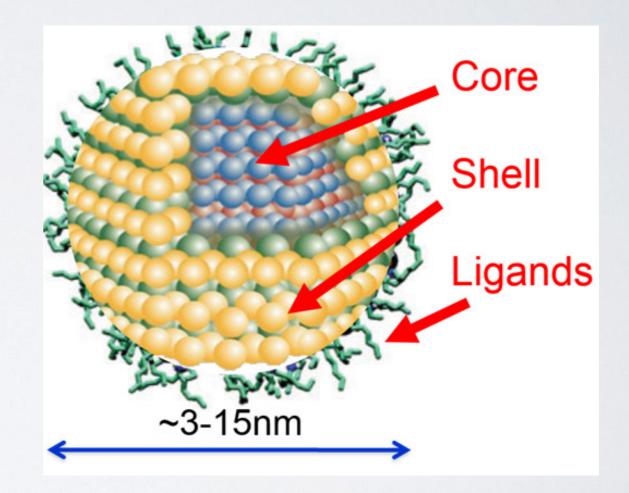


QUANTUM DOTS

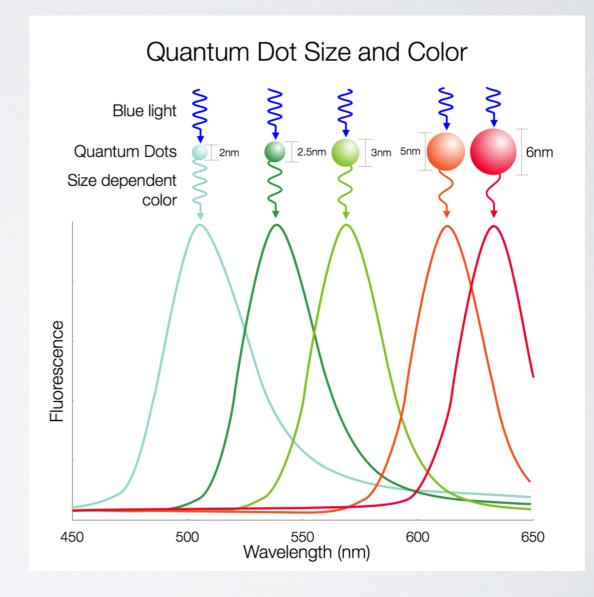

Gabriel Leyva Merino PHYS 3305 - November 20, 2017

OUTLINE

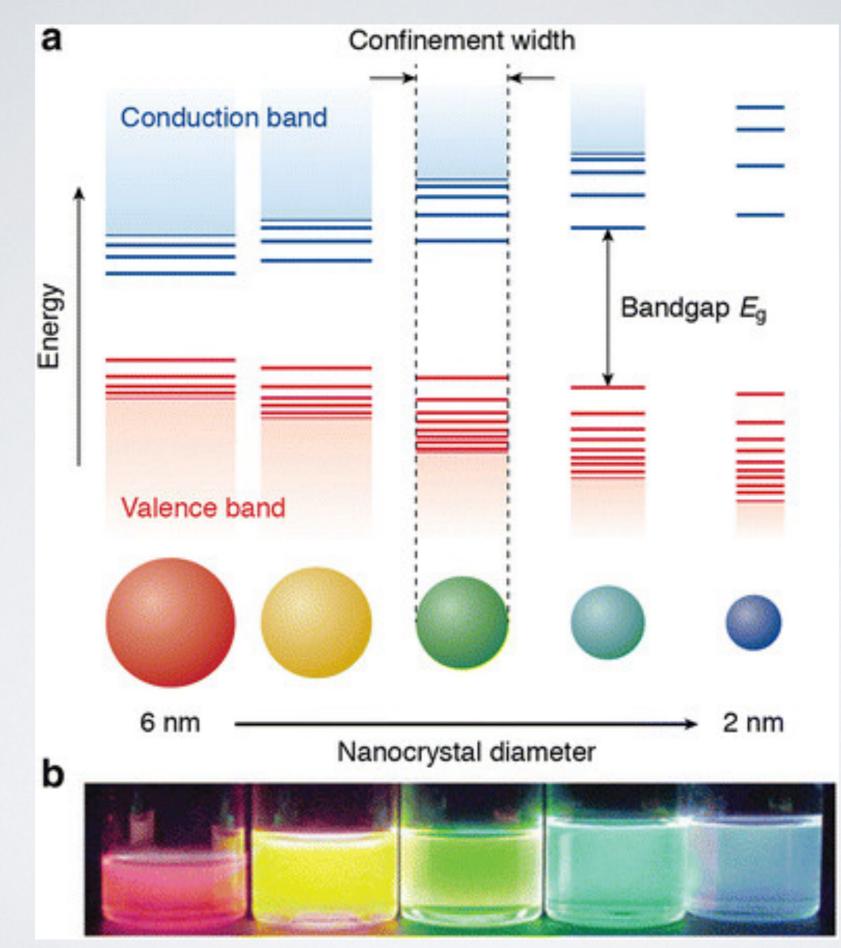
- Introduction
- Quantum Confinement
- Quantum Dots
- How Quantum Dots are Made
- Applications
- Conclusion/Questions

WHAT ARE QUANTUM DOTS?

- Quantum dots are nanoparticles that exhibit a 3D quantum confinement, which in result leads into unique optical and transport properties.
- In other words, they are tiny semiconductor crystals.


QUANTUM CONFINEMENT

- Quantum confinement is the spatial confinement of excitons (electron-hole pairs) in one or more dimensions within a material.
 - ID Confinement
 - 2D Confinement
 - 3D Confinement


- Excitons become spatially confined when the diameter of the particle approaches the de Broglie wavelength of electrons.
- This means that the energy difference between energy bands increases as the particle size decreases.

QUANTUM DOTS

- Quantum dots emit color based off their crystal size not the material they are made out of.
- The bigger the quantum dot the larger the wavelength and the smaller frequency it will emit.
- Therefore, the largest quantum dots will emit red light and the shortest blue light.

- The color changing phenomena in quantum dots is the result of different **band gaps** between different size quantum dots.
- The **band gap** of a semiconductor is the energy required for its electrons to enter an excited state.
- Smaller quantum dots have larger band gaps so they need a larger amount of energy to enter an excited state. This high energy input results in a high energy frequency which results in smaller wavelengths.

HOW QUANTUM DOTS ARE MADE

- They are generally made in a chemical reaction in a solution resulting in solid nano crystals.
- Chemicals are combined over heat and start to react around 255 °C.
- Once the heat is removed the crystals retain their size and color.

hydrogen 1 H 1.0079 Ithium	baratikure												bonn	anton	atrone	0110040	fluorine	10026
3	beryllium 4	2.25										1	5	6	nitrogen 7	oxygen 8	fluorine 9	neon 10
LI 6.941	Be 9.0122	See.										Sec.	B 10.811	C 12.011	N 14.007	O 15.999	F 18.998	Ne 20.180
sodium 11	magnesium 12											200	aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
Na	Mg	1000										201	AI	Si	/P	S	CI	Ar
22.990 polassium	24.305 calcium		seandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26.962 gallium	28.096 germanium	30,974	52.065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	37	33	34	35	36
K	Ca 40.078		SC 44.956	Ti 47.867	V 50.942	Cr 51.996	Mn 54.938	Fe 55.845	Co 58.933	Ni 58.693	Cu 63.546	Zn	Ga 69.722	3e	AS	Se 75.96	Br 79.904	Kr
rubidium 37	stronbum 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	modium 45	palladium 46	silver 47	cadmium 48	49	tin 30	a timony 51	Zaturium 52	iodine 53	xenon 54
Rb	Sr	-	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ĩ	Xe
85.468 caesium	87.62 barium	28	88.906 lutetium	91.224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercury	114.82 thallium	118 1 kod	121.76 Dismuth	127.60 polonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82 82	83	84	85	86
CS	Ba	*	Lu 174.97	Hf 178.49	Ta 180.95	W 183.84	Re 186.21	OS 190.23	192.22	Pt 195.08	Au 196.97	Hg	TI 204.38	Pb	Bi	Po		Rn
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	ununnilium 110	unununium 111	ununbium 112	204.50	ununquadium 114	200.00	100	1210	1111
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt				200	Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				
											5							
			lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	69	ytterbium 70		
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	1.45	
			138.91 actinium	140.12 thorium	140.91 protactinium	144.24 uranium	[145] neptunium	150.36 plutonium	151.96 americium	157.25 curium	158.93 berkelium	162.50 californium	164.93 einsteinium	167.26 fermium	168.93 mendelevium	173.04 nobelium		
			89	90 Th	91 Do	92	93	94 D	95	96	97 DL	98	99	100	101	102		
		28.2	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	· · · · ·	

ELEMENTS USED

• Many semiconductor materials can be used.

APPLICATIONS

- Since quantum dots are **band gap tunable** by size it means its optical and electrical properties can be engineered into applications.
- Medical Imaging
- Energy Efficient Lighting in Displays
- Photovoltaic Cells (Solar Panels)

DISPLAYS

- Operate at lower energy costs which reduces power conception.
- Productions costs are lower than OLED screens.
- Are able to create a purer white than the standard LCD displays.

WORK'S CITED

- Techquickie. "Quantum Dots as Fast As Possible." YouTube. March 29, 2015. Accessed November 20, 2017. <u>https://www.youtube.com/watch?v=EeMws32VfJc&t=44s</u>.
- Caplin, Tony. "Quantum Dots." YouTube. December 01, 2014. Accessed November 20, 2017. <u>https://www.youtube.com/watch?v=cXNzfR1qaHU</u>.
- Nack Network. *Materials in Nanotechnology*. PPT. The Pennsylvania State University, 2013.
- Dias, Luis. Lectures: Condensed Matter II. PDF. UT/ORNL.

QUESTIONS

Gabriel Leyva Merino Quantum Dots PHYS 3305 - November 20, 2018