PHYS 5382Fall 2016TE CoanDue: 28 Oct '28 6:00 pm

Homework 5

0. Box your **entire** answer for each problem or lose points.

1. A spin-1 particle is in the state

$$|\Psi\rangle \xrightarrow[\mathrm{S_zbasis}]{1} \frac{1}{\sqrt{14}} \begin{pmatrix} i\\ 2\\ 3i \end{pmatrix}.$$

What is the probability that a measurement of S_x yields the value \hbar for this state? (Did you do the reading...)

2. Arsenic atoms in the ground state are spin- $\frac{3}{2}$ particles. Suppose an arsenic beam is shot through an SGx device, one with its inhomogeneous magnetic field oriented along the x-direction. Atoms with $S_x = \frac{1}{2}\hbar$ then enter an SGz device. Determine the fraction of the atoms that exit the SGz device with $S_z = \frac{3}{2}\hbar$, $S_z = \frac{1}{2}\hbar$, $S_z = -\frac{1}{2}\hbar$ and $S_z = -\frac{3}{2}\hbar$. The eigenstates of the operator \hat{S}_x in the S_z basis are:

3. A spin- $\frac{3}{2}$ particle is in the state

$$|\Psi\rangle \underset{\mathbf{S}_{z}\text{basis}}{\longrightarrow} N \begin{pmatrix} i\\ 2\\ 3\\ 4i \end{pmatrix}.$$

(a) Determine N so that $|\Psi\rangle$ is properly normalized.

(b) What is $\langle S_x \rangle$ for this state? Recall that the text has the matrix representation for the operator \hat{S}_x in one of the examples in chapter 3.

(c) What is the probability $P(S_x = +\frac{\hbar}{2})$ that a measurement of S_x yields the value $\hbar/2$ for this state?

4a. What is the matrix representation for \hat{S}_y for a spin- $\frac{3}{2}$ particle?

(b) What is the normalized eigenstate of \hat{S}_y with eigenvalue $\frac{3}{2}\hbar$ for the same spin- $\frac{3}{2}$ particle?