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Particle PhysicsParticle Physics

What are the fundamental building blocks (elementary 
particles) from which all matter is made?

What are the interactions between them that govern how 
they combine and decay? 

Questions being asked since BC…



In 19th century, atoms
were considered to be
elementary particles.

Rutherford scattering

In 1930’s, protons,
neutrons, and electrons
were considered to be
elementary particles.

*γ

ee

pp

Deep inelastic scattering

higher Q2

→ shorter
distance scale

And, now…
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Standard ModelStandard Model

H ??Our current best answers to these 
questions are given by the 
“Standard Model”

Matter particles
Three generations of Quarks and 
Leptons

Forces
Quantum Chromodynamics (QCD) 
for strong interactions
Force carriers: gluons
Quantum Electrodynamics (QED) 
for electroweak interactions
Force carriers: photons, W, Z

And, probably the Higgs boson remains 
to be discovered…
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Are we satisfied with the Standard Model?
Not really…
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Questions in the Standard ModelQuestions in the Standard Model
What is the origin of the mass and electroweak symmetry breaking?

Is the Higgs mechanism the right answer? Technicolor?
Can the electroweak and strong forces be unified?
How can we incorporate gravity into the Standard Model?

Why is the gravity so weak compared to other forces? 
Why are there many different kinds of elementary particles?

Are the quarks and leptons composite particles? 
What is dark matter?

Are there unobserved stable particles?
What happened to the anti-matter?
…

Further test Standard Model predictions
Look for undiscovered particles and/or phenomena, which hopefully 
offer answers to some of these questions 
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FermilabFermilab TevatronTevatron pppp ColliderCollider¯̄

Tevatron

DØCDF

Chicago
↓

⎯p source

Booster

Main Injector

√s = 1.96 TeV

p p
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ProtonProton--Antiproton CollisionAntiproton Collision

AntiprotonProton
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ProtonProton--Antiproton CollisionAntiproton Collision

Partons inside (anti)proton:
Parton Distribution Functions (PDF’s)
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ProtonProton--Antiproton CollisionAntiproton Collision

11 px
22 px

Proton Antiproton

11 px
gq, gq,

gq,

gq,

Dominant hard process:
QCD 2 → 2 scattering of partons
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ProtonProton--Antiproton CollisionAntiproton Collision

11 px
22 px

Proton Antiproton

11 px
gq, gq,

gq,

gq,

Jet

Jet

Each final state parton becomes
a jet of observable particles

Dominant hard process:
QCD 2 → 2 scattering of partons
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ProtonProton--Antiproton CollisionAntiproton Collision
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Proton Antiproton
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PDF’s QCD hard scattering
cross section

Test QCD predictions and constrain Test QCD predictions and constrain PDFPDF’’ss with jets! with jets! 

Dominant hard process:
QCD 2 → 2 scattering of partons

Each final state parton becomes
a jet of observable particles
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New Physics Searches with Jets (1)New Physics Searches with Jets (1)

f=f’=fs=1

NLO QCD 

Excited quarks

→ dijet mass resonances
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Many new physics models predict new
particles decaying into dijets!
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New Physics Searches with Jets (2)New Physics Searches with Jets (2)
Proton Quark Preons?

cpreon cr Λ/~ h (Λc=4 TeV, r ~ 5 ·10-20 m)
?
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Existence of substructure below Λc
leads to contact interactions

cosθ∗Search for new physics phenomena with Jets! Search for new physics phenomena with Jets! 1

θ*
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Collider Detector at Collider Detector at FermilabFermilab (CDF)(CDF)
Central calorimeter

Plug calorimeter Silicon vertex detector

Central tracking
chamber

Muon counters
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CalorimetersCalorimeters
Sampling calorimeter:

Scintillating tiles
Lead/iron absorbers
Projective tower geometry

Granularity:
∆η ~ 0.1
∆φ = 30o (15o) η=1

η=2

η=3

Central HAD

Central EM

Tracking
Chamber

Wall HAD

Plug HAD

Silicon DetectorPlug EM
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High Mass Dijet EventHigh Mass Dijet Event



Measurement of Measurement of 
Inclusive Jet Cross SectionInclusive Jet Cross Section

Phys. Rev. D 74, 071103(R) (2006).
Phys. Rev. D 78, 052006 (2008).  

Work with C. Group* (U. Florida → FNAL), G. Flanagan* (MSU → Purdue U.), 
A. Bhatti (Rockefeller U.),  F. Chlebana (FNAL), J. Huston (MSU), G. Latino (INFN)

*) Ph.D. Thesis on this measurement
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Inclusive Jet Cross SectionInclusive Jet Cross Section
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MotivationMotivation

Test QCD predictions over ~8 
orders of magnitude in 
differential cross section
Probe the running of the strong 
coupling constant, αs.

Sensitive to new physics
Probing distance scale of order 
10-19 m

Constrain PDF in the proton
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A Little HistoryA Little History

High-x gluon not well known
…can be accommodated

in the Standard Model
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Forward JetsForward Jets
Forward jets probe high-x at lower Q2 (= -q2) than central jets

Q2 evolution given by DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)
Essential to distinguish PDF and possible new physics at higher Q2

Also, extend the sensitivity to lower x
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Jet ProductionJet Production

Unlike photons, leptons etc, jets 
have to be defined by an algorithm
for quantitative studies

Need a well-defined algorithm that 
gives close relationship between 
calorimeter-level jets, hadron-level 
jets, and parton-level jets 

Jets are collimated sprays of particles 
(mostly hadrons) originating from 
quarks/gluons coming from the hard 
scattering (Jets are experimental 
signatures of quarks and gluons)

Detailed discussions in e.g. “Jets in hadron-hadron collisions”, 
Prog. Part. Nucl. Phys. 60, 484, with S. Ellis, J. Huston,
P. Loch, M. Tonnesmann, 
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CalorimeterCalorimeter--level jetslevel jets

Underlying eventUnderlying event

HadronicHadronic showersshowers
EM showersEM showers

HadronHadron--level jetslevel jets

PartonParton--level jetslevel jets

HadronizationHadronization
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Jet Jet ““DefinitionsDefinitions”” –– Jet AlgorithmsJet Algorithms
Midpoint cone-based algorithm

Cluster objects based on their
proximity in y-φ space
Starting from seeds (calorimeter
towers/particles above threshold),
find stable cones
(pT-weighted centroid = geometric center). 
Seeds have been necessary for speed, however source of infrared 
unsafety.
In recent QCD studies, we use “Midpoint” algorithm, i.e. look for 
stable cones from middle points between two adjacent cones

Infrared safety restored up to NNLO
Stable cones sometime overlap

merge cones when overlap > 75% 

Infrared unsafety:
soft parton emission changes jet clustering
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Jet Corrections:Jet Corrections:
CalorimeterCalorimeter--level to level to HadronHadron--levellevel

pT
jet(calorimeter) ≠ pT

jet(particles):
Calorimeter’s non-compensating nature 
(e/h>1)
Non-uniformity
Particles from other pp interactions
Particles below calorimeter noise level
Particles curved outside the clustering 
cone due to magnetic field

Jet Corrections
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CalorimeterCalorimeter--level jetslevel jets

Underlying eventUnderlying event

HadronicHadronic showersshowers
EM showersEM showers

HadronHadron--level jetslevel jets

PartonParton--level jetslevel jets

HadronizationHadronization
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Jet Corrections:Jet Corrections:
CalorimeterCalorimeter--level to level to HadronHadron--levellevel

Correction Steps:
Calorimeter non-uniformity

Two-jet pT balance
Energy from additional pp interactions

Subtract pT as function of 
N(interactions)-1

Average energy loss and resolution 
effect in calorimeter energy 
measurement:

Average pT correction from <pT(cal)> 
versus <pT(had)> 
Unfolding correction

in MC (jj event generator + detector 
simulation).
Shower simulation tuned to data
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Calorimeter Response TuningCalorimeter Response Tuning

Electromagnetic particles
(electrons, photons, π0, …)

Charged hadrons (π±, K±, p, …)

Shape due to W & J/ψ selections

H
A

D
H

A
D

E
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E
M

±eCharged
hadrons

Tune individual particles’
response (E/p)
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Calorimeter Response TuningCalorimeter Response Tuning

Electromagnetic particles
(electrons, photons, π0, …)

Charged hadrons (π±, K±, p, …)

Shape due to W & J/ψ selections

H
A

D
H

A
D

E
M

E
M

±eCharged
hadrons

Tune individual particles’
response (E/p)

Accuracy of the tuning
→ jet energy scale uncertainty

(2-3% in the central rapidity region)

Nucl. Instrum. Method A 566, 375 (2006).  
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NonNon--Central JetsCentral Jets
The single particle response 
tuning is limited in precision in 
non-central regions due to 
detector geometry / limited 
tracking coverage. 

dijet pT balance method
Equalize jets outside the 
central region to central jets.

Trigger jet: central region
Probe jet: anywhere
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NonNon--Central JetsCentral Jets
The single particle response 
tuning is limited in precision in 
non-central regions due to 
detector geometry / limited 
tracking coverage. 

dijet pT balance method
Equalize jets outside the 
central region to central jets.

Trigger jet: central region
Probe jet: anywhere
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Jet Energy Scale ValidationsJet Energy Scale Validations
Jet energy scale is validated with:

Photon(Z)-jet pT balance
W→ jj in tt production

Z → bb production

jjWlWWbbWtt →→→ ,),)(( ν

Nucl. Instrum. Meth. A 596, 54-367 (2008) 
With J. Donini, T. Dorigo
(Padova), M. Shochet
(Chicago) et. al.

.)(.)(..)/( .
. syststatMCdataJES 0170
014001109740 +

−±=
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Systematic UncertaintiesSystematic Uncertainties
0.1<|yjet|<0.7
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Inclusive Jet Cross SectionsInclusive Jet Cross Sections

(6% luminosity uncertainty not included)
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UE & UE & HadronizationHadronization CorrectionCorrection
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CalorimeterCalorimeter--level jetslevel jets

Underlying eventUnderlying event

HadronicHadronic showersshowers
EM showersEM showers

HadronHadron--level jetslevel jets

PartonParton--level jetslevel jets

HadronizationHadronization

Currently-available state-of-the-art next-to-
leading-order QCD predictions do not take 
into account:
Underlying event (UE)
Hadronization

These effects are estimated using Monte
Carlo event generator (Pythia) tuned to data.
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Inclusive Jets: Data Inclusive Jets: Data vsvs QCD PredictionsQCD Predictions

Data consistent with QCD predictions in all regions (χ2/ndf = 94/72)
No excess at high pT in the central region

Experimental uncertainty in the forward region smaller than PDF 
uncertainty → further constrain PDFs (next generation of CTEQ PDF)



Searches for New ParticlesSearches for New Particles
Decaying Into Decaying Into DijetsDijets

arXiv:0812.4036 [hep-ex], Submitted to Phys. Rev. D.  

Work with A. Bhatti (Rockefeller U.), R. Harris (Fermilab)
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MotivationMotivation
Finding a resonance in mass spectrum is a most convincing way to
find a new particle.

The Tevatron is still the world highest energy collider and 
accumulating more data.

Allow us to explore the unprecedented high mass region.

Dijet Resonances are predicted in many new physics models.

Axigluon/ColoronExcited quark Techni-ρ
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ρA/C Τ8
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Analysis StrategyAnalysis Strategy

Use the same strategy as the inclusive jet cross section 
measurement for forming dijet mass spectrum

Jet pT → Dijet invariant mass
Jet cross section → Dijet pair cross section

Search for a resonant structure over a smooth function fit 
BG is dominated by QCD dijets

Model QCD dijet mass spectrum by a smooth functional form fitted to 
data rather than relying on the theory prediction(s)

Predictions on QCD dijets have large uncertainties 

Use a function which fits the predictions from Pythia, Herwig event 
generators, & (N)LO perturbative QCD calculations .

( ) smxxxp
dm
d xppp /,/ )log( =−= + 321

0 1σ
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Dijet Mass Differential Cross SectionDijet Mass Differential Cross Section

Consistent with NLO QCD predictions (χ2/n.d.f.=21/21)
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Search for ResonancesSearch for Resonances

No convincing resonance found in 
the measured dijet mass spectrum
(χ2/n.d.f.=16/17).

( ) smxxxp
dm
d xppp /,/ )log( =−= + 321

0 1σ
:form Fit

Set 95% C.L. upper limits
on new particle production
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Dijet Resonance ModelsDijet Resonance Models
Dijet mass distributions for

Excited quark (q*)
RS graviton (G)
W’
Z’

modeled by Pythia MC.
Gluons make the dijet mass 
resonance shape wider.
(~20% effect on resonance cross 
section sensitivities)

Determine 95% CL limits using 
signal shapes from these four 
models separately 
For other models, compare 
predictions with one of these limits 
that are applicable to each model
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qq
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Upper Limits @ 95% CLUpper Limits @ 95% CL

Dijet resonance models are excluded at the 95% C.L. in the
mass region above the black curves. 
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Exclusions for Resonance ModelsExclusions for Resonance Models
Mass Exclusions (GeV/c2)

Models
Existing This Search

q* 260 < m < 775 260 < m <  870

ρT8 260 < m < 480 260 < m < 1100

Axigluon/
coloron

260 < m < 980 260 < m < 1250

E6 diquark 290 < m < 420 290 < m < 630
300 < m < 800

(m<1000 from W’→lν)
400 < m < 640

(m<889 from Z’→ll)

W’SM 280 < m < 840

Z’SM 320 < m < 740

World best
limits

World best
limits

in jj channel

Constraining many theoretical models. 
Mass exclusions up to 1.2 TeV/c2! 



Future ProspectsFuture Prospects
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TevatronTevatron →→ Large Large HadronHadron ColliderCollider

Batavia, IL

Tevatron
CDF D0

CMS
ATLAS

Geneva, Switzerland

Large Hadron Collider
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Inclusive Jets at LHCInclusive Jets at LHC
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LHC Sensitivity to Dijet ResonancesLHC Sensitivity to Dijet Resonances

Possibility to discover particles up to 5 
TeV/c2 in 10 fb-1 of data

Mass (TeV)

E6 
Diquark

Excited 
Quark

Axigluon
or Coloron

Color Octet
Technirho

CMS
100 pb-1

CMS
1 fb-1

CMS
10 fb-1

Sensitivity for 5σ discovery

0       1        2       3       4        5

If the new particles are not there, 
will extend Tevatron exclusions

E6 
Diquark

Excited 
Quark

Axigluon
or Coloron

Color Octet
Technirho

W ’

RS 
Graviton

Z ’

Tevatron
Exclusion (Dijets)

CMS
100 pb-1

CMS
1 fb-1

Mass (TeV)

Sensitivity for 95% CL Exclusion

0       1        2       3       4       5        6

CMS
10 fb-1

From the CMS experiment
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More Physics with Jets at LHCMore Physics with Jets at LHC
Higgs boson searches

qqH (H→ττ→lj), qqH (H→WW*→lνjj), …
Top quarks

High statistics tt events great sample to calibrate jets from W→jj
New physics searches with top quarks: FCNC, tt resonances, …

Searches for SUSY:
Squark/gluino production 
→ missing ET + multi-jets ( + lepton(s) )

...

Solid understanding of jets will be essential for new discoveries
to be made at the LHC. 
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Summary & RemarksSummary & Remarks
High energy jets produced by the Tevatron offer great opportunities to:

Test QCD predictions in the widest kinematic range
Constrain parton distribution functions (PDFs) in the proton
Search for new physics beyond the Standard Model

Measurement of the inclusive jet cross sections
Detailed jet energy scale calibrations ( uncertainty < 3% )
Provide constraints on proton PDFs (especially high-x gluons)

Searches for new particles decaying into dijets
Significantly extend the limits from the previous searches

The LHC era is approaching:
We expect new discoveries at the LHC (Higgs?, SUSY?, compositeness?, 
new symmetries?, something unexpected?), and jets will play a key role.

Let’s get ready for new discoveries!
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My Research in the PastMy Research in the Past
Selected Publications:

Dijet resonance search, arXiv:0812.4036 , submitted to PRD (2008).
Measurement of inclusive jets including forward region, PRD (2008).
Measurement of Z→bb, NIM A (2008).
Jets in hadron-hadron collisions, Prog. Part. Nucl. Phys (2008).
Measurement of inclusive jets for central region, PRD-RC (2006).
Jet energy scale determination, NIM A (2006).
Measurement of inclusive double pomeron exchange, PRL (2004).
The CDF MiniPlug calorimeter, NIM A (2003).
Diffractive dijets at √s = 630 and 1800 GeV, PRL (2002).
Diffractive dijets and diffractive structure function measurement, PRL (2000).

Service Work:
On CDF

QCD physics group convener (Jan. 2007 – Dec. 2008)
Jet energy and resolution group convener (Apr. 2005 – Nov. 2006)
QCD group Monte Carlo coordinator (Apr. 2005 – Nov. 2006)
Offline production coordinator (Aug. 2004 – Jan. 2005)
Beam-shower counter maintenance

On CMS
Data quality monitoring for jets and missing ET  (Sep. 2008 - )



Backup SlidesBackup Slides
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TevatronTevatron Performance & ProjectionPerformance & Projection
Run II (2001-), √s = 1.96 TeV

Delivered luminosity now ~ 5.5 fb-1

Projection ~ 6.5 fb-1 by summer 2009
Running by summer 2010, additional 2.5 fb-1

!. 155 −fb
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Jet Jet ““DefinitionsDefinitions”” –– Jet AlgorithmsJet Algorithms
kT algorithm

Cluster objects in order of increasing their
relative transverse momentum (kT)

until all objects become part of jets
D parameter controls merging termination and
characterizes size of resulting jets

No issue of splitting/merging. Infrared and
collinear safe to all orders of QCD.
Every object assigned to a jet: concerns about vacuuming up too many 
particles.
Successful at LEP & HERA, but relatively new at the hadron colliders

More difficult environment (underlying event, multiple pp interactions…)

2
,iTii pd =

2

2
2

jT,
2

iT,ij
2

iT,ii D
∆R)p,(pmind,pd ==
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Jet Trigger and DatasetsJet Trigger and Datasets
Jet rate at the Tevatron too high. Collisions recorded only at ~100 Hz.
Use four different trigger samples

Low threshold sample, ET
jet>20 GeV (jet20), w/ prescale ~ 800

(Only 1 out of 800 events satisfying the trigger requirement is recorded)
High threshold sample, ET

jet>100 GeV (jet100), w/o prescale,
(All events are recorded)
For each pT bin, use highest threshold samples with trigger efficiency > 99.5%.
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Cone versus Cone versus kkTT Algorithm ResultsAlgorithm Results
At the parton level, σ(kT)<σ(cone) with Rcone=D.

Cone algorithm tend to merge two energetic clusters with large 
separation (>Rcone=D) more than the kT algorithm.

Non-pertubative (UE+hadronization) effects larger for kT algorithm
σ(kT) ~ σ(cone) at the hadron level.
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Midpoint Midpoint vsvs SISconeSIScone: : hadronhadron levellevel
Differences between the currently-used Midpoint algorithm and the 
newly developed SIScone algorithm in MC at the hadron-level.
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Midpoint Midpoint vsvs SISconeSIScone: : partonparton levellevel
Differences between the currently-used Midpoint algorithm and the 
newly developed SIScone algorithm at the parton-level.

Differences < 1%  → negligible effects on data-NLO comparisons
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Dijet Dijet ppTT Balance Balance vsvs Jet Jet ppTT

Dijet pT balance changes as a function with jet pT in 
the forward region → Additional correction!
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Jet Energy Resolution: Bisector MethodJet Energy Resolution: Bisector Method
The unfolding correction for jet 
resolution effects is derived from MC 
simulation.
The MC simulation has to reproduce 
the jet energy resolution in data.

Jet 1

Jet 2

kTkT
para

kT
┴

Use the “bisector” method.

detector and
physics effects)/(φ)p(pk TT

para
T

21221 sin−= ←

)/(φ)p(pk TTT
21221 cos+±=⊥ ← physics effects

ondistributi of RMS )(:)( ⊥
⊥ T

para
Tpara kkσσ

Jet resolution due
to detector effects

2
⊥= σσσ - 2

paraD ←
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Jet Energy Resolution: Bisector Method  Jet Energy Resolution: Bisector Method  
0.1<|y|<0.
7

)(/)( MCdataratio DDD σσσ =

In the region where the MC underestimate the resolution, introduce extra smearing.
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Average Average ppTT CorrectionCorrection
Take <pT

CAL> vs <pT
HAD> correlation
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Unfolding CorrectionsUnfolding Corrections

)(
)(),(
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jets levelrcalorimete

−
−

=
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NypU jetjet
T

Correction for the jet energy resolution effects
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Jet Fragmentation StudiesJet Fragmentation Studies

Tuned MC, PYTHIA Tune A (enhanced ISR + MPI), describes the data

We know how to model the jet fragmentation reasonably well !!

(r)Ψ

R

Ψ(r)1−

,R)0(p
,r)0(pΣ

N
1Ψ(r) jet

T

T
jets

jets

=

Ψ(r)−1

GeV/c 5p with hadrons 20
 GeV/c 50p with hadrons 2

T

T

=≠
=

due to calorimeter non-linearity

Need to simulate jets properly: 
particle composition, 
multiplicity, momentum 
distribution etc

e.g. 
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Underlying Event (UE) TuningUnderlying Event (UE) Tuning

Underlying Event: particles not 
associated with the hard scatter

Beam remnants
Multiple parton interactions (MPI)
Initial state soft radiations

Tune charged particles in MC in 
the “transverse” region (sensitive to 
UE) in dijet events

"AVE Transverse" Charge Density: dN/dηdφ

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

ET(jet#1)   (GeV)

"T
ra

ns
ve

rs
e"

 C
ha

rg
e 

D
en

si
ty

 CDF Preliminary
data uncorrected
theory + CDFSIM

1.96 TeV Charged Particles (|η|<1.0, PT>0.5 GeV/c) 

Leading Jet

Back-to-Back 

PY Tune A

HW



January 12, 2009 65

Systematic uncertainty summarySystematic uncertainty summary

Dominated by jet energy scale uncertaintyDominated by jet energy scale uncertainty
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