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Pulse Transmission and Cable Properties ================================

GOAL

• To understand how voltage and current pulses are transmitted along a transmission
cable.

• How to terminate transmission cables properly.

Introduction

In your introductory electricity and magnetism classes you typically assumed that the
circuits you studied were small enough so that the instantaneous values of current and
voltage along a conductor were independent of position. In many experimental situations
this assumption breaks down and the current and voltage will depend on position along the
conductor even in the absence of discrete circuit elements. Additionally, you will often need
in experimental physics to transmit a voltage or charge pulse from one device to another
with as little distortion of that pulse shape as possible. Doing so is not necessarily a trivial
matter and becomes increasingly difficult as the pulse duration shortens. At all times the
transmission of the pulse is governed by Maxwell’s equations, which implies that appropriate
boundary conditions must be satisfied when the conduction path, usually a cable, interfaces
with either a source or a load. You will see below that the most important macroscopic
characteristic of a cable is its “characteristic impedance.” Failure to “terminate” a cable
with its characteristic impedance will lead to reflections of the traveling pulse that distort
its shape and almost always degrades its usefulness. After today’s lab, you will appreciate
that understanding a “simple” cable isn’t completely trivial.

What follows is especially relevant when the width or risetime of a voltage pulse is
comparable to the round trip transit time for a lightwave travelling along the cable. For
most of the signals you look at on an oscilloscope in this course, this condition is not satisfied
and so you don’t need to care about the material in this lab. However, when you deal with
“fast” signals, those that do satisfy the round trip condition, you will need to be concerned
about the issues discussed in this lab.
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Theory of the Transmission Line/Coaxial Cable

In the laboratory you almost always transmit voltages and currents from one place to
another using a cable. For our purposes, a cable is a pair of parallel conductors, each of
constant cross-section, although not necessarily identical. The conductors need not be side
by side but one can be inside the other, like coaxial cables, the most common cable type you
will use in the lab to interconnect two electronic devices. The inner conductor of a coaxial
cable is typically a solid copper wire and the outer conductor is a larger diameter braided
cylinder. The volume between the two coaxial conductors is filled with a dielectric. When
the cable is conducting a signal, the central wire is the conductor that is at some potential
with respect to ground while the outer conductor is usually at 0 volts potential, i.e., it is
“grounded.” The outside conductor is grounded to minimize the likelihood that transient
voltages will be induced on the central conductor by any ambient electric fields in the region
where the cable is used. The outer conductor is referred to as the “shield.”

Although it is often said that the central conductor of the coaxial cable “carries” the
signal, this is not strictly correct. The coaxial cable functions as a wave guide and the elec-
tric and magnetic fields that comprise the electromagnetic pulse travel through the volume
occupied by the dielectric. Since we are concerned with time varying voltages, the mutual
capacitance and inductance of our two-conductor/dielectric “system” will have to be taken
into account. Additionally, since copper has a finite resistance (alas, copper isn’t even a
superconductor), we should also consider the finite resistance of the coaxial cable. The
implications of these statements will be explained in detail presently.

Refer to figure 1 for a schematic arrangement of a cable of length l connecting a source
and some load of impedance ZL. The position along the cable length is denoted by x. The
source at x = 0 is assumed to produce a voltage E(t) = E0e

iωt and to have an output
impedance Zout. We want to find the voltage and current as functions of position
along the cable. The discussion that follows does not depend on the assumption that the
cable is coaxial.

x

Z_out Z_L

E(t)

l

Figure 1: Schematic representation of a source with output impedance Zout connected by a
transmission line to a load of impedance ZL.

Since the cable has a finite length, we will not make the assumption that cables properties
like resistance, capacitance and inductance are all located at a single point. (What point
would we use?) Instead, we will treat these parameters as being distributed along the cable
between its two ends. Let R′ be the cable resistance per unit length and L′ be the cable
inductance per unit length. The series impedance of an infinitesimal length dx of cable is
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then (R′ + jωL′) dx. (We will use the standard convention j =
√
−1 so as to reserve the

symbol i for electric current.) Since our cable will contain more than one conductor, there
will also be a capacitance C ′ per unit length. Since it may well be the case that the insulation
between the two conductors is imperfect, there can be a leakage current between them that
can be described by a conductance G′ per unit length. (You can think of conductance as the
reciprocal of resistance.) We therefore model a differential length of our cable as shown in
figure 2. Again, no assumption is made that the cable is coaxial.

x’ + dx

L’ dxR’ dx

x’

G’ dx
C’ dx

Figure 2: Schematic representation of an infinitesimal portion of a transmission line.

We can apply Kirchoff’s law to the infinitesimal portion of the cable. If I(x) is the
current at x then the current at I(x + dx) is less than this by the amount Y V (x) that leaks
across the cable, where Y (x) is the admittance1 between the two conductors and V (x) is
the voltage difference between the two conductors. Hence, I(x + dx) = I(x) − Y V (x) =
I(x) − (G′ + jωC ′)V dx = I(x) + (∂I/∂x) dx, so that

∂I

∂x
= −(G′ + jωC ′)V. (1)

By applying Kirchoff’s law to the path bounded by the dashed lines in figure 2, we find that
−(R′ + jωL′)I dx − V (x + dx) + V (x) = 0, which implies that

∂V

∂x
= −(R′ + jωL′)I. (2)

Differentiating (2) and using (1) yields an equation that involves only V

∂2V

∂x2
− γ2V = 0, (3)

where γ = α + jβ = [(R′ + jωL′)(G′ + jωC ′)]1/2 and is called the propagation constant (even
though it depends on frequency). The real part of γ is called the “attenuation constant”
and whose significance will be clearer shortly. The imaginary part β is the “phase constant.”
Additionally, we can differentiate (1) and use (2) to find a similar equation for I

∂2I

∂x2
− γ2I = 0. (4)

1Admittance is the reciprocal of impedance.
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Notice that I and V satisfy the same differential equation. We therefore expect them to
have solutions of a similar form.

The solution to (3) is

V (x) = V1e
γx + V2e

−γx, (5)

where V1 and V2 are integration constants. The solution V (x, t) is found by multiplying (5)
by the harmonic dependence ejωt to yield

V (x, t) = V1 eαxej(ωt+βx) + V2 e−αxej(ωt−βx) (6)
≡ Vr(x, t) + Vi(x, t). (7)

The term containing ωt +βx represents a reflected wave Vr(x, t), reflected from the load
and traveling in the negative x-direction along the transmission line. The factor eαx indicates
that this wave diminishes in magnitude as it propagates in the negative x-direction. (Now
you can see why α is called the attenuation constant.) The term containing ωt−βx represents
the incident wave Vi(x, t), incident on the load and traveling in the positive x-direction. The
factor e−αx indicates that this wave diminishes in magnitude as it travels in the positive
x-direction. The voltage at any point along the transmission line is a superposition of these
two traveling waves. It is easy to show that the general form of the solution for I(x, t) is
similar to that for V and also contains exponentially damped waves propagating in opposite
directions

I(x, t) = − V1

(Z/Y )1/2
eαxej(ωt+βx) +

V2

(Z/Y )1/2
e−αx ej(ωt−βx) (8)

≡ Ii(x, t) + Ir(x, t). (9)

For the waves described by (7) and (9), β equals 2π/λ, where λ is the wavelength, and ω/β
is the wave speed. If R′ and G′ are small enough or if the frequency ω is large enough so
that ωL′ ≫ R′ and ωC ′ ≫ G, then β = γ ≃ ω

√
L′C ′. This implies the wave speed v is given

by

v =
ω

β
≃ 1√

L′C ′

. (10)

If we consider just the wave traveling in the positive x-direction, then we will see shortly
that the ratio of the voltage Vi(x, t) between the two conductors to the current ii(x, t) flowing
through the conductors is an important parameter of the cable. This ratio has the units of
ohms and is termed the characteristic impedance Z0 of the transmission line:
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Z0 ≡ Vi(x, t)

ii(x, t)
=

√

Z

Y
(11)

=

√

R′ + jωL′

G′ + jωC ′
. (12)

For the case of an ideal transmission line where the wire resistance is negligible (R′ ≃ 0)
and the dielectric is assumed perfectly insulating (G ≃ 0),

Z0 =

√

L′

C ′
=

1

2π

√

µ

ǫ
ln

b

a
. (13)

Here, we have used the explicit expressions for L′ and C ′ appropriate for a coaxial cable2

L′ =
µ

2π
ln

b

a
(14)

C ′ =
2πǫ

ln (b/a)
. (15)

The permittivity of the dielectric is denoted by ǫ and the permeability is denoted by µ.
Typically, for coaxial cables you will use, ǫ ≃ 3ǫ0 and µ ≃ µ0. (The dielectric is usually
polyethylene or Teflon.) The inner conductor radius is a and b is the outer conductor radius.

Reflection Coefficient from the Load

What is the significance of Z0? At the end of our cable x = l, where the load is located,
the load’s impedance ZL is given by

ZL =
V (l, t)

i(l, t)
. (16)

Using (7) and (9), we then have for (16)

ZL = Z0

(

V1 eαl+jβl + V2 e−αl−jβl

−V1 eαl+jβl + V2 e−αl−jβl

)

. (17)

Recall that V1 represents the voltage wave reflected from the load and that V2 represents the
voltage wave incident on the load. Solving for V2 yields

V2 = e2αl+j2βl V1
ZL + Z0

ZL − Z0
. (18)

2See the references for a derivation of L′ and C′ for a coaxial cable.
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The ratio of the reflected wave to the incident wave at x = l is then given by

Vr(l, t)

Vi(l, t)
=

V1e
αlej(ωt+βl)

V2e−αlej(ωt−βl)
=

ZL − Z0

ZL + Z0
. (19)

It is easy to show that the ratio of the reflected to the incident current at x = l is given
by

ir(l, t)

ii(l, t)
= −ZL − Z0

ZL + Z0
. (20)

We will define the useful quantity ΓL as the load reflection coefficient

ΓL =
ZL − Z0

ZL + Z0
. (21)

Notice that if ΓL = 0 there is no reflected voltage or current. This occurs when the ZL = Z0

and the load is said to be impedance matched to the cable. This is almost always
the situation you desire. Exceptions are rare. If ΓL 6= 0, you will have a portion of
our signal reflected back to the source, where of course it can be reflected back to the load,
your presumed measuring device. Since the voltage at any point along the cable, including
its end, is the superposition of all the voltage waves traveling through it, your measuring
device would be then measuring a potentially very complicated waveform rather than just
the original waveform sent it. For non-zero ΓL, the polarity of the reflected voltage will
depend on the relative magnitudes of ZL and Z0.

Conclusion

Let’s summarize. For most situations you will encounter in the lab, you can assume that
Z0 for the cable is real. (This is equivalent to assuming the series resistance of the cable is
approximately zero and that the shunt resistance is effectively infinite.) Assume that the
voltage pulse has a magnitude of A when incident on the load, whose impedance is assumed
to be real, often a good assumption. The table below shows the reflected pulse amplitude
for various values of the load impedance.

Termination Resistance R Reflected Pulse Amplitude

0 −A
0 < R < Z0 between 0 and −A

Z0 0
Z0 < R < ∞ between 0 and +A

∞ +A

Remember, terminate your cables with impedance Z0 to prevent reflections!
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INSTRUCTIONS

1. Set the HP 33120A waveform generator (wfg) to produce a 1.5 MHz square wave with
a 1.0 Volt peak-to-peak amplitude. Examine this waveform on the scope using a short
cable (1 m long or less is fine). Measure the period T and the frequency f of the square
wave. Measure and record the risetime tr and the falltime tf of the square wave. Are
they the same? Do you expect them to be?

2. The wfg is not quite fast enough to produce pulses short enough for our purposes.
We will have to help it using a familiar trick of the trade. The “trick” in this case is
simply to differentiate the signal by building a simple RC circuit. See figure 3. You
will make the simple RC differentiator by soldering together a capacitor and a resistor.
(R1 = 47 Ω and C1 = 100 pF.) The instructor will help you with the soldering. Insert
the differentiator into the output circuit of the wfg.

R
1

C

wfg

1

scope

Figure 3: Circuit to generate sharp pulses.

R
1

C
Coaxial Cable1

scopewfg

Z_L

Figure 4: Circuit used to study propagation of waves along a coaxial cable.

3. With the input impedance of the scope Zscope = 1 MΩ, observe and sketch the differ-
entiated output of the wfg.

4. Now terminate the scope so that Zscope = 50 Ω. Observe and sketch the scope trace.
Measure tr and tf .

5. Calculate C ′ and L′ for the coaxial cable. Use cm as your “unit length.” What is your
calculated value of Z0 for the coaxial cable?

6. Attach the the 50 meter long cable to the wfg output/scope input and set ZL = ∞.
See figure 4. Observe and sketch the scope trace. You should be able to identify the
various sharp spikes that you see. Measure the wave speed v in the cable. How does
your measured value for vexp compare with the theoretical value vth given by 10? Also
measure the attenuation constant α.

7. Now set ZL = 0 Ω. Observe and sketch scope trace. Measure v and α.
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8. Determine the cable’s Z0 by minimizing reflections. Use a 1 kΩ potentiometer at the
cable end.

9. Disconnect the potentiometer at the cable end. Terminate the cable with 50 Ω using
BNC/banana plugs and a 50 Ω BNC terminator. Observe and sketch scope trace.

10. Add an additional 50 m of cable to the existing one to make a cable about 100 m long
or so. Measure v and α for ZL = 0 Ω and ZL = ∞.

11. Determine Z0 for the long cable using the same technique you used for the 50 m cable.
How do the two values compare? Does this make sense?

12. Terminate the long cable with 50 Ω. Observe and sketch the scope trace.

13. Measure v, α, and Z0 for the 60 m long TV cable.
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