PHYS 3344 Exam 3

Prof. T.E. Coan Fall 2017

Printed Name _____

DIRECTIONS:

- 1. If I can't read it, I can't grade it.
- 2. Show your work to receive credit.

3. BOX YOUR FINAL ANSWERS

4. BOX YOUR FINAL ANSWERS

- 5. Paginate all pages. Label the problem number clearly.
- 6. Staple your pages together, in order.
- 7. Good luck.

Q1 15 pts. A solid and uniform steel sphere of mass m and radius ρ rolls without slipping along the inside lower half of a hollow pipe of radous R. It rolls up and down the inner sides of this pipe. The moment of inertia I of a solid sphere is $\frac{2}{5}mR^2$, where the symbols have the normal meaning.

- a) 5 pts Write down the lagrangian L for this system. Box the answer.
- b) 5 pts Write down the lagrangian equation(s) of motion for this system. Box the answer.
- c) 5 pts Find the frequency ω of small oscillation. Box the answer.

Q2 10 pts. Consider a damped simple harmonic oscillator that has the property that after 4 cycles its amplitude has dropped to 1/e of its original value. If its *undamped* frequency is ω_0 , what is the ratio of the frequency ω of the damped oscillator to its undamped frequency? Box that answer.

Q3 20 pts. A particle of mass *m* slides without friction on a cycloid, which is given by $x = a(\theta - \sin \theta)$ and $y = a(1 + \cos \theta)$. The angle θ is constrained to be $0 \le \theta \le 2\pi$. See the figure.

a) 5 pts Write down the lagrangian L for this system. Box the answer.

b) 5 pts Using the identity, $\cot(\theta/2) = \sin \theta/(1 - \cos \theta)$, show that the equation of motion for the small mass is given by

$$\ddot{\theta} + \frac{1}{2}\cot(\frac{\theta}{2})\dot{\theta}^2 - \frac{g}{2a}\cot(\frac{\theta}{2}) = 0$$

c) 5 pts Use the identity $u = \cos(\theta/2)$ to rewrite the answer in part (b) to find a simple differential equation for u. Box the answer

d) 5 pts Using the answer in part (c), what is the frequency of oscillation for the mass? Box the answer.

Q4 15 pts. A particle of mass m slides down a smooth circular wedge of mass M as shown in the figure. The wedge itself rests on a flat surface and can slide without friction horizontally. You can take the zero of potential energy to be the top of the wedge. **HINT:** Use the angular variable θ , measured with respect to a horizontal line that just skims the top of the wedge, to help measure the position of m.

- a) 5 pts Write down the lagrangian L for this system. Box the answer.
- b) 5 pts Write down the equation of motion for the wedge. Box the answer.
- c) 5 pts Write down the equation of motion for the small mass m.