PHYS 3344

Fall 2019
TE Coan
Due: 27 Sep '17 6:00 pm

Homework 3

1. Even though the total force on a system of N particles $\left(\sum_{\alpha} \mathbf{F}_{\alpha}^{\text {ext }}+\sum_{\alpha} \sum_{\beta \neq \alpha} \mathbf{F}_{\alpha \beta}\right)$ is zero, the net torque may not be zero. Show that the net torque has the same value in any coordinate system. Hint: Calculate the net torque on a system of particles in any two fixed coordinate systems whose origins differ by a fixed vector amount a.
2. The speed v of some strangely shaped projectile of mass m varies with distance x as $v(x)=\alpha x^{-n}$. Assume that at $t=0, v(x=0)=0$.
a) What force $F(x)$ is responsible for this state of affairs?
b) What is $x(t)$?
c) Finally, what is $F(t)$?
3. A DART train moves along the tracks at a constant speed u. A woman on the train throws a ball, for reasons mysterious to this day, of mass m straight ahead with a speed v with respect to herself.
a) What is the kinetic energy gain $\Delta \mathrm{KE}_{\text {train }}$ of the ball as measured by a person on the train?
b) Compute the same quantity as in (a) but for a person standing by the track?
c) How much work $W_{\text {Woman }}$ is done by the woman throwing the ball?
d) How much Work $W_{\text {Train }}$ is done by the train?
4. A chain of lenght b and mass ρb is suspended from one end at a height b above a table so that the free end barely touches the tabletop. At time $t=0$, the fixed end of the chain is released. Find the force that the tabletop exerts on the chain after the original fixed end has fallen a vertical distance x.
5. This is a somewhat involved problem, but fully within your ability to solve. It is designed to show you the advantages of a multi-stage rocket compared to a singlestage rocket. Since the commercialization of space by Mr. Amazon and Mr. Tesla seems approaching, it seems sensible to know something about it. Suppose that the payload (e.g., a capsule carrying some hyper-affluent people, or maybe something more interesting) has a mass m and is mounted on a two-stage rocket (see the fig.). The total mass - both rocket stages fully fueled, plus the payload - is Nm. The mass of the secondstage plus the payload, after first-stage burnout and separation, is $n m$. In each case, the ratio of the burnout mass (casing) to initial mass (casing plus fuel) is r, and the exhaust speed of the gas with respect to either stage is $v_{e x}$.

a) Show that the velocity v_{1} gained after the first stage burn, starting from rest (and ignoring gravity), is given by

$$
v_{1}=v_{e x} \ln \left[\frac{N}{r N+n(1-r)}\right]
$$

b) Obtain a corresponding expression for the additional velocity v_{2} gained from the second-stage burn. Box your answer.
c) Adding v_{1} and v_{2}, you have the payload velocity v in terms of N, n, and r. Taking N and r as constants, find the value of n that maximizes v. HINT: This will turn out to be a simple function of N. The algebra can seem messy so I recommend NOT combining the natural logs when you go to maximize v. You can also use Mathematica. Box your answer.
d) Show that the condition for v to be a maximum corresponds to having equal velocity gains for each of the two stages. Find the maximum value of v. Comment on why this expression makes sense. Box your answer.
6. A particle of mass m at the end of a light string wraps itself about a fixed vertical cylinder of radius a (see the figure below). All the motion is in the horizontal plane (ignore gravity). The angular velocity of the string is ω_{0} when the distance from the particle to the point of contact of the string and cylinder is b. Find the angular velocity and tension T in the string after the the string has turned through an additional angle θ.

