Rules for Significant Figures (sig figs, s.f.)

A. Read from the left and start counting sig figs when you encounter the first non-zero digit
 1. All non zero numbers are significant (meaning they count as sig figs)
 613 has three sig figs
 123456 has six sig figs
 2. Zeros located between non-zero digits are significant (they count)
 5004 has four sig figs
 602 has three sig figs
 6000000000000002 has 16 sig figs!
 3. Trailing zeros (those at the end) are significant only if the number contains a decimal point; otherwise they are insignificant (they don’t count)
 5.640 has four sig figs
 120000. has six sig figs
 120000 has two sig figs – unless you’re given additional information in the problem.
 4. Zeros to left of the first nonzero digit are insignificant (they don’t count); they are only placeholders!
 0.000456 has three sig figs
 0.052 has two sig figs
 0.00000000000000000000000000000000052 also has two sig figs!

B. Rules for addition/subtraction problems
 Your calculated value cannot be more precise than the least precise quantity used in the calculation. The least precise quantity has the fewest digits to the right of the decimal point. Your calculated value will have the same number of digits to the right of the decimal point as that of the least precise quantity.
 In practice, find the quantity with the fewest digits to the right of the decimal point. In the example below, this would be 11.1 (this is the least precise quantity).
 \[7.939 + 6.26 + 11.1 = 25.299\] (this is what your calculator spits out)
 In this case, your final answer is limited to one sig fig to the right of the decimal or 25.3 (rounded up).

C. Rules for multiplication/division problems
 The number of sig figs in the final calculated value will be the same as that of the quantity with the fewest number of sig figs used in the calculation.
 In practice, find the quantity with the fewest number of sig figs. In the example below, the quantity with the fewest number of sig figs is 27.2 (three sig figs). Your final answer is therefore limited to three sig figs.
 \[
 (27.2 \times 15.63) \div 1.846 = 230.3011918
 \]
 In this case, since your final answer it limited to three sig figs, the answer is 230. (rounded down)

D. Rules for combined addition/subtraction and multiplication/division problems
 Use the order of mathematical operations to determine which order to apply the rules for addition/subtraction (determine the number of sig figs for that step) or the rules for multiplication/division.
 \[
 (23 + 7) \div 10.0 = 3
 \]
 (this is what your calculator spits out)
 In this case, your answer should have 2 significant figures, 3.0.

E. Special Rules for THIS CLASS!
 For this class only we will consider all numbers less than 1000 as significant. That means 900 has 3 significant digits and 1000 has 1 significant digit.
Rules for Significant Figures (sig figs, s.f.)

F. Practice Problems

1. Provide the number of sig figs in each of the following numbers:
 (a) 0.0000055 g ____ (c) 1.6402 g ____
 (b) 3.40 x 103 mL _____ (d) 1.020 L _____

2. Perform the operation and report the answer with the correct number of sig figs.
 (a) (10.3) x (0.01345) = ___________________
 (b) (10.3) + (0.01345) = ___________________
 (c) [(10.3) + (0.01345)] ÷ [(10.3) x (0.01345)] ____________________