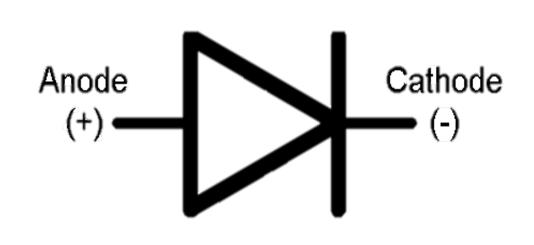


Diodes

Amaan Charania 11.26.16 Physics Department • Background and Usage

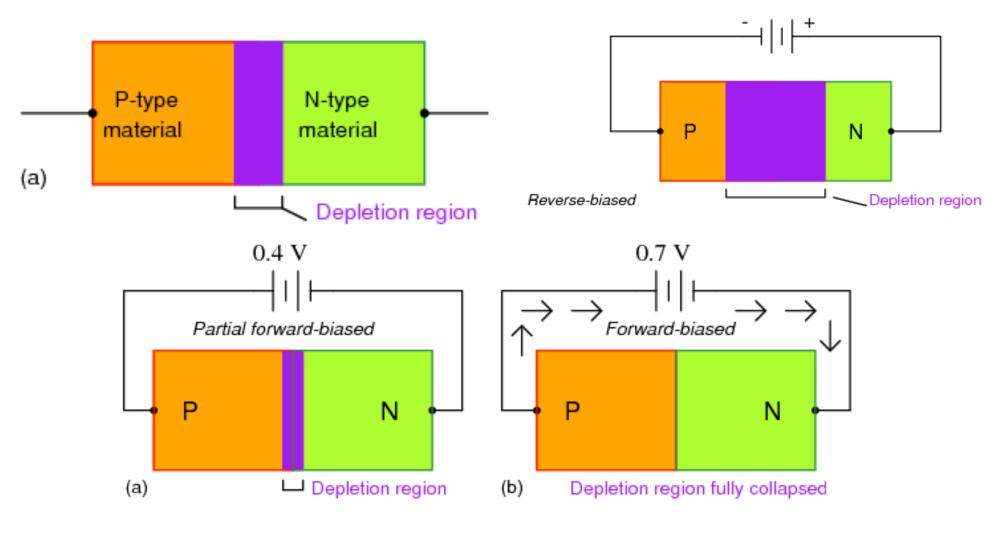

Overview:

- Definition and Introduction
- Ideal and Real Characteristics
- Current Voltage Relationship
- Types of Diodes
- Applications

The World with Diodes

2

- Why is it important and how can we look at it from the big picture?
- The one-way valve of electronics.


3

The Purpose Of a Diode

Ideal Diode Characteristics

- An ideal diode is to control the direction of current-flow.
- Short Circuit
- Forward Biasing
- Reverse Biasing

Operation Mode	On (Forward biased)	Off (Reverse biased)
Current Through	I>0	I=0
Voltage Across	V=0	V<0
Diode looks like	Short circuit	Open circuit

5

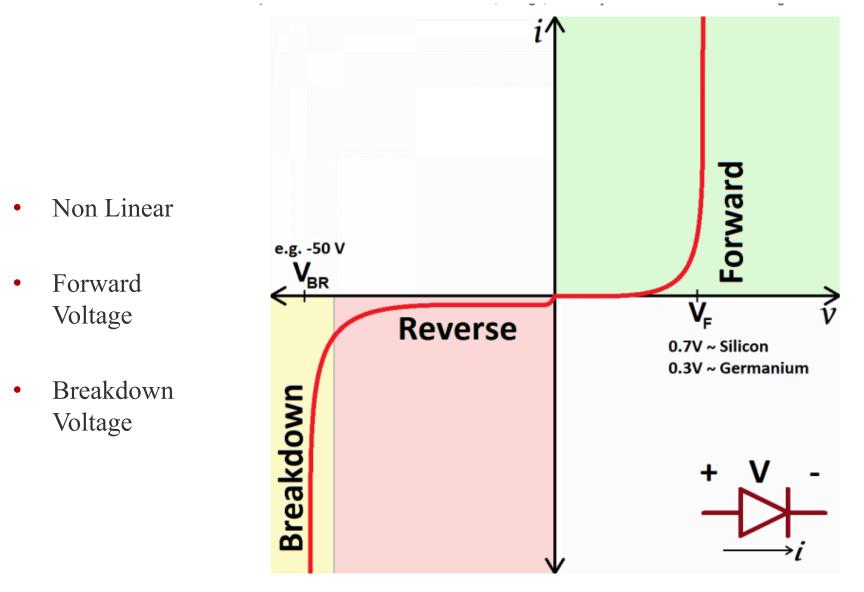
The PN Region

$$\mathbf{I}_{\mathrm{D}} = \mathbf{I}_{\mathrm{S}} \left(\mathrm{e}^{\mathrm{q} \mathrm{V}_{\mathrm{D}} / \mathrm{N} \mathrm{k} \mathrm{T}} - 1 \right)$$

Where,

- $I_{\rm D}$ = Diode current in amps
- I_s = Saturation current in amps (typically 1 x 10⁻¹² amps)
- e = Euler's constant (~ 2.718281828)
- $q = charge of electron (1.6 \times 10^{-19} coulombs)$
- V_D = Voltage applied across diode in volts
- N = "Nonideality" or "emission" coefficient (typically between 1 and 2)
- $k = Boltzmann's constant (1.38 x 10^{-23})$
- T = Junction temperature in Kelvins

Diode Equation


$$\mathbf{I}_{\rm D} = \mathbf{I}_{\rm S} \; (\mathrm{e}^{\mathrm{V}_{\rm D}/0.026} - 1)$$

Where,

- I_D = Diode current in amps
- I_s = Saturation current in amps (typically 1 x 10⁻¹² amps)
- e = Euler's Number (~ 2.718281828)

 V_D = Voltage applied across diode in volts

6

Current Voltage Relationship

TYPES OF DIODES

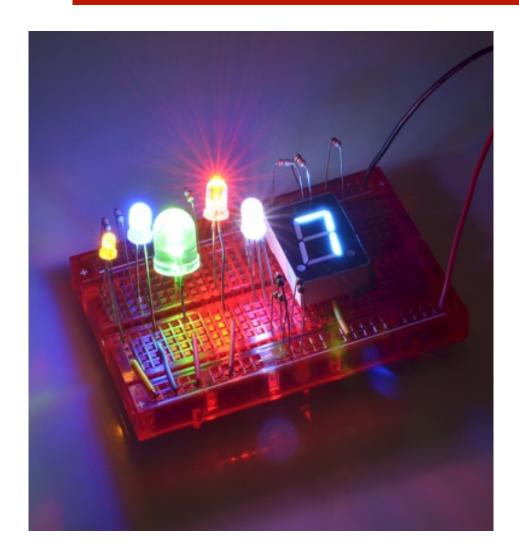
8

Normal Diode

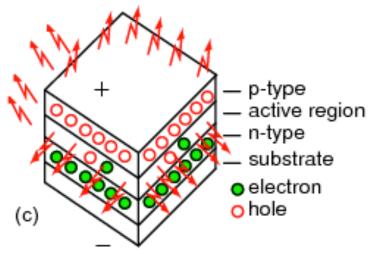
- The most basic.
- They usually have a medium-high forward voltage drop and a low maximum current rating

Schotty Diode

- Smaller forward voltage drop
- Large breakdown voltage
- Limiting losses, when every last bit of voltage is important.

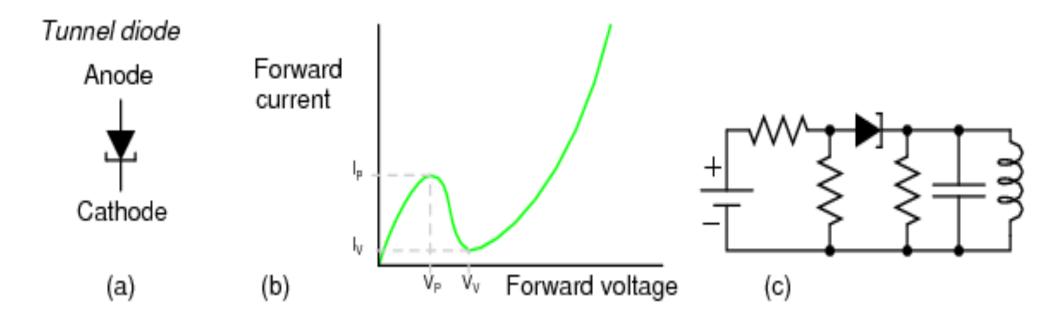

Types Of Diodes

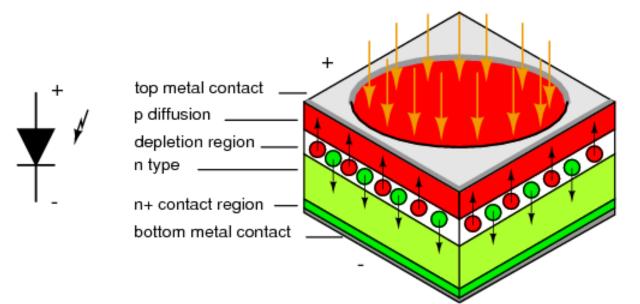
Power Diode


- Standard diode with a much higher maximum current rating.
- This higher current rating usually comes at the cost of a larger forward voltage

Zener Diode

- Intentionally conduct reverse current.
- Very precise breakdown voltage, called the Zener breakdown voltage
- When enough current runs in reverse through the Zener, the voltage drop across it will hold steady at the breakdown voltage.


- Whenever electrons fall from a higher energy level to a lower energy level they emit specificfrequency radiant energy
- Electroluminescence


Types Of Diode: LED

10

- Resonant Tunneling
- Peak Current and Valley Current
- Negative Resistance

Types Of Diode: Tunneling 11

- Electron current flow in response to manipulation of light.
- Solar Cells

Types Of Diode: Photodiode12

- Rectifiers
 - alternating current (AC) to direct current (DC).
- Current Protection/ Voltage Spike Stoppage
 - ensures that current can only flow in the positive direction, and the power supply only applies a positive voltage to your circuit
- Logic Gates
- Light and Power

Applications and Conclusion

- C. R. Hampton, "Introduction to Diodes and Rectifiers: Diodes and Rectifiers electronics textbook," in allaboutcircuits.com. [Online]. Available: http://www.allaboutcircuits.com/textbook/ semiconductors/chpt-3/introduction-to-diodes-and-rectifiers/. Accessed: Nov. 12, 2016.
- Jimbo, "Diodes," in learn.sparkfun.com. [Online]. Available: https://learn.sparkfun.com/tutorials/diodes. Accessed: Nov. 12, 2016.
- S. Mubeena, Administrator, and C. Cheru, "AVR," in Diodes, Electronics Hub, 2015. [Online]. Available: http:// www.electronicshub.org/types-of-diodes/#Tunnel_Diode. Accessed: Nov. 15, 2016.

Sources: IEEE Format