PHYS 3344

Fall 2019
TE Coan
Due: 13 Sep '19 6:00 pm

Homework 2

1. Suppose you shoot directly downwards some projectile with an initial speed V_{0} that exceeds its terminal velocity $v_{\text {ter }}$. Assuming that the resistive force is linear, what is the expression for the projectile's speed $v(t)$ as a function time? Box your answer. Make a simple plot of $v(t)$. Use a computer so the plot looks nice and I can read it.
2. Suppose you drop a basketball of mass $m=600 \mathrm{~g}$ and diameter $D=24 \mathrm{~cm}$.
a) What is its terminal speed $V_{\text {ter }}$?
b) Suppose further it is dropped from a tower of height $H=30 \mathrm{~m}$. How long T does it take to hit the ground? Compare numerically to the case of falling in vacuum.
c) How fast v_{f} is it going when it strikes the ground? Compare numerically to the case of falling in a vacuum.
3. Consider some object coasting horizontally in the positive x-direction subject to a drag force $f=-b v-c v^{2}$, where b and c are constants determined by the geometry of the coasting object and the material the object is coasting through.
a) Write down Newton's law for this object and solve for $v(t)$.
b) Sketch the behavior of v as a function of time t. Explain the the time dependence at large t, that is, what force term is dominant at large t ?
4. Suppose a baseball is thrown directly upwards with an initial speed v_{0} and is subject to a drag force of magnitude $f(v)=c v^{2}$. Define the positive y-direction to be upwards.
a) Show that the equation of motion can be written as $\dot{v}=-g\left[1+\left(v / v_{\text {ter }}\right)^{2}\right]$.
b) Now integrate this using a math trick you saw last homework to determine $y=y(v)$ or $v=v(y)$, whichever is easier for you. Show that the baseball's maximum height $y_{\max }$ is

$$
y_{\max }=\frac{v_{\mathrm{ter}}^{2}}{2 g} \ln \left(\frac{v_{\mathrm{ter}}^{2}+v_{0}^{2}}{v_{\mathrm{ter}}^{2}}\right) .
$$

5. Expand the function $y=y(x)$ below in a Taylor series about $x=0$ and keep the first 2 non-zero terms.

$$
y(x)=2+e^{-x^{2}}
$$

