PHYS 4392

Fall 2014
TE Coan
Due: 12 Sep '14 6:00 pm

Homework 2

1. Verify the operator equation $\frac{d}{d x} \operatorname{sgn}(x)=2 \delta(x)$, where the function signum (x), meaning "sign of x ," and abbreviated $\operatorname{sgn}(x)$, is defined by

$$
\operatorname{sgn}(x)=\left\{\begin{aligned}
1, & x>0 \\
-1, & x<0
\end{aligned}\right.
$$

Hint: Recall how we determined δ-function properties in lecture.
$\mathbf{2 a}$. Find the electric field \mathbf{E} a distance z above the center of a flat circular disk of radius R which carries a uniform surface charge density σ (i.e., $[\sigma]=\mathrm{C} / \mathrm{m}^{2}$).
b. What is the value of \mathbf{E} in the limit $R \rightarrow \infty$?
c. What is the value of \mathbf{E} in the limit $z \gg R$? (Note that this condition for z is very different from the condition $z \rightarrow \infty$!)
3. What is a good estimate for the number of seconds T in a single year? Your answer should be written in the form $T=a \times 10^{b}$, where a is a very well known geometric constant. This value of T is worth committing to memory. Be sure to include the unit of time in your answer.
4. What is the magnitude e of the charge of an electron in the MKSA system of units? (This is the system of units used in Griffiths and elsewhere.) I only need 2 or 3 significant figures and your answer should be positive even though the charge of the electron is negative.
5. Two identical thin plastic rods of length L carry equal charges Q distributed uniformly along their lengths. The rods are aligned, with a distance d between their nearest ends. Calculate the magnitude of the repulsive force F that each rod exerts on the other. Do not be afraid to change variables to make integrations easier.
6. Two spheres, each of radius R and carrying uniform charge densities $+\rho$ and $-\rho$, are placed so that they partially overlap. See the figure below. Label the vector from the positive center to the negative center \mathbf{d}. Show that the electric field \mathbf{E} in the region of overlap is constant and find its value.

Figure 1:
Side view of overlapping spheres.
7. A sphere of radius R_{0} carries a uniform charge density ρ throughout its volume. A smaller, hollow sphere of radius R_{s} is then made inside the original sphere by discarding some of its material. Suppose the hollow sphere is a distance a away from the center of the original sphere. Show that the value of the electric field \mathbf{E} inside the cavity is constant and find its value. The figure below may help. Hint: Think superposition and pick a point inside the cavity to evaluate the electric field. This problem is less difficult than you might think if you keep your wits about you!

Figure 2:
Sphere with spherical cavity.

