PHYS 3344

Fall 2019
TE Coan
Due: 4 Oct '19 6:00 pm

Homework 4

1. Given $\mathbf{F}_{1}=2 x z \mathbf{i}+y \mathbf{j}+x^{2} \mathbf{k}$, and $\mathbf{F}_{2}=y \mathbf{i}-x \mathbf{j}$, which \mathbf{F}, if either, is conservative? Show your work and box your answer.

2. Show that

$$
\mathbf{F}=y^{2} z \sinh (2 x z) \mathbf{i}+y \cosh (2 x z) \mathbf{j}+y^{2} x \sinh (2 x z) \mathbf{k}
$$

is conservative and find a scalar potential U such that $\mathbf{F}=-\nabla U$. Box that answer.
3. A uniform rope has a total mass $m=0.4 \mathrm{~kg}$ and a total length $L=4$ meters. Suppose a length $s=0.6 \mathrm{~m}$ of the rope is hanging vertically down off a table. How much work W is required to put all the rope on the table? Do not forget proper units! No units, no credit.
4. Suppose you have a mass m on the end of a spring of force constant k and constrained to move along the horizontal x axis. If you place the origin at the spring's equilibrium position, the potential energy is $\frac{1}{2} k x^{2}$. At time $t=0$ the mass is sitting at the origin and given a sudden kick to the right so that it moves out to a maximum displacement of $x_{\max }=A$ and then continues to oscillate about the origin.
a) Write down the equation for the conservation of energy and solve it to give the mass's velocity \dot{x} in terms of the position x and the total energy E.
b) Show that $E=\frac{1}{2} k A^{2}$, and use this to eliminate E from your expression for \dot{x}.
c) Use the result, discussed in the text (4.58) and the videos, $t=\int d x^{\prime} / \dot{x}\left(x^{\prime}\right)$, to find the time for the mass to move from the origin to a position x.
d) Find x as a function of t and show that the mass executes simple harmonic motion with period $2 \pi \sqrt{m / k}$.
5. Consider the bead shown in Fig 4.13 of your text threaded onto a curved rigid wire. The bead's position is measured by its distance s measured along the wire from its origin.
a) Show that the bead's speed v is just $v=\dot{s}$. Hint: Write \mathbf{v} in terms of its components, $d x / d t$,etc., and find its magnitude using Pythagoras' theorem.
b) Show that $m \ddot{s}=F_{\operatorname{tang}}$, the tangential component of the net force on the bead. Hint: One way to do this to take the time derivative of the expression $v^{2}=\mathbf{v} \cdot \mathbf{v}$. The left side should lead to \ddot{s} and the right side to $F_{\text {tang }}$.
c) One force on the bead is the normal force \mathbf{N} of the wire that constrains the bead to follow the wire. If all the other forces (e.g., gravity) on the bead are conservative, then their resultant can be derived from a potential energy U. Show that $F_{\text {tang }}=-d U / d s$. This shows that one-dimensional systems of this type can be treated just like linear systems, with x replaced by s and F_{x} by $F_{\text {tang }}$.

