurement of inclusive jets for central region, PRD-RC (2006).
Jet energy scale determination, NIM A (2006).

Measurement of inclusive double pomeron exchange, PRL (2004).
The CDF MiniPlug calorimeter, NIM A (2003).

Diffractive dijets at Vs = 630 and 1800 GeV, PRL (2002).

Diffractive dijets and diffractive structure function measurement, PRL (2000).

O Service Work:

On CDF

B QCD physics group convener (Jan. 2007 — Dec. 2008)

B Jet energy and resolution group convener (Apr. 2005 — Nov. 2006)
B QCD group Monte Carlo coordinator (Apr. 2005 — Nov. 2006)

B Offline production coordinator (Aug. 2004 — Jan. 2005)

B Beam-shower counter maintenance
@)

u
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Tevatron Performance & Projection

O Run Il (2001-), Vs = 1.96 TeV
m Delivered luminosity now ~ 5.5 fb-"
B Projection ~ 6.5 fb-! by summer 2009
B Running by summer 2010, additional 2.5 fb-"
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Jet “Definitions” — Jet Algorithms

k; algorithm

Cluster objects in order of increasing their

relative transverse momentum (ky)

L] d; = p%‘,i’ dij = min (p’zf,iﬂp%,j) F
until all objects become part of jets

D parameter controls merging termination and Krp jet Cone jet
characterizes size of resulting jets

No issue of splitting/merging. Infrared and
collinear safe to all orders of QCD.

Every object assigned to a jet: concerns about vacuuming up too many
particles.

Successful at LEP & HERA, but relatively new at the hadron colliders
[0 More difficult environment (underlying event, multiple pp interactions...)
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Jet Trigger and Datasets

[0 Jetrate at the Tevatron too high. Collisions recorded only at ~100 Hz.

[0 Use four different trigger samples
® Low threshold sample, E{¢*>20 GeV (jet20), w/ prescale ~ 800
(Only 1 out of 800 events satisfying the trigger requirement is recorded)
®m High threshold sample, E{*>100 GeV (jet100), w/o prescale,
(All events are recorded)
B For each p; bin, use highest threshold samples with trigger efficiency > 99.5%.

2 10"° 2 10° J.L-1 130" Midpoint (R=0.7
] J‘L=1.13fb'1 Midpoint (R=0.7) © =1 idpoint (R=0.7)
= 10° 3 10
= Jet20 (prescale=808) 8
o) 8 @ 10 =
© 107 Jet50 (prescale=35) E ] Jet20 (prescale=808)
g 10 Jet70 (prescale=8) » 10 Jet50 (prescale=35)
£ 10° Jet100 (prescale=1) o 10° Jet70 (prescale=8)
2 10° E 10°} Jet100 (prescale=1)
10 - 10'F
3 E
10 w 10°E
10? o E
10 L2 10°L |
1 0.1<Y]<0.7 | g 10; 0.1<|Y|<0.7 ﬁ
CDFlRun ] Fl’relimin?ry ‘l | | > 1 —  CDF Run Il Preliminary
L L L L ) Er oo vy by b e b b
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
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Cone versus k; Algorithm Results

[0 At the parton level, o(k;)<c(cone) with R,,,,.=D.

B Cone algorithm tend to merge two energetic clusters with large
separation (>R_,.=D) more than the k; algorithm.

OO Non-pertubative (UE+hadronization) effects larger for k; algorithm
B (k) ~ o(cone) at the hadron level.

Parton to Hadron Correction Ratio: K, / Midpoint

16 1.14

E 112f PYTHIA CTEQS5L (0.1<|Y"*<0.7)
[ e e = e 1'1;’ Reone = D =0.7
o —— E 1081
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0.6 — — o
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- i i ; i ’ . ~JE ; ; ; ; i . ; 1.02f
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14F
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Midpoint vs SIScone: hadron level

[0 Differences between the currently-used Midpoint algorithm and the
newly developed SIScone algorithm in MC at the hadron-level.

102:_ .......................... R S

o

5 ratio (SIS/MP)

ccccc

Midpoint: R =0.7, f =0.75

Hadron-level Correction (MP — SIS)
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Midpoint vs SIScone: parton level

[0 Differences between the currently-used Midpoint algorithm and the
newly developed SIScone algorithm at the parton-level.

101_ ......... ...................................... s ............................
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0.99'_ rr'-.-'_'_._._' ..................................... — J'r'-'-'_._._'_' ........................
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E 101_ .............................................. b e e e e
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E 099_ rl-l"-'_'_.__.i ..................................... S _'_r"'-'_'__._ ................. ............
o
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1.01_ ......... ............. ................. ....................
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1_.. ......... SO
—_—
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| Parton-level Correction (MP — SIS)
0 260 460 600

Differences < 1% — negligible effects on data-NLO comparisons
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Dijet p; Balance vs Jet p;

[1 Dijet pr balance changes as a function with jet p; in
the forward region — Additional correction!
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Jet Energy Resolution: Bisector Method

[0 The unfolding correction for jet
resolution effects is derived from MC
simulation. f Jet1

[0 The MC simulation has to reproduce
the jet energy resolution in data.

[0 Use the “bisector’” method.

para B - detector and
kr =(Pr1 = Pr2)SIN(p,/2) physics effects

krL =t(p; + Pr,)COS(9,/2) <« physics effects

O s (0, ) : RMS of k[ (k;') distribution

. 2 2 - Jet resolution due
Op = O-para O, to detector effects
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Jet Energy Resolution: Bisector Method

oyratio = o,(data)l o,(MC)

0 —f00 200 300

0.8 0.8 —=— No correction
0.7 0.7 —&— After correction
0.6 L . L . L . 0.6 . 1 . 1 . 1
100 200 300 0 100 200 300
p$A'- (GeVic) p?A'- (GeVic)

In the region where the MC underestimate the resolution, introduce extra smearing.
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Average p; Correction

Take <p;“AL> vs <p;HAP> correlation
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Unfolding Corrections

N (calorimeter —level jets)
N(hadron-level jets)

U(py',y'*) =

Correction for the jet energy resolution effects
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Jet Fragmentation Studies  © /

Need to simulate jets properly: """"
particle composition,
multiplicity, momentum i) = 1 5 pr(0.r) "\
distribution etc N., ™ pF(0.R)

e.g. 2hadrons with p; =50 GeV/c CDF Il Preliminary

- o~ 0.4 —
# 20 hadrons with p; =5GeV/c 3 1—¥(r) Midpoint Algorithm (R=0.7)
due to calorimeter non-linearity ~ ~°3* ® DATA
,\ CDF Il Preliminary 8 o — PYTHIA Tune A
o @ DATA > }
R ~ PYTHIA Tune A T L PYTHIA
> ey D, PYTHIA (no MPI)
i S W N HERWIC
os 0.1 <I1Y"|<0.7
) 0.15
37 <P <45 GeV/c
0.1 <I1Y*<0.7 T
" 0.05
| | . | I’/R 0 5|0 100 150 200 250 300 3%0

Tuned MC, PYTHIA Tune A (enhanced ISR + MPI), describes the data P/ (GeV/c)
January 12,2009 VWe know how to model the jet fragmentation reasonably well !!




Underlying Event (UE) Tuning

Outgoing Parton
[0 Underlying Event: particles not
associated with the hard scatter

B Beam remnants
B Multiple parton interactions (MPI)
B [nitial state soft radiations

[0 Tune charged particles in MC in

the “transverse” region (sensitive to Outgoing Parton
UE) in dijet events
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nitial-State Badiation

" AntiProton

Underlving Evenl Inderlying Event

Final-State
Radiation

"AVE Transverse" Charge Density: dN/dnd¢

Jet #1 Direction 1.0
Away Region CDF Preliminary -
data uncorrected Leading Jet
“Toward-Side” Jet 0.8 - theory + CDFSIM
Transverse _ \\| -+
A0 | . Hﬂ joeye! 1

“Toward”

"Transverse" Charge Density

04 -4 - — N\ ITTTTTET X
Back-to-Back
0.2 -
1.96 TeV Charged Particles (|n|<1.0, PT>0.5 GeV/c)
0.0 | | | |
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ET(jet#1) (GeV)
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Systematic uncertainty summary

CDF Run II Preliminary

Total
Absolute Jet energy scale

Relative jet energy scale
Pileup

Unfolding
Resolution —_—

------- Reweighting
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Dominated by jet energy scale uncertainty
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