Probing QCD and New Physics with Jets at CDF

Kenichi Hatakeyama Rockefeller University

Southern Methodist University January 12, 2009

Outline

Introduction

- Tevatron collider and jets in pp collisions
- □ CDF experiment
- Measurement of inclusive jet cross sections
- Search for dijet mass resonances
- Future prospects
- □ Summary

Particle Physics

- What are the fundamental building blocks (elementary particles) from which all matter is made?
- What are the interactions between them that govern how they combine and decay?

Questions being asked since BC...

In 19th century, atoms were considered to be elementary particles.

In 1930's, protons, neutrons, and electrons were considered to be elementary particles.

And, now...

Standard Model

- Our current best answers to these questions are given by the "Standard Model"
- Matter particles
 - Three generations of Quarks and Leptons

Forces

- Quantum Chromodynamics (QCD) for strong interactions
 Force carriers: gluons
- Quantum Electrodynamics (QED) for electroweak interactions
 Force carriers: photons, *W*, *Z*

And, probably the Higgs boson remains to be discovered...

Three Generations of Matter

Are we satisfied with the Standard Model? Not really...

Questions in the Standard Model

- □ What is the origin of the mass and electroweak symmetry breaking?
 - Is the Higgs mechanism the right answer? Technicolor?
- Can the electroweak and strong forces be unified?
- □ How can we incorporate gravity into the Standard Model?
 - Why is the gravity so weak compared to other forces?
- □ Why are there many different kinds of elementary particles?
 - Are the quarks and leptons composite particles?
- □ What is dark matter?
 - Are there unobserved stable particles?
- □ What happened to the anti-matter?
- Further test Standard Model predictions
- Look for undiscovered particles and/or phenomena, which hopefully offer answers to some of these questions

Fermilab Tevatron pp Collider

Proton

Antiproton

January 12, 2009

New Physics Searches with Jets (1)

New Physics Searches with Jets (2)

Collider Detector at Fermilab (CDF)

Calorimeters

- Sampling calorimeter:
 - Scintillating tiles
 - Lead/iron absorbers
 - Projective tower geometry
- Granularity:

High Mass Dijet Event

January 12, 2009

Measurement of Inclusive Jet Cross Section

Phys. Rev. D 74, 071103(R) (2006). Phys. Rev. D 78, 052006 (2008).

Work with C. Group* (U. Florida \rightarrow FNAL), G. Flanagan* (MSU \rightarrow Purdue U.), A. Bhatti (Rockefeller U.), F. Chlebana (FNAL), J. Huston (MSU), G. Latino (INFN)

*) Ph.D. Thesis on this measurement

$$\frac{d^2\sigma}{dp_T dy} \leftrightarrow \frac{N_{jet}}{\Delta p_T \cdot \Delta y \cdot \varepsilon \cdot \int L dt} vs. p_T$$

 $\Delta p_T \rightarrow p_T \text{ bin size} \qquad \varepsilon \rightarrow \text{selection efficiency} \\ \Delta y \rightarrow y \text{ bin size} \qquad \int Ldt \rightarrow \text{integrated luminosity} \\ Njet \rightarrow \# \text{ of jets in the bin}$

Motivation

- Test QCD predictions over ~8 orders of magnitude in differential cross section
- Probe the running of the strong coupling constant, α_{s.}
- Sensitive to new physics
 - Probing distance scale of order 10⁻¹⁹ m
- Constrain PDF in the proton

A Little History

Forward Jets

Forward jets probe high-x at lower Q^2 (= $-q^2$) than central jets

- Q² evolution given by DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)
- Essential to distinguish PDF and possible new physics at higher Q²
- Also, extend the sensitivity to lower x

Jet Production

- Jets are collimated sprays of particles (mostly hadrons) originating from quarks/gluons coming from the hard scattering (Jets are experimental signatures of quarks and gluons)
- Unlike photons, leptons etc, jets have to be defined by an algorithm for quantitative studies
- Need a well-defined algorithm that gives close relationship between calorimeter-level jets, hadron-level jets, and parton-level jets

Detailed discussions in e.g. "Jets in hadron-hadron collisions", Prog. Part. Nucl. Phys. 60, 484, with S. Ellis, J. Huston, P. Loch, M. Tonnesmann,

Jet "Definitions" – Jet Algorithms

Midpoint cone-based algorithm

- Starting from seeds (calorimeter towers/particles above threshold), find stable cones

Infrared unsafety:

 $(p_T$ -weighted centroid = geometric center).

- Seeds have been necessary for speed, however source of infrared unsafety.
- In recent QCD studies, we use "Midpoint" algorithm, i.e. look for stable cones from middle points between two adjacent cones

 \rightarrow Infrared safety restored up to NNLO

- Stable cones sometime overlap
 - \rightarrow merge cones when overlap > 75%

Jet Corrections:

Calorimeter-level to Hadron-level

p_T^{jet} (calorimeter) $\neq p_T^{jet}$ (particles):

- Calorimeter's non-compensating nature (e/h>1)
- Non-uniformity
- Particles from other pp interactions
- Particles below calorimeter noise level
- Particles curved outside the clustering cone due to magnetic field

Jet Corrections

Jet Corrections:

Calorimeter-level to Hadron-level

Correction Steps:

- Calorimeter non-uniformity
 - Two-jet p_T balance
 - Energy from additional $\overline{p}p$ interactions
 - Subtract p_T as function of N(interactions)-1
 - Average energy loss and resolution effect in calorimeter energy measurement:
 - Average p_T correction from <p_T(cal)> versus <p_T(had)>
 - Unfolding correction

 $U(p_T^{jet}, y^{jet}) = \frac{\sigma(\text{calorimeter} - \text{level jets})}{\sigma(\text{hadron} - \text{level jets})}$

- in MC (jj event generator + detector simulation).
 - Shower simulation tuned to data

Calorimeter Response Tuning

Calorimeter Response Tuning

Non-Central Jets

- The single particle response tuning is limited in precision in non-central regions due to detector geometry / limited tracking coverage.
- dijet p_T balance method
 Equalize jets outside the central region to central jets.

Trigger jet: central region Probe jet: anywhere

$$\Delta p_T f \equiv \frac{\Delta p_T}{p_T^{ave}} = \frac{p_T^{probe} - p_T^{trigger}}{(p_T^{probe} + p_T^{trigger})/2}$$

$$\beta \equiv \frac{p_T^{probe}}{p_T^{trigger}} = \frac{2 + \left\langle \Delta p_T f \right\rangle}{2 - \left\langle \Delta p_T f \right\rangle}$$

Non-Central Jets

The single particle response tuning is limited in precision in non-central regions due to detector geometry / limited tracking coverage.

dijet p_T balance method
 Equalize jets outside the central region to central jets.

Trigger jet: central region Probe jet: anywhere

$$\Delta p_T f \equiv \frac{\Delta p_T}{p_T^{ave}} = \frac{p_T^{probe} - p_T^{trigger}}{(p_T^{probe} + p_T^{trigger})/2}$$
$$\beta \equiv \frac{p_T^{probe}}{p_T^{trigger}} = \frac{2 + \langle \Delta p_T f \rangle}{2 - \langle \Delta p_T f \rangle}$$

Jet Energy Scale Validations

Jet energy scale is validated with:

- **D** Photon(Z)-jet p_T balance
- $\Box \quad W \rightarrow jj \text{ in } t\overline{t} \text{ production}$
 - $t\bar{t} \to (W\bar{b})(Wb), W \to l\nu, W \to jj$
- $\Box \quad Z \to b\bar{b} \text{ production}$

Nucl. Instrum. Meth. A 596, 54-367 (2008)

Systematic Uncertainties

0.1<|y^{jet}|<0.7

January 12, 2009

Inclusive Jet Cross Sections

UE & Hadronization Correction

January 12, 2009

Inclusive Jets: Data vs QCD Predictions

- Data consistent with QCD predictions in all regions (χ^2 /ndf = 94/72)
 - No excess at high p_T in the central region
- □ Experimental uncertainty in the forward region smaller than PDF uncertainty → further constrain PDFs (next generation of CTEQ PDF)

Searches for New Particles Decaying Into Dijets

arXiv:0812.4036 [hep-ex], Submitted to Phys. Rev. D.

Work with A. Bhatti (Rockefeller U.), R. Harris (Fermilab)

Motivation

- Finding a resonance in mass spectrum is a most convincing way to find a new particle.
- □ The Tevatron is still the world highest energy collider and accumulating more data.
 - Allow us to explore the unprecedented high mass region.
- Dijet Resonances are predicted in many new physics models.

Analysis Strategy

- Use the same strategy as the inclusive jet cross section measurement for forming dijet mass spectrum
 - Jet $p_T \rightarrow Dijet$ invariant mass
 - Jet cross section \rightarrow Dijet pair cross section
- Search for a resonant structure over a smooth function fit
 - BG is dominated by QCD dijets
 - Model QCD dijet mass spectrum by a smooth functional form fitted to data rather than relying on the theory prediction(s)
 - Predictions on QCD dijets have large uncertainties
 - Use a function which fits the predictions from Pythia, Herwig event generators, & (N)LO perturbative QCD calculations.

$$\frac{d\sigma}{dm} = p_0 (1-x)^{p_1} / x^{p_2 + p_3 \log(x)}, \quad x = m / \sqrt{s}$$

Dijet Mass Differential Cross Section

Consistent with NLO QCD predictions (χ^2 /n.d.f.=21/21)

Search for Resonances

Fit form: $\frac{d\sigma}{dm} = p_0 (1-x)^{p_1} / x^{p_2+p_3 \log(x)}, \quad x = m / \sqrt{s}$

No convincing resonance found in the measured dijet mass spectrum (χ^2 /n.d.f.=16/17).

Set 95% C.L. upper limits
 on new particle production

Dijet Resonance Models

- Dijet mass distributions for
 - Excited quark (q*)
 - RS graviton (G)
 - W'
 - Z'

modeled by Pythia MC.

Gluons make the dijet mass resonance shape wider.

(~20% effect on resonance cross section sensitivities)

- Determine 95% CL limits using signal shapes from these four models separately
- For other models, compare predictions with one of these limits that are applicable to each model

Upper Limits @ 95% CL

Dijet resonance models are excluded at the 95% C.L. in the mass region above the black curves.

Exclusions for Resonance Models

			-
Models	Mass Exclusions (GeV/c ²)		
	Existing	This Search	
q*	260 < m < 775	260 < m < 870	World best limits
Axigluon/ coloron	260 < m < 980	260 < m < 1250	
ρ _{T8}	260 < m < 480	260 < m < 1100	
E ₆ diquark	290 < m < 420	290 < m < 630	IJ
W' _{SM}	300 < m < 800	280 < m < 840	World best limits in jj channe
	(m<1000 from W' \rightarrow Iv)		
Z' _{SM}	400 < m < 640	320 < m < 740	
	(m<889 from Z'→II)		

- □ Constraining many theoretical models.
- \Box Mass exclusions up to 1.2 TeV/c²!

Future Prospects

$\textbf{Tevatron} \rightarrow \textbf{Large Hadron Collider}$

Inclusive Jets at LHC

LHC Sensitivity to Dijet Resonances

- Possibility to discover particles up to 5 TeV/c² in 10 fb⁻¹ of data
- If the new particles are not there, will extend Tevatron exclusions

More Physics with Jets at LHC

- Higgs boson searches
 - qqH (H→ττ→lj), qqH (H→WW*→l∨jj), …
- Top quarks
 - High statistics $t\bar{t}$ events great sample to calibrate jets from $W \rightarrow jj$
 - New physics searches with top quarks: FCNC, tt resonances, ...
- □ Searches for SUSY:
 - Squark/gluino production

```
\rightarrow missing E<sub>T</sub> + multi-jets ( + lepton(s) )
```

Solid understanding of jets will be essential for new discoveries to be made at the LHC.

Summary & Remarks

High energy jets produced by the Tevatron offer great opportunities to:

- Test QCD predictions in the widest kinematic range
- Constrain parton distribution functions (PDFs) in the proton
- Search for new physics beyond the Standard Model

Measurement of the inclusive jet cross sections

- Detailed jet energy scale calibrations (uncertainty < 3%)</p>
- Provide constraints on proton PDFs (especially high-x gluons)

Searches for new particles decaying into dijets

□ Significantly extend the limits from the previous searches

The LHC era is approaching:

□ We expect new discoveries at the LHC (Higgs?, SUSY?, compositeness?, new symmetries?, something unexpected?), and jets will play a key role.

Let's get ready for new discoveries!

My Research in the Past

Selected Publications:

- Dijet resonance search, arXiv:0812.4036, submitted to PRD (2008).
- Measurement of inclusive jets including forward region, PRD (2008).
- Measurement of $Z \rightarrow b\bar{b}$, NIM A (2008).
- Jets in hadron-hadron collisions, Prog. Part. Nucl. Phys (2008).
- Measurement of inclusive jets for central region, PRD-RC (2006).
- Jet energy scale determination, NIM A (2006).
- Measurement of inclusive double pomeron exchange, PRL (2004).
- The CDF MiniPlug calorimeter, NIM A (2003).
- Diffractive dijets at \sqrt{s} = 630 and 1800 GeV, PRL (2002).
- Diffractive dijets and diffractive structure function measurement, PRL (2000).

□ Service Work:

On CDF

- QCD physics group convener (Jan. 2007 Dec. 2008)
- Jet energy and resolution group convener (Apr. 2005 Nov. 2006)
- QCD group Monte Carlo coordinator (Apr. 2005 Nov. 2006)
- Offline production coordinator (Aug. 2004 Jan. 2005)
- Beam-shower counter maintenance

On CMS

Data quality monitoring for jets and missing E_T (Sep. 2008 -)

Backup Slides

Tevatron Performance & Projection

- □ Run II (2001-), √s = 1.96 TeV
 - Delivered luminosity now ~ 5.5 fb⁻¹
 - Projection ~ 6.5 fb^{-1} by summer 2009
 - Running by summer 2010, additional 2.5 fb⁻¹

Jet "Definitions" – Jet Algorithms

 k_{T} algorithm

Cluster objects in order of increasing their relative transverse momentum (k_T) $d_{ii} = p_{T,i}^2$, $d_{ij} = min(p_{T,i}^2, p_{T,j}^2) \frac{\Delta R}{D^2}$

until all objects become part of jets

D parameter controls merging termination and characterizes size of resulting jets

- No issue of splitting/merging. Infrared and collinear safe to all orders of QCD.
- Every object assigned to a jet: concerns about vacuuming up too many particles.
- Successful at LEP & HERA, but relatively new at the hadron colliders
 - **D** More difficult environment (underlying event, multiple $\overline{p}p$ interactions...)

Jet Trigger and Datasets

- □ Jet rate at the Tevatron too high. Collisions recorded only at ~100 Hz.
- Use four different trigger samples
 - Low threshold sample, E_T^{jet}>20 GeV (jet20), w/ prescale ~ 800 (Only 1 out of 800 events satisfying the trigger requirement is recorded)
 - High threshold sample, E_T^{jet}>100 GeV (jet100), w/o prescale, (All events are recorded)
 - For each p_T bin, use highest threshold samples with trigger efficiency > 99.5%.

Cone versus k_T Algorithm Results

- **D** At the parton level, $\sigma(k_T) < \sigma(\text{cone})$ with $R_{\text{cone}} = D$.
 - Cone algorithm tend to merge two energetic clusters with large separation (>R_{cone}=D) more than the k_T algorithm.
- □ Non-pertubative (UE+hadronization) effects larger for k_T algorithm

Midpoint vs SIScone: hadron level

Differences between the currently-used Midpoint algorithm and the newly developed SIScone algorithm in MC at the hadron-level.

Midpoint vs SIScone: parton level

Differences between the currently-used Midpoint algorithm and the newly developed SIScone algorithm at the parton-level.

Differences < 1% \rightarrow negligible effects on data-NLO comparisons

Dijet p_T Balance vs Jet p_T

□ Dijet p_T balance changes as a function with jet p_T in the forward region \rightarrow Additional correction!

Jet Energy Resolution: Bisector Method

- The unfolding correction for jet resolution effects is derived from MC simulation.
- The MC simulation has to reproduce the jet energy resolution in data.
- □ Use the "bisector" method.

$$k_{T}^{para} = (p_{T1} - p_{T2}) \sin(\varphi_{12}/2) \leftarrow \frac{\text{detector and}}{\text{physics effects}}$$

$$k_{_T}^{\perp} = \pm (p_{_T1} + p_{_T2}) \cos(\varphi_{_{12}}/2) \quad \leftarrow \text{ physics effects}$$

$$\sigma_{\scriptscriptstyle para}(\sigma_{\scriptscriptstyle \perp})$$
 : RMS of $k_T^{\scriptscriptstyle para}(k_T^{\scriptscriptstyle \perp})$ distribution

$$\sigma_{
m D}$$
 = $\sqrt{\sigma_{
m para}^2$ - σ_{ot}^2

Jet resolution due to detector effects

Jet Energy Resolution: Bisector Method

In the region where the MC underestimate the resolution, introduce extra smearing.

January 12, 2009

Average p_T Correction

Take $< p_T^{CAL} > vs < p_T^{HAD} > correlation$

Unfolding Corrections

 $U(p_T^{jet}, y^{jet}) = \frac{N(\text{calorimeter} - \text{level jets})}{N(\text{hadron} - \text{level jets})}$

Correction for the jet energy resolution effects

Jet Fragmentation Studies

 $1 - \Psi(r)$

Ψ(r)

January 12, 2009 We know how to model the jet fragmentation reasonably well !!

Underlying Event (UE) Tuning

- Underlying Event: particles not associated with the hard scatter
 - Beam remnants
 - Multiple parton interactions (MPI)
 - Initial state soft radiations
 - Tune charged particles in MC in the "transverse" region (sensitive to UE) in dijet events

January 12, 2009

Systematic uncertainty summary

Dominated by jet energy scale uncertainty