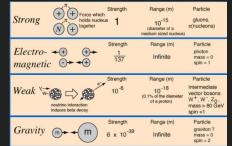
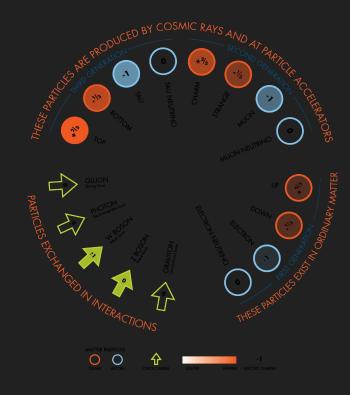
Fundamental Particles and Forces

A Look at the Standard Model and Interesting Theories

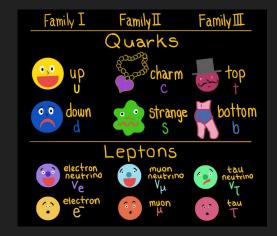

André Gras April 28, 2016 PHYS 3305 SMU


Overview

- Introduction to Fundamental Particles and Forces
- Brief History of Discovery
- The Standard Model
- Problems with the Standard Model
- Other Interesting Theories
- Future Discoveries

Introduction to Fundamental Particles and Forces

- What are the fundamental forces?
 - Weak force
 - Strong force
 - E-M force
 - Gravity
- What is a fundamental particle?
 - Fermions
 - Leptons
 - Quarks
 - Bosons

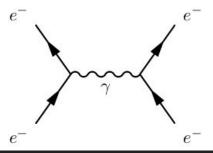

Brief History of Discovery

- Particle physics began as high-energy nuclear physics
- 1897 J.J. Thompson discovered the electron, first elementary particle
- 1911 Ernest Rutherford and co. found data suggesting an atomic nucleus
- 1919-1932: proton, neutron, and positron discovered
- Almost all new particle discoveries up to 1955 were made using cosmic radiation
 - Muon, pion, kaon, etc.
- After 1955, particle accelerators began taking over

Brief History of Discovery

- 1962 electron and muon found to be associated with distinct neutrinos
- 1964 Gell-Mann and Zweig independently proposed hadrons could be made up of three elementary fermions
 - Quarks (or "aces")
- 1964 Yang-Mills theory (no massless gauge bosons found)
 - Evaded this problem with the Higgs mechanism
 - Introduced a spin-0 boson called the Higgs boson
- 1965 Yoichiro Nambu proposed "color" charge in quarks
 - Grew interest in color theory, or quantum chromodynamics (QCD)
- 1967 electroweak theory proposed using the Higgs mechanism
- 1974 discovery of the charm quark
- 1977 discovery of bottom quark at Fermilab (followed by top quark evidence as well)
- 1979 Birth of the Standard Model through Yang-Mills gauge theories and electroweak theory

- Fermions
 - Composed of leptons and quarks, separated into three
 "families" by mass
 - Constrained by the Pauli Exclusion Principle
 - Half-integer spin
 - Held together with gluons to form hadrons, such as nucleons
 - Hadrons with three bound quarks are baryons
 - All baryons are fermions (due to spin)
 - Up and down quarks make up ordinary matter
 - Proton is uud, neutron is udd
 - The other quarks are only created in high-energy interactions
 - All leptons are partnered with a neutral lepton, the neutrino
 - Neutrinos only interact with the weak force


FERMIONS matter constituents spin = 1/2, 3/2, 5/2,								
Leptons spin = 1/2			Quar	Quarks spin = 1/2				
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge			
$v_{e}^{electron}$	<1×10 ⁻⁸	0	U up	0.003	2/3			
e electron	0.000511	-1	d down	0.006	-1/3			
$ u_{\mu}^{ m muon}$ neutrino	<0.0002	0	C charm	1.3	2/3			
$oldsymbol{\mu}$ muon	0.106	-1	S strange	0.1	-1/3			
$ u_{ au}^{ ext{ tau }}_{ ext{ neutrino }}$	<0.02	0	t top	175	2/3			
$oldsymbol{ au}$ tau	1.7771	-1	b bottom	4.3	-1/3			

April 28, 2016

- Bosons
 - Integer spin
 - Convey force
 - Do not follow Pauli Exclusion Principle
 - Hadrons composed of two bound quarks (mesons)
 - All mesons are bosons (due to spin)
 - Composite mesons exist as well as the gauge bosons shown in the table
 - Muons, pions, kaons
 - 12 gauge bosons in the Standard Model:
 - Photon, 3 weak bosons, and 8 gluons

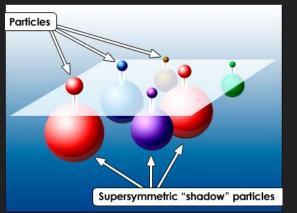
	BOS	ONS	force carriers spin = 0, 1, 2,			
Unified Electroweak spin = 1				Strong (color) spin = 1		
Name	Mass GeV/c ²	Electric charge		Name	Mass GeV/c ²	Electric charge
γ photon	0	0		g gluon	0	0
W-	80.4	-1				
W+	80.4	+1				
Z ⁰	91.187	0				

- Quantum Electrodynamics (QED)
 - Quantitative description of the electromagnetic interactions
 - Sinitiro Tomonaga, Julian Schwinger, and Richard Feynman shared the Nobel Prize for Physics for this discovery in 1965
 - the force between two charged particles is characterized by the exchange of a field quantum, the photon $e^ e^-$
 - Electric charge is conserved in all interactions
 - Feynman Diagrams
 - Aid in calculating cross-sections and decay rates
 - Precisely calculated the electron's magnetic moment

- Unified Electroweak Theory (Yang-Mills Theory)
 - Yang-Mills Generalized principle of gauge invariance
 - Requires three massless gauge bosons: one with positive electric charge, one with negative electric charge, and one electrically neutral.
 - Groundwork laid by Yang-Mills led to theoretical breakthroughs
 - 1961 Sheldon Glashow linked weak interaction with QED by formulating a gauge field theory with three massless vector bosons in addition to the photon
 - Problem solved of no massless vector bosons with the Higgs mechanism, giving the bosons mass
 - O Ultimately became "Self-consistent unified electroweak theory that predicted one massless particle (the photon) and three new massive particles: the W⁻, W⁺, and Z bosons."

W bosons possess the unique ability to change the flavor of the fermions with which
André Gras - PHYS 33 it interacts
9
April 28, 2016

Proton Neutron Quark composition of a proton and a neutron (diagrams from *Wikipedie*)

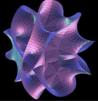

- Quantum Chromodynamics (QCD)
 - "Quantum gauge theory that describes the strongest of the four fundamental interactions"
 - Massless gluons mediate the strong interaction, carrying a "color" charge
 - Difference from QED: gluons themselves carry the color charge and interact among themselves.
 - In QED, photons couple only to electrically charged particles,
 - Quarks experience color confinement, meaning they must always bind with other quarks and antiquarks to create colorless bound states
 - Color charge also solves the problem of the Δ^{++} baryon, which is composed of uuu
 - This quark binding should not be possible due to Pauli Exclusion Principle
 - Only possible through different color quantum states of each quark

Problems with the Standard Model

- Standard Model doesn't include:
 - Gravity
 - Dark Matter and dark energy
 - Neutrino Mass
- Hierarchy problem
 - Masses introduced to Standard Model through Higgs Field mechanism
 - Higgs gets quantum corrections due to heavy virtual particles
 - In turn, the Higgs bare mass gets some number tweaking to balance out the corrections

Other Interesting Theories

- Grand Unification Theory theory that attempts to describe all interactions as one unified model
- Supersymmetry
 - Automatic cancellation of large corrections in hierarchy problem
 - Relates virtual fermions and bosons, ensuring this cancellation
 - Predicts existence of supersymmetric particles (sparticles)
 - May also allow for gravity unification
 - Regular symmetry relates particles of the same spin
 - Includes the graviton and Einstein's theory of gravity
 - All particles assigned to a single irreducible gauge group
 - Restrictive theory so only eight viable models exist



André Gras - PHYS 3305

April 28, 2016

Other Interesting Theories

- String Theory models all particles as tiny, vibrating, supersymmetric strings
 - To make this math consistent, need to have 10 dimensions
 - How a string vibrates in certain dimensions determines its properties or how we view it
- M-theory unified theory of the five top superstring theories into one Theory of Everything
 - Added 1 dimension to the existing superstring theories, bringing total to 11
 - The five theories are related by mapping (dualities), implying they are reflections of the same underlying theory
 - No experimental evidence and not even a completed theory
 - Mathematically elegant and relatively simplistic
 - Supported by notables Stephen Hawking and Michio Kaku

Conclusion

- Future Discoveries
 - Three main ways we hope to test for grand unification
 - Predictions for the particle structure and the fundamental couplings
 - Look for rare effects such as proton decay, neutrino mass, etc. which do not occur in the Standard Model
 - Trace the cosmological constraints and interplay between cosmology and particle physics
 - Match evolution and decay of all the particles in the GUT from the Big Bang with current observations
 - The Search for Supersymmetry
 - Attempt to find the graviton

Conclusion

• Fermions and Bosons and the Standard Model

• Problems with the Standard Model

• Grand Unified Theories and looking forward to understanding our reality

References

Harris, Randy. Modern Physics. 2nd ed. San Francisco: Addison-Wesley, 2008. Print.

Hawking, Stephen. "Godel And The End Of Physics". Lecture.

Hoddeson, Lillian et al. *The Rise Of The Standard Model: Particle Physics In The 1960S And 1970S.* New York: Cambridge University Press, 1997. Print.

Robinson, Matthew B. Symmetry And The Standard Model. New York: Springer, 2011. Print.

Ross, Graham G. Grand Unified Theories. Menlo Park, Calif.: Benjamin/Cummings Pub. Co., 1984. Print.

Appendix

- Standard Model has three gauge symmetries corresponding to the fundamental interactions [symmetry group U(1)×SU(2)×SU(3)]:
 - color SU(3) (strong interaction)
 - weak isospin SU(2) (electroweak interaction)
 - Hypercharge U(1) (strong interaction)

Gauge fields examples: E-M field, gravitational field

Quantizing the gauge fields gives us the gauge bosons

Transformation between gauges form a Lie group (symmetry group)

The transformations of the field do not change the quantized gauge, thus gauge invariance

Non-Abelian = non-commutative symmetry group

André Gras - PHYS 3305