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Today’s Lecture:

More Hydrogen Atom
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AnNouncements

• Reading Assignment for Nov 9th: Harris 8.1 . 

• Problem set 12 is due Tuesday, Nov 14th at 12:30 pm. 

• Regrade for problem set 11 is due Tuesday, Nov 14th at 
12:30 pm. 

• You will be required to practice you talk in front of 
another person this week.  Make sure your slides are in 
near final form.
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Review Question 1
Recall our experiments with the electroscope.  A large 
excess charge was placed on a piece of metal, then 
separately we shine light sources of two pure but different 
colors at it.  The first source is extremely bright, but shows 
no change in the net charge.  The second is much dimmer, 
but the charge disappears.  Explain what evidence this 
provides for the particle nature of light.

The amount of light clearly is not the deciding factor. The 
dimmer light has less intensity, but what intensity it has is 
composed of little particles each of which has enough energy to 
knock an electron out of the metal. The bright light has many 
particles, but each has insufficient energy to eject an electron.
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Review Question 2
What is a quantum number and how does it arise?

It is a quantity that takes on different discrete values, 
each of which corresponds to some physical quantity 
(which is accordingly “quantized”).  They arise from 
imposing physical conditions, such as continuity or 
normalization on mathematically solutions of governing 
differential equations.



Physics 3305 - Modern Physics                                                                                                                                                           Professor Jodi Cooley

Review Question 3
Generally speaking, why is the wave nature of matter so 
counterintuitive?

Because we live in a world in which common 
dimensions are much larger than the electron’s 
wavelength. We never experience its particle 
nature, so a wave nature is unexpected.



Physics 3305 - Modern Physics                                                                                                                                                           Professor Jodi Cooley

Review Question 4
Will a particle with a longer wavelength tunnel more easily?

Longer wavelength suggests more wave-like behavior and 
less classical particle-like behavior.  Matter waves have 
shorter wavelengths and act more like classical particles.  
Hence, longer wavelengths will tunnel more easily.

Can anyone think of an example we talked about earlier in 
the class that demonstrates this?

Matter waves have shorter wavelengths and higher 
frequencies.  Hence, the wave-like nature of matter is 
harder to detect.  Think of electrons.  They have 
wavelengths that are on the order of pm whereas EM 
waves have wavelengths on the order of nm.
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An electron is in an n = 4 state of the hydrogen atom.  

a) What is its energy?

We know that 

En = � me4

2(4⇡✏0)2~2
1

n2 = �13.6 eV

n2

E4 = �13.6 eV

42

E4 = �0.85 eV
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An electron is in an n = 4 state of the hydrogen atom.  

b) What properties besides energy are quantized and 
what values might be found if these properties are 
measured?

The magnitude of the angular momentum and the z-
component of the angular momentum may be quantized.

L =
p
`(`+ 1)~ where l = 0, 1, 2, or 3

Lz = m`~ where ml = 0, ±1, ±2, or ±3

Lz = 0,±~,±2~,±3~

L = 0,
p
2~,

p
6~, 2

p
3~
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Radial Probability
The radial probability (per unit distance) is

Video Lecture:
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Group 1:

Group 2:

Find the most 
likely distance(s) 
from the origin 
of an electron 
in the n = 1 
state.

Find the most 
likely distance(s) 
from the origin 
of an electron in 
the n = 2, l = 0 
state.
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Group 1:

An electron in the n=1 state can only have values of l=0 
and ml = 0.  Thus,

R(r)1,0,0 =
2

a3/20

e�
r
a0

To find the maxima, we set the derivative of probability 
equal to zero and solve for r.

The radial probability is then

P (r) = r2|R(r)1,0|2 =
4

a30
r2e�

2r
a0
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For � = 0, both probabilities are zero due to the sin � terms.  (b) For � = 90 , the 2,1,0 
probability is zero due to the cos � term.  With dr = 0.02a0, d� = 0.11  = 0.00192 rad, and 
d� = 0.25  = 0.00436 rad, the 2,1,!1 probability is 
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(c) Because the probability density associated with any particular state in hydrogen is 
always independent of � , the 2,1,0 probability is again zero and the 2,1,!1 probability is 
again 3.2 # 10�11.  (d) The only change in the 2,1,!1 probability is to replace sin 90  with 

sin 45  in three locations, so the new probability is 11 3 111
2(3.2 10 )( 2) 1.1 10� �# � # .  For 

the 2,1,0 probability, the angular factors are the same because cos 45  = sin 45 .  The 
only change comes about because of the change from 3/8� to 3/4� in the 
(�) term, so 
the 2,1,0 probability is 2.2 # 10�11. 
 

12. For n = 1, l = 0 we have 0
2 2 /2 2

1,0 0( ) ( ) 4 /r aP r r R r r e a�� � 3 .  To find the maximum, we set 

dP/dr to zero: 
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There are three solutions to this equation: r = 0, r = �, r = a0.  The first two solutions 
correspond to minima of P(r); only the solution at r = a0 gives a maximum. 
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The five solutions are: 00, , 2 , (3 5)r r r a r a� � � � � ! 0 .  The first three solutions give 

minima and the last two give maxima. 
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For � = 0, both probabilities are zero due to the sin � terms.  (b) For � = 90 , the 2,1,0 
probability is zero due to the cos � term.  With dr = 0.02a0, d� = 0.11  = 0.00192 rad, and 
d� = 0.25  = 0.00436 rad, the 2,1,!1 probability is 
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(c) Because the probability density associated with any particular state in hydrogen is 
always independent of � , the 2,1,0 probability is again zero and the 2,1,!1 probability is 
again 3.2 # 10�11.  (d) The only change in the 2,1,!1 probability is to replace sin 90  with 

sin 45  in three locations, so the new probability is 11 3 111
2(3.2 10 )( 2) 1.1 10� �# � # .  For 

the 2,1,0 probability, the angular factors are the same because cos 45  = sin 45 .  The 
only change comes about because of the change from 3/8� to 3/4� in the 
(�) term, so 
the 2,1,0 probability is 2.2 # 10�11. 
 

12. For n = 1, l = 0 we have 0
2 2 /2 2

1,0 0( ) ( ) 4 /r aP r r R r r e a�� � 3 .  To find the maximum, we set 

dP/dr to zero: 
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There are three solutions to this equation: r = 0, r = �, r = a0.  The first two solutions 
correspond to minima of P(r); only the solution at r = a0 gives a maximum. 
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The five solutions are: 00, , 2 , (3 5)r r r a r a� � � � � ! 0 .  The first three solutions give 

minima and the last two give maxima. 
 

The possible values of r are 0, infinity and a0. In this case, 
0 and infinity are minima.  

The most likely value is a0.

(Remember, to determine if min or max, determine if the 
second derivative is positive or negative).  Or you can plot 
the function.

P (r) = r2|R(r)1,0|2 =
4

a30
r2e�

2r
a0
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Group 2:

An electron in the n=2, l=0 state can only have ml=0. Thus, 

R(r)2,0,0 =
1

(2a0)3/2
(2� r

a0
)e�

r
2a0

The radial probability is then

To find the maxima, we set the derivative of probability 
equal to zero and solve for r.

P (r) = r2|R(r)2,0,0|2 =
r2

(4a0)3
(2� r

a0
)2e�

r
a0

P (r) =
1

8a30
(4r2 � 4r3

a0
+

r4

a20
)e�

r
a0
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P (r) =
1

8a30
(4r2 � 4r3
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+

r4

a20
)e�
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For � = 0, both probabilities are zero due to the sin � terms.  (b) For � = 90 , the 2,1,0 
probability is zero due to the cos � term.  With dr = 0.02a0, d� = 0.11  = 0.00192 rad, and 
d� = 0.25  = 0.00436 rad, the 2,1,!1 probability is 
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(c) Because the probability density associated with any particular state in hydrogen is 
always independent of � , the 2,1,0 probability is again zero and the 2,1,!1 probability is 
again 3.2 # 10�11.  (d) The only change in the 2,1,!1 probability is to replace sin 90  with 

sin 45  in three locations, so the new probability is 11 3 111
2(3.2 10 )( 2) 1.1 10� �# � # .  For 

the 2,1,0 probability, the angular factors are the same because cos 45  = sin 45 .  The 
only change comes about because of the change from 3/8� to 3/4� in the 
(�) term, so 
the 2,1,0 probability is 2.2 # 10�11. 
 

12. For n = 1, l = 0 we have 0
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There are three solutions to this equation: r = 0, r = �, r = a0.  The first two solutions 
correspond to minima of P(r); only the solution at r = a0 gives a maximum. 
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The five solutions are: 00, , 2 , (3 5)r r r a r a� � � � � ! 0 .  The first three solutions give 

minima and the last two give maxima. 
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For � = 0, both probabilities are zero due to the sin � terms.  (b) For � = 90 , the 2,1,0 
probability is zero due to the cos � term.  With dr = 0.02a0, d� = 0.11  = 0.00192 rad, and 
d� = 0.25  = 0.00436 rad, the 2,1,!1 probability is 
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(c) Because the probability density associated with any particular state in hydrogen is 
always independent of � , the 2,1,0 probability is again zero and the 2,1,!1 probability is 
again 3.2 # 10�11.  (d) The only change in the 2,1,!1 probability is to replace sin 90  with 

sin 45  in three locations, so the new probability is 11 3 111
2(3.2 10 )( 2) 1.1 10� �# � # .  For 

the 2,1,0 probability, the angular factors are the same because cos 45  = sin 45 .  The 
only change comes about because of the change from 3/8� to 3/4� in the 
(�) term, so 
the 2,1,0 probability is 2.2 # 10�11. 
 

12. For n = 1, l = 0 we have 0
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1,0 0( ) ( ) 4 /r aP r r R r r e a�� � 3 .  To find the maximum, we set 

dP/dr to zero: 
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There are three solutions to this equation: r = 0, r = �, r = a0.  The first two solutions 
correspond to minima of P(r); only the solution at r = a0 gives a maximum. 
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The five solutions are: 00, , 2 , (3 5)r r r a r a� � � � � ! 0 .  The first three solutions give 

minima and the last two give maxima. 
 

The possible values of r are 0, infinity, 2a0 and            .
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For � = 0, both probabilities are zero due to the sin � terms.  (b) For � = 90 , the 2,1,0 
probability is zero due to the cos � term.  With dr = 0.02a0, d� = 0.11  = 0.00192 rad, and 
d� = 0.25  = 0.00436 rad, the 2,1,!1 probability is 
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(c) Because the probability density associated with any particular state in hydrogen is 
always independent of � , the 2,1,0 probability is again zero and the 2,1,!1 probability is 
again 3.2 # 10�11.  (d) The only change in the 2,1,!1 probability is to replace sin 90  with 

sin 45  in three locations, so the new probability is 11 3 111
2(3.2 10 )( 2) 1.1 10� �# � # .  For 

the 2,1,0 probability, the angular factors are the same because cos 45  = sin 45 .  The 
only change comes about because of the change from 3/8� to 3/4� in the 
(�) term, so 
the 2,1,0 probability is 2.2 # 10�11. 
 

12. For n = 1, l = 0 we have 0
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1,0 0( ) ( ) 4 /r aP r r R r r e a�� � 3 .  To find the maximum, we set 

dP/dr to zero: 
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There are three solutions to this equation: r = 0, r = �, r = a0.  The first two solutions 
correspond to minima of P(r); only the solution at r = a0 gives a maximum. 
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The five solutions are: 00, , 2 , (3 5)r r r a r a� � � � � ! 0 .  The first three solutions give 

minima and the last two give maxima. 
 In this case, the maxima are at
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For � = 0, both probabilities are zero due to the sin � terms.  (b) For � = 90 , the 2,1,0 
probability is zero due to the cos � term.  With dr = 0.02a0, d� = 0.11  = 0.00192 rad, and 
d� = 0.25  = 0.00436 rad, the 2,1,!1 probability is 
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(c) Because the probability density associated with any particular state in hydrogen is 
always independent of � , the 2,1,0 probability is again zero and the 2,1,!1 probability is 
again 3.2 # 10�11.  (d) The only change in the 2,1,!1 probability is to replace sin 90  with 

sin 45  in three locations, so the new probability is 11 3 111
2(3.2 10 )( 2) 1.1 10� �# � # .  For 

the 2,1,0 probability, the angular factors are the same because cos 45  = sin 45 .  The 
only change comes about because of the change from 3/8� to 3/4� in the 
(�) term, so 
the 2,1,0 probability is 2.2 # 10�11. 
 

12. For n = 1, l = 0 we have 0
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dP/dr to zero: 
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There are three solutions to this equation: r = 0, r = �, r = a0.  The first two solutions 
correspond to minima of P(r); only the solution at r = a0 gives a maximum. 
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The five solutions are: 00, , 2 , (3 5)r r r a r a� � � � � ! 0 .  The first three solutions give 

minima and the last two give maxima. 
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What is the probability of finding a n=2, l=1 electron 
between a0 and 2a0?

The radial wave function for a n=2, l=1 electron is

R2,1(r) =
1p

3(2a0)
3
2

r

a0
e�r/2a0

We then have
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The three angular terms in parentheses give three sets of solutions: � = 0,�; � = �/2; and � 
= �/4,3�/4.  By checking the second derivative, we find that the first two give minima 
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direction, rises to a maximum at � = 45 , falls again to zero in the xy plane (� = 90 ), 
rises again to a maximum at � = 135 , and finally falls again to zero on the negative z 
axis.  This behavior is shown for the n = 3 wave function in Figure 7.9. 
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function in Figure 7.9. 
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To find probability, we need to integrate P(r) between a0 
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Angular Probability Density
P (θ,φ) = |Θℓ,mℓ

(θ)Φmℓ
(φ)|2

Note:  The l = 0 wave 
functions are spherically 
symmetric, no dependence 
on angle.

Video Lecture:
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Balmer series comprises all transitions 
that end at nf = 2.  

Lyman series comprises all transitions 
that end at nf = 1.  

Paschen series comprises all transitions that 
end at nf = 3.  

Energy lost by the downward 
transition is emitted in the form 
of a photon.

Video Lecture:
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Calculate the series limit of the Lyman series of spectral 
lines.  As a reminder, this is defined as the shortest 
wavelength possible of a photon emitted in a transition 
from a higher energy level to the final energy level.

The shortest wavelength corresponds to the largest 
energy.  The Lyman series has an endpoint of n = 1.

n = 1 ! 1

Instructor Solutions Manual for Harris, Modern Physics, Second Edition 

Copyright © 2008, Pearson Addison-Wesley 97

(d) =energy/radius d(time)

energy/time d(radius)

. Multiplying by dr would give the time for the radius to change by that much. 
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The sign is not important, just reflecting that the atom loses energy. 

Evaluating, = 
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−
× ⋅ × ×
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7.28 The longest wavelength Lyman series (ending on n = 1) line starts at n = 2. From Figure 7.5 we see that the 

energy difference is 10.2eV, and Example 7.2 shows the wavelength of this line to be 122nm, far shorter than 

visible. The shortest wavelength Paschen series (ending on n = 3) line starts at the largest n possible, giving an 

energy difference of 1.5eV. E = 

λ
ch → 1.5eV = 

λ
⋅1240eV nm

 ⇒ λ = 827nm far longer than visible. We know 

that the first four Balmer lines are visible. What of that for which ni = 7? E
electron, initial

 − E
electron,final

 = 

−
2

13.6eV

7

− 

−
2

13.6eV

2

 = 3.12eV. 3.12eV = 

λ
⋅1240eV nm

 ⇒ λ = 397nm. This is slightly shorter than the usually quoted 

visible range, and any higher-energy lines in the series would have even shorter wavelengths. 

7.29 By definition, the Paschen Series comprises those transitions ending at n
f
 = 3. So what is n

initial
? The 

longest−wave length photon would correspond to the smallest energy jump for the electron, i.e., n
i
 = 4; the 

next−longest would correspond to the next−larger energy jump, n
i
 = 5; the third−longest would correspond to the 

next−larger energy jump: ni = 6 to nf = 3. The energy that goes to the photon is the difference in the energies of 

the electron from the initial state to the final. E
photon

 = E
electron, initial

 − E
electron,final

 = 

−
2

13.6eV

6

− 

−
2

13.6eV

3

 = 1.13eV. 

E = 

λ
ch → 1.13eV = 

λ
⋅1240eV nm

 ⇒ λ = 1.1 × 103
nm  = 1.1 × 10−6m. 

7.30 The shortest wavelength corresponds to the largest energy difference: n = ∞ → n = 1.  

(The wavelength for the transition n = ∞−1 → n = 1, would be infinitesimally longer.) 

E∞− E
1

 = 
2

13.6eV−
∞

− 

−
2

13.6eV

1

 = 13.6eV. E = 

λ
ch → 13.6eV = 

λ
⋅1240eV nm

 ⇒ λ = 91.2nm 

Thus,
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An electron is in the n = 3 state of hydrogen.  To what 
states can the electron make transitions on its way to the 
ground state, and what are the energies of the emitted 
radiations? 

An electron can make transitions to any lower energy state 
with energies corresponding to n = 2 or 1.  Eventually it 
will transition to the ground state.

The initial energy state is 

E3 = �13.6

32
= �1.51 eV

E2 = �13.6

22
= �3.40 eV

E1 = �13.6

12
= �13.6 eV
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The transitions and corresponding energies are

Transition Emitted Energy

3 — > 1

3 —> 2

2 —> 1 E2 � E1 = �3.40 eV � (�13.6 eV ) = 10.2 eV

E3 � E2 = �1.51 eV � (�3.40) eV = 1.89 eV

E3 � E1 = �1.51 eV � (�13.6) eV = 12.0 eV
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The end 
(for today)


