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Welcome back 
to PHY 3305

Today’s Lecture: 
Schrödinger Equation

Erwin Rudolf Josef 
Alexander Schrödinger 

1887-1961
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Revisit SWE:

We discussed the plane wave solution - 

Ψ(x, t) = Aei(kx−ωt)

What do we get if we substitute this into SWE?

−

h̄
2

2m
(ik)2Ae

i(kx−ωt) = ih̄(−iω)Ae
i(kx−ωt)

h̄2k2

2m
Ψ(x, t) = h̄ωΨ(x, t)

−

h̄2

2m

∂Ψ(x, t)

∂x2
= ih̄

∂Ψ(x, t)

∂t
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h̄2k2

2m
Ψ(x, t) = h̄ωΨ(x, t)

What is the quantity            ? 
h̄
2
k2

2m

What is the quantity       ? h̄ω

total energy of a particle

This suggests ....

(KE)Ψ(x, t) = (E)Ψ(x, t)

SWE has something to do with classical energy accounting.

kinetic energy of a particle
p = ~k
p2

2m
=

1

2
mv2
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How could we extend SWE to include forces?

Note:  This only works for CONSERVATIVE FORCES 
such as the electrostatic force.

We could add a potential energy term to the equation.

(KE + U(x))Ψ(x, t) = (E)Ψ(x, t)

Time-Dependent Schroedinger Equation 

� ~2
2m

@

2 (x, t)

@x

2
+ U(x) (x, t) = i~@ (x, t)

@t
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−

h2

2m

∂2Ψ(x, t)

∂x2
+ U(x)Ψ(x, t) = ih̄

∂Ψ(x, t)

∂t

In classical physics, how do we determine the outcome of 
motion?

Given knowledge of the external force, 
solve the force equation for r.

F⃗ = m
d2r⃗

dt2

For the SWE, we must solve            given knowledge of  U(x)Ψ(x, t)
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−

h2

2m

∂2Ψ(x, t)

∂x2
+ U(x)Ψ(x, t) = ih̄

∂Ψ(x, t)

∂t

Stationary States:  Separation of Variables

Step 1:  Separate the space and time parts of 
the wave equation into separate functions.

Ψ(x, t) = ψ(x)φ(t)

Note:  This reduces the generality of our solutions, but the 
special solutions are often of greatest interest.

Step 2:  Re-write SWE

−

h̄2

2m
φ(t)

d2ψ(x)

dx2
+ U(x)ψ(x)φ(t) = ih̄ψ(x)

dφ(t)

dt
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Step 3: Re-order the terms to achieve separation.

−

h̄2

2m

1

ψ(x)

d2ψ(x)

dx2
+ U(x)ψ(x) = ih̄

1

φ(t)

dφ(t)

dt

−

h̄2

2m
φ(t)

d2ψ(x)

dx2
+ U(x)ψ(x)φ(t) = ih̄ψ(x)

dφ(t)

dt

Say that our equation holds when (x,t) = (x1,t1).  What 
happens when (x,t) = (x1,t2)?

The LHS does not change, so the RHS can not change.

Step 4:  Set our equation equal to a separation constant.

−

h̄2

2m

1

ψ(x)

d2ψ(x)

dx2
+ U(x)ψ(x) = ih̄

1

φ(t)

dφ(t)

dt
= C
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−

h̄2

2m

1

ψ(x)

d2ψ(x)

dx2
+ U(x)ψ(x) = ih̄

1

φ(t)

dφ(t)

dt
= C

Notes:

1. If the potential energy is a function of time, this 
technique would fail.  We could not separate the 
variables. 

2. In the case that U is time-independent, we have 2 
ODEs  connected by the constant C.
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−

h̄2

2m

1

ψ(x)

d2ψ(x)

dx2
+ U(x)ψ(x) = ih̄

1

φ(t)

dφ(t)

dt
= C

The Temporal Part, φ(t):

ih̄
1

φ(t)

dφ(t)

dt
= C

1

φ(t)

dφ(t)

dt
= −

iC

h̄

Note:  Error in eqn 5-6 of your text.

1

i
= (

1

i
)(
i

i
) = −i

The solution to this equation is

φ(t) = e−i(C

h̄
)t Appendix K in your textbook 

discusses the method for solving 
this differential equation.
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φ(t) = e−i(C

h̄
)t

What does this mean?

Write solution in terms of the Euler Equation:

e
−i(C

h̄
)t = cos (

C

h̄
t)− i sin (

C

h̄
)t

=ωThus, 

ω =
C

h̄
C = h̄ω = E

When we separate variables, we are focusing on states with well 
defined energies.  The separation constant IS that energy. 
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Remember, we started by assuming our wave function 
could be written as

Ψ(x, t) = ψ(x)φ(t)

That means our total wave function can be written as

Ψ(x, t) = ψ(x)e−i(E

h̄
)t

Note:  We haven’t considered interactions with the 
potential yet, so ψ(x) is still general and unsolved for.
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Ψ(x, t) = ψ(x)e−i(E

h̄
)t

What is the probability density for this wave function?

Is there a time dependence in the probability?

1. No, it disappears under the case we can separate 
space and time components of the wave function. 

2. The properties do not change in time - “stationary 
states”

 ⇤(x, t) (x, t) = [ ⇤(x)ei
E
~ t][ (x)e�iE

~ t]

 ⇤(x, t) (x, t) =  

⇤(x) (x)
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What are the implications for electrons in an atom?

The electron is bound by the Coulomb force to the atom.  
The potential is time-independent.  Classically, as it whizzes 
around the nucleus it should be losing energy.  

Quantum mechanics says that this is NOT the case.  It tells 
us the electron can appear in many places around the atom 
(ψ(x)), but its energy is constant and well-defined.

The electron does not orbit in the classical sense, but rather 
in a probability cloud around the nucleus.

The probability density is constant. Thus, the charge density 
is constant and if charge density is constant, EM tells us it 
radiates no energy.
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−

h̄2

2m

1

ψ(x)

d2ψ(x)

dx2
+ U(x)ψ(x) = ih̄

1

φ(t)

dφ(t)

dt
= C

The Spacial Part, ψ(x):

We can not say anything too specific w/o U(x).

Time-Independent SWE

−

h̄2

2m

d2ψ(x)

dx2
+ U(x)ψ(x) = Eψ(x)
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Physical Conditions:

• Each case we will consider will have it’s own wave 
function ψ(x) to describe the particle. 

• Certain physical conditions must be met. 
- The total probability of finding the particle 

must be one.  (Normalization) 
- The particle must have a definite charge with 

a strict value. 
- The wave function must be smooth.  
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The total probability of finding the particle anywhere in 
space is 100%.

This is often referred to as a “naturalness” requirement.  
We don’t expect probabilities greater than 100%.

To be physically acceptable, a wave function must 
be normalizable.

The wave function describes a PROBABILITY DENSITY.  
Thus, to get 100% probability for finding the particle -

Z
| (x, t)|2dx = 1
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To be physically acceptable, a wave function must 
be smooth.

The wave function and it’s first derivative must be 
continuous.

Why must the wave function be continuous?

Say that the wave function has a point where it is 
infinite.  This would signal a wave with a place of 
infinite kinetic energy - not realistic.

Abrupt jumps act like short 
wavelengths (high frequencies) 
which mean huge energies.

E = hf = h̄ω
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Why must the first derivative be continuous?

• The first derivative is the slope of the wave 
function. 

• If the first derivative is continuous, the second 
derivative (slope of the first derivative) is finite.  
Thus the kinetic energy is finite.  This must be 
true for the Schrodinger equation to hold (since 
U(x) and Etotal are finite.

(KE + U(x))Ψ(x, t) = (E)Ψ(x, t)

Note:  There is an exception.  The first derivative can be 
discontinuous if we require the potential energy to be infinite 
at some point in space.  infinite = so large as to completely 
oppose any motion of the particle
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What is a bound state?
Cases where a particle’s motion is restricted by a 
force.  The motion is restricted to a finite region.

Examples of bound states: 
• Mass on a spring (Hook’s law)  
• Gas in  a box 
• ball rolling between two hills.

In order to understand the “hopelessly complicated” we 
will use seemingly over-simple problems involving objects 
bound under various conditions.

- States that are NOT free of forces.  They are 
states that act under the influence of forces.

- These forces have only a spacial component.  They 
can be described by adding a space-dependent 
potential, U(x), to the SWE.
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In the presence of only conservative forces, the total 
mechanical energy is conserved.

Review:  ClasSical Bound States

E = KE + U

1. The total mechanical 
energy is constant. 

2. At the turning points, U 
is max, KE is zero. 

3. At position zero, the U is 
zero, KE is maximum. 

4. Area outside the 
potential area curve is 
the classically forbidden 
area.

Bound State:  Spring
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Bound State:  Two Atoms
Atom 1 is fixed and atom 2 moves in response to their shared 
electrostatic interaction.

1. U is positive and strong 
for small interatomic 
spacing. 

2. U has a minimum value 
that is negative, then 
approaches 0 as x 
approaches infinity. 

3. Atom 2 is repelled at 
small distances  
(F = -dU/dx > 0) and 
attracted (-dU/dx < 0)  
at large distances.

- If Etot is negative, atom 2 is bound - oscillates between xa & xb. 
- If Etot is positive, atom 2 is unbound (only 1 turning point).  It can 

move freely from atom 1. 
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How does this relate to Quantum Mechanically 
Bound States?

Recall our requirements: 
- The player(s) are described as quantum waves of 

probability density. 
- The waves must be continuous. 
- The first derivatives of the waves (in space) will 

nearly always be continuous.
The quantum bound states of a particle under the influence 
of a potential will be STANDING WAVES.   There are only 
discrete states allowed for particles in such bound states. 
(think wave on a string, bound at two ends)

Quirk: Wave functions can exist in the “classically forbidden” area.  
i.e.  You can find the particle where, classically, it can not be.
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The end 
(for today)   


