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Announcements

- Reading Assignments:  Chapter 2 all.

- Problem Set 2 is due Wednesday, February 4th, 
2015.

- Next lab is Monday, February 9th.  Be sure to 
report to FOSC 032 that day.

- Note on Lab reports.
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- We discussed different ways we could get 
information from astronomical observations.

- Human eye, CCDs,  telescopes

- Discussed why angular resolution is important.

- Started discussing imaging methods that take 
advantage of the EM wave.

Last Time:
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Consider an EM wave that is plane-parallel and monochromatic.
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Figure 1.5 Schematic view (highly simplified) of a CCD detector. On the left, a photon is
absorbed by the silicon in a particular pixel, releasing an electron which is stored
in the pixel until the CCD is read out. On the right are shown other photoelec-
trons that were previously liberated and stored in several pixels on which, e.g.,
the image of a star has been focused. At the end of the exposure, the accumu-
lated charge is transferred horizontally from pixel to pixel by manipulating the
voltages applied to the pixels, until it is read out on the right-hand side (arrows)
and amplified.

number of photons that reached the pixel. This allows forming a digital image of
the region of the sky that was observed (see Fig. 1.5).
So far, we have discussed astronomical observations only in terms of producing

an image of a section of sky by focusing it onto a detector. This technique is called
“imaging”. However there is an assortment of other measurements that can be
made. Every one of the parameters that characterize an EM wave can carry useful
astronomical information. Different techniques have been designed to measure
each of these parameters. To see how, consider a plane-parallel, monochromatic
(i.e., having a single frequency), EM wave, with electric field vector described by

E = êE(t) cos(2πνt − k · r + φ). (1.2)

The unit vector ê gives the direction of polarization of the electric field, E(t) is
the field’s time-dependent (apart from the sinusoidal variation) amplitude, ν is the
frequency, and k is the wave vector, having the direction of the wave propagation,
and magnitude |k| = 2π/λ. The wavelength λ and the frequency ν are related by
the speed of light, c, through ν = λ/c. The phase shift of the wave is φ.
Imaging involves determining the direction, on the sky, to a source of plane-

parallel waves, and therefore implies a measurement of the direction of k. From
an image, one can also measure the strength of the signal produced by a source
(e.g., in a photon counting device, by counting the total number of photons col-
lected from the source over an integration time.) As discussed in more detail in
Chapter 2, the photon flux is related to the “intensity”, which is the time-averaged
electric-field amplitude squared, �E2(t)�. Measuring the photon flux from a source
is called “photometry”. In “time-resolved photometry”, one can perform repeated
photometric measurements as a function of time, and thus measure the long-term
time dependence of �E2�.
The wavelength of the light, λ (or equivalently, the frequency, ν), can be deter-

mined in several ways. A band-pass filter before the detector (or in the “receiver”

k = wave vector (direction of wave propagation)

ê = direction of polarization of the e-field

E(t) = time-dependent amplitude of field
ν = frequency

φ = phase shift

Recall Relations:

|~k| = 2⇡

�
⌫ =

�

c
and

Last Time:
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Photometry = measuring the photon flux from a source.

Time-Resolved Photometry = repeated photometric measurements 
as a function of time.  This gives long-term time dependence of 
<E2>

combined with inverse square law, 
determine luminosity if distance 
known (or vis versa)
study of light variation in variable 
stars, minor planets, AGN, supernova 
and transient exoplanets.

Last Time:
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Wavelength and Frequency —

- Use a band-pass filter before detector allows radiation of 
only a certain frequency to pass.

- Reflection off or transmission through a dispersing element 
(think diffraction grating or prism)

Spectroscopy -

basicastro4 October 26, 2006

INTRODUCTION 7

Figure 1.6 Schematic example of a spectrograph. Light from a distant point source con-
verges at the Cassegrain focus of the telecope at the left. The beam is then al-
lowed to diverge again and reaches a “collimator” lens sharing the same focus as
the telecope, so that a parallel beam of light emerges. The beam is then trans-
mitted through a dispersive element, e.g., a transmission grating, which deflects
light of different wavelengths by different angles, in proportion to the wave-
length. The paths of rays for two particular wavelengths, λ

1

and λ
2

, are shown.
A “camera” lens refocuses the light onto a detector at the camera’s focal plane.
The light from the source, rather than being imaged into a point, has been spread
into a spectrum (grey vertical strip).

in radio astronomy) will allow only EM radiation in a particular range of wave-
lengths to reach the detector, while blocking all others. Alternatively, the light can
be reflected off, or transmitted through, a dispersing element, such as a prism or
a diffraction grating, before reaching the detector. Light of different wavelengths
will be deflected by different angles from the original beam, and hence will land on
the detector at different positions. A single source of light will thus be spread into
a spectrum, with the signal at each position along the spectrum proportional to the
intensity at a different wavelength. This technique is called “spectroscopy”, and an
example of a telescope-spectrograph combination is illustrated in Fig. 1.6.
The phase shift φ of the light wave arriving at the detector can reveal informa-

tion on the precise direction to the source, and on effects, such as scattering, that
the wave underwent during its path from the source to the detector. The phase
can be measured by combining the EM waves received from the same source by
several different telescopes, and forming an interference pattern. This is called “in-
terferometry”. In interferometry, the “baseline” distance B between the two most
widely spaced telescopes replaces the aperture in determining the angular resolu-
tion, λ/B. In radio astronomy, the signals from radio telescopes spread over the
globe, and even in space, are often combined, providing baselines of order 104 km,
and very high angular resolutions.
Finally, the amount of polarization (“unpolarized”, i.e., having random polariza-

tion direction, or “polarized” by a fraction between 0 and 100%), its type (linear,

Last Time:
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Phase Shift of light —
- Can reveal information on the precise direction of the source 

and on effects the wave underwent during its path from 
source to detector.

- Phase is measured by combining EM waves received from 
same source using several different telescopes and forming 
an interference pattern. (Interferometry)

- Baseline distance “B” between the two most widely spread 
telescopes determines angular resolution (λ/B).

Very useful in radio 
astronomy where signals from 
radio telescopes around the 
globe and in space can 
provide baselines of 104 km.

http://www.hardhack.org.au/book/export/html/18
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Polarization —
- Fraction of light that is polarized
- Type of polarization (linear, circular)
- Orientation of the polarization on the sky.
- Polarimetry is the measurement of polarization properties of 

a source.
- Can be done using filters that let only a particular 

polarization component to reach the detector.
Polarization vectors overlaid on an 
emission map of NGC 7538 (a star 
forming region).  The length of each 
line is proportional to the 
polarization degree. 

Interstellar dust:  Short axis of dust 
grains align with the local magnetic 
field (unlike a compass).
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CGS Units
Gaussian Units (also called cgs: centimeter-gram-second) are 
quite commonly used in astrophysics.
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Blackbody Radiation
To a rough approximation, stars shine with the spectrum of a 
blackbody.  So, what is a blackbody?

A blackbody is an object that absorbs all incident 
electromagnetic radiation regardless of frequency or angle of 
incidence.  It is a body that is opaque and non-reflective.  

What is blackbody radiation?

A blackbody in thermal equilibrium emits electromagnetic 
radiation  that is called blackbody radiation.

Let’s review properties of blackbody radiation!
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Why Do We Care?
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Figure 2.1 Flux per wavelength interval emitted by different types of stars, at their “sur-
faces”, compared to blackbody curves of various temperatures. Each black-
body’s temperature is chosen to match the total power (integrated over all wave-
lengths) under the the corresponding stellar spectrum. The wavelength range
shown is from the ultraviolet (1000 Å= 0.1 µm), through the optical range
(3200-10,000 Å), and to the mid-infrared (10

5 Å= 10 µm). Data credit: R.
Kurucz.

(since the solid angle of a full sphere is 4π steradians). The intensity of blackbody
radiation is therefore

Iν =
c

4π
uν =

2hν3

c2

1
ehν/kT − 1

≡ Bν . (2.4)

In cgs, one can see the units now are erg s−1 cm−2 Hz−1 steradian−1. We have kept
the product of units, s−1 Hz−1, even though they formally cancel out, to recall their
different physical origins: one is the time interval over which we are measuring
the amount of energy that flows through a unit area; and the other is the photon
frequency interval over which we bin the spectral distribution. Iν of a blackbody is
often designated “Bν”.
Now, let us find the net flow of energy that emerges from a unit area (small

enough so that it can be presumed to be flat) on the outer surface of a blackbody
(see Fig. 2.2). This is obtained by integrating Iν over solid angle on the half sphere
facing outwards, with each Iν weighted by the cosine of the angle between the
intensity and the perpendicular to the area. This flux, which is generally what one
actually observes from stars and other astronomical sources, is thus

fν =
Z π/2

θ=0

Iν cos θdΩ = Iν2π
1
2

= πIν =
c

4
uν =

2πhν3

c2

1
ehν/kT − 1

. (2.5)

What is the unit [A]?˚ answer:  angstrom = 10-8
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Energy Density
The energy density of blackbody radiation, per unit 
frequency interval 
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Chapter Two

Stars: Basic Observations

In this chapter we will examine some of the basic observed properties of stars –
their spectra, temperatures, emitted power, and masses – and the relations between
those properties. In Chapter 3, we will proceed to a physical understanding of these
observations.

2.1 REVIEW OF BLACKBODY RADIATION

To a very rough, but quite useful, approximation, stars shine with the spectrum of a
blackbody. The degree of similarity (but also the differences) between stellar and
blackbody spectra can be seen in Figure 2.1. Let us review the various descriptions
and properties of blackbody radiation (which is often also called “thermal radia-
tion”, or radiation having a “Planck spectrum”). A blackbody spectrum emerges
from a system in which matter and radiation are in thermodynamic equilibrium. A
fundamental result of quantum mechanics (and one which marked the beginning of
the quantum era in 1900) is the exact functional form of this spectrum, which can
be expressed in a number of ways.
The energy density of blackbody radiation, per frequency interval, is

uν =
8πν2

c3

hν

ehν/kT − 1
, (2.1)

where ν is the frequency, c is the speed of light, h is Planck’s constant, k is Boltz-
mann’s constant, and T is the temperature in degrees Kelvin. Clearly, the first term
has units of [time]/[length]3 and the second term has units of energy. In cgs units,
uν is given in erg cm−3 Hz−1.
Next, let us consider the flow of blackbody energy radiation (i.e., photons mov-

ing at speed c), in a particular direction inside a blackbody radiator. To obtain this
so-called intensity, we take the derivative with respect to solid angle of the energy
density and multiply by c (since multiplying a density by a velocity gives a flux,
i.e., the amount passing through a unit area per unit time):

Iν = c
duν

dΩ
, (2.2)

where dΩ is the solid angle element. (For example, in spherical coordinates, dΩ =
sin θdθdφ.) Blackbody radiation is isotropic (i.e., the same in all directions), and
hence the energy density per unit solid angle is

duν

dΩ
=

uν

4π
(2.3)

ν = frequency
h = Planck’s constant = 6.6 x 10-27 erg ⋅ s
k = Boltzmann’s constant = 1.4 x 10-16 erg ⋅ K-1 

T = temperature (K)

 erg ⋅ cm-3 ⋅ Hz-1

What are the cgs units for energy density?
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Intensity
Intensity is the net flow of blackbody energy radiation in a 
particular direction inside the radiator.  It is given by 
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uν =
8πν2

c3

hν

ehν/kT − 1
, (2.1)

where ν is the frequency, c is the speed of light, h is Planck’s constant, k is Boltz-
mann’s constant, and T is the temperature in degrees Kelvin. Clearly, the first term
has units of [time]/[length]3 and the second term has units of energy. In cgs units,
uν is given in erg cm−3 Hz−1.
Next, let us consider the flow of blackbody energy radiation (i.e., photons mov-

ing at speed c), in a particular direction inside a blackbody radiator. To obtain this
so-called intensity, we take the derivative with respect to solid angle of the energy
density and multiply by c (since multiplying a density by a velocity gives a flux,
i.e., the amount passing through a unit area per unit time):

Iν = c
duν

dΩ
, (2.2)

where dΩ is the solid angle element. (For example, in spherical coordinates, dΩ =
sin θdθdφ.) Blackbody radiation is isotropic (i.e., the same in all directions), and
hence the energy density per unit solid angle is

duν

dΩ
=

uν

4π
(2.3)

d⌦ = sin ✓d✓d�

What is dΩ?
in spherical 
coordinates

Blackbody radiation is isotropic.  So what is dΩ?

d⌦ = 4⇡

= c
u⌫

4⇡
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Thus, putting it all together:
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= c
u⌫

4⇡

and

Gives the intensity of blackbody radiation:
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Figure 2.1 Flux per wavelength interval emitted by different types of stars, at their “sur-
faces”, compared to blackbody curves of various temperatures. Each black-
body’s temperature is chosen to match the total power (integrated over all wave-
lengths) under the the corresponding stellar spectrum. The wavelength range
shown is from the ultraviolet (1000 Å= 0.1 µm), through the optical range
(3200-10,000 Å), and to the mid-infrared (10

5 Å= 10 µm). Data credit: R.
Kurucz.

(since the solid angle of a full sphere is 4π steradians). The intensity of blackbody
radiation is therefore

Iν =
c

4π
uν =

2hν3

c2

1
ehν/kT − 1

≡ Bν . (2.4)

In cgs, one can see the units now are erg s−1 cm−2 Hz−1 steradian−1. We have kept
the product of units, s−1 Hz−1, even though they formally cancel out, to recall their
different physical origins: one is the time interval over which we are measuring
the amount of energy that flows through a unit area; and the other is the photon
frequency interval over which we bin the spectral distribution. Iν of a blackbody is
often designated “Bν”.
Now, let us find the net flow of energy that emerges from a unit area (small

enough so that it can be presumed to be flat) on the outer surface of a blackbody
(see Fig. 2.2). This is obtained by integrating Iν over solid angle on the half sphere
facing outwards, with each Iν weighted by the cosine of the angle between the
intensity and the perpendicular to the area. This flux, which is generally what one
actually observes from stars and other astronomical sources, is thus

fν =
Z π/2

θ=0

Iν cos θdΩ = Iν2π
1
2

= πIν =
c

4
uν =

2πhν3

c2

1
ehν/kT − 1

. (2.5)

What are the cgs units for this quantity? Does this 
make sense?

erg s�1 cm�2 Hz�1 steradian�1
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Emission from an Object
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Figure 2.2 Illustration of the net flux emerging through surface of a blackbody, due to a
beam with intensity Iν emerging at an angle θ to the perpendicular.

The cgs units of this flux per frequency interval will thus be erg s−1 cm−2 Hz−1.
The total power (i.e., the energy per unit time) radiated by a spherical, isotropi-

cally emitting, star of radius r∗ is usually called its luminosity, and is just
Lν = fν(r∗)4πr2

∗, (2.6)
with cgs units of erg s−1 Hz−1. Similarly, the flux that an observer at a distance d
from the star will measure will be

fν(d) =
Lν

4πd2
= fν(r∗)

r2
∗

d2
. (2.7)

It is often of interest to consider the above quantities integrated over all photon
frequencies, and designated by

u =
Z ∞

0

uνdν, I =
Z ∞

0

Iνdν, f =
Z ∞

0

fνdν, L =
Z ∞

0

Lνdν. (2.8)

A case in point is the useful Stefan-Boltzmann Law that relates the total energy
density or flux of a blackbody to its temperature:

u = aT 4, (2.9)

and

f =
c

4
aT 4 = σT 4, (2.10)

a =
8π5k4

15c3h3
= 7.6× 10−15 erg cm−3K−4,

Consider the flow from a small unit 
area.  How do we obtain the flux?
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enough so that it can be presumed to be flat) on the outer surface of a blackbody
(see Fig. 2.2). This is obtained by integrating Iν over solid angle on the half sphere
facing outwards, with each Iν weighted by the cosine of the angle between the
intensity and the perpendicular to the area. This flux, which is generally what one
actually observes from stars and other astronomical sources, is thus

fν =
Z π/2

θ=0

Iν cos θdΩ = Iν2π
1
2

= πIν =
c

4
uν =

2πhν3

c2

1
ehν/kT − 1

. (2.5)

Luminosity is the total power (energy per unit time) radiated by 
the star (spherical and isotropically emitting)
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Figure 2.2 Illustration of the net flux emerging through surface of a blackbody, due to a
beam with intensity Iν emerging at an angle θ to the perpendicular.
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The total power (i.e., the energy per unit time) radiated by a spherical, isotropi-

cally emitting, star of radius r∗ is usually called its luminosity, and is just
Lν = fν(r∗)4πr2

∗, (2.6)
with cgs units of erg s−1 Hz−1. Similarly, the flux that an observer at a distance d
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fν(d) =
Lν
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= fν(r∗)

r2
∗

d2
. (2.7)

It is often of interest to consider the above quantities integrated over all photon
frequencies, and designated by

u =
Z ∞

0

uνdν, I =
Z ∞

0

Iνdν, f =
Z ∞

0

fνdν, L =
Z ∞

0

Lνdν. (2.8)

A case in point is the useful Stefan-Boltzmann Law that relates the total energy
density or flux of a blackbody to its temperature:

u = aT 4, (2.9)

and

f =
c

4
aT 4 = σT 4, (2.10)

a =
8π5k4

15c3h3
= 7.6× 10−15 erg cm−3K−4,

r*= radius of star



Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

The flux seen by an observer at distance d from the source is 
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cally emitting, star of radius r∗ is usually called its luminosity, and is just
Lν = fν(r∗)4πr2

∗, (2.6)
with cgs units of erg s−1 Hz−1. Similarly, the flux that an observer at a distance d
from the star will measure will be

fν(d) =
Lν

4πd2
= fν(r∗)

r2
∗

d2
. (2.7)

It is often of interest to consider the above quantities integrated over all photon
frequencies, and designated by

u =
Z ∞

0

uνdν, I =
Z ∞

0

Iνdν, f =
Z ∞

0

fνdν, L =
Z ∞

0

Lνdν. (2.8)

A case in point is the useful Stefan-Boltzmann Law that relates the total energy
density or flux of a blackbody to its temperature:

u = aT 4, (2.9)

and

f =
c

4
aT 4 = σT 4, (2.10)

a =
8π5k4

15c3h3
= 7.6× 10−15 erg cm−3K−4,

Note on language:
Flux density is the flux at a particular frequency.
Flux is the flux density integrated over some frequency.
Bolometric flux is the flux density integrated over all frequencies.
(similar for luminosity)

The Stefan-Boltzman law relates total energy density or flux of a 
blackbody to its temperature.
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σ =
c

4
a = 5.7× 10−5 erg s−1 cm−2K−4.

(Here and throughout this book, numbers are rounded off to two significant digits,
except in some obvious cases where higher accuracies are warranted.)
Rather than considering energy density, intensity, flux, and luminosity per pho-

ton frequency interval, we can also look at these quantities per photon wavelength
interval, where the wavelength is λ = c/ν. To make the transformation, we recall
that the energy in an interval must be the same, whether we measure it in wave-
length or frequency, so,

Bλdλ = Bνdν, (2.11)

and hence

Bλ = Bν

ØØØØ
dν

dλ

ØØØØ = Bν
c

λ2
=

2hc2

λ5

1
ehc/λkT − 1

. (2.12)

Here the units are erg s−1 cm−2 cm−1 steradian−1, where we have separated the
two length units (cm−2 and cm−1), since one is the unit area through which the
radiation flux is passing, and the other is the wavelength interval over which we
bin the radiation energy. Non-cgs units for the wavelength interval are common
in astronomy. For example, flux per wavelength interval at visual wavelengths is
often given in units of erg s−1 cm−2 Å−1. An Å (called “Ångstrom”) is 10−8 cm.
The wavelength or frequency of the peak of a blackbody spectrum can be found

by taking its derivative and equating to zero:
dBν

dν
= 0, (2.13)

or
dBλ

dλ
= 0, (2.14)

which lead to the two forms ofWien’s Law:

λmaxT = 0.29 cm K, (2.15)

and

hνmax = 2.8 kT. (2.16)

For example, the nearest star – the Sun – which radiates approximately like a
blackbody at T = 5800K, has a peak in Bλ at 5000 Å, which is the wavelength of
green light, in the middle of the visual regime. In fact, the eyesight of most animals
on Earth apparently evolved to have the most sensitivity in the wavelength range
within which the Sun emits the most energy. (No less important, this wavelength
range also coincides with the transmission range of water vapor in the atmosphere.)
Note that the frequency νmax where Bν peaks is not the same as the frequency ν =
c/λmax at which Bλ peaks. The two spectral distributions are different, because a
constant frequency interval dν corresponds to a changing wavelength interval

dλ =
ØØØØ
dλ

dν

ØØØØ dν =
c

ν2
dν (2.17)

Radiation constant

Stefan-Boltzmann constant
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Blackbody Radiation

- Intensity of blackbody 
radiation is 

- Falls off at high energy = high 
frequencies as exp(-hv/kT).  
Known as Wein tail

- Falls off at low energy = low 
frequencies as ν2.  Known as 
Rayleigh-Jeans law.

- Note:  spectrum peaks at

B⌫ =
2h⌫3

c2
1

e
h⌫
kT � 1

  

Blackbody Radiation

● Intensity of blackbody radiation is

● Falls off at high frequencies = high 
energies as exp(-hν/kT). This is the 
'Wein tail'.

● Falls off at low frequencies = low 
energies as ν2.  This is the 
Rayleigh-Jeans law.

● Spectrum peaks at 
        hν

max
 = 2.8 kT = 2.4 eV T/104 K

        λ
max

 T = 0.29 cm K

       (How to find peak?)

Bν=
2h ν3

c
2

1

e
h ν/kT−1

Wein

Rayleigh
-Jeans

2.82.8 kT

h⌫
max

= 2.8 kT

Recall:  E = hν
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It is often more convenient to look at quantities such as energy 
density, intensity and flux per photon wavelength interval.

Recall that the energy in an interval must be the same whether it is 
measured in wavelength or frequency. 
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σ =
c

4
a = 5.7× 10−5 erg s−1 cm−2K−4.

(Here and throughout this book, numbers are rounded off to two significant digits,
except in some obvious cases where higher accuracies are warranted.)
Rather than considering energy density, intensity, flux, and luminosity per pho-

ton frequency interval, we can also look at these quantities per photon wavelength
interval, where the wavelength is λ = c/ν. To make the transformation, we recall
that the energy in an interval must be the same, whether we measure it in wave-
length or frequency, so,

Bλdλ = Bνdν, (2.11)

and hence

Bλ = Bν

ØØØØ
dν

dλ

ØØØØ = Bν
c

λ2
=

2hc2

λ5

1
ehc/λkT − 1

. (2.12)

Here the units are erg s−1 cm−2 cm−1 steradian−1, where we have separated the
two length units (cm−2 and cm−1), since one is the unit area through which the
radiation flux is passing, and the other is the wavelength interval over which we
bin the radiation energy. Non-cgs units for the wavelength interval are common
in astronomy. For example, flux per wavelength interval at visual wavelengths is
often given in units of erg s−1 cm−2 Å−1. An Å (called “Ångstrom”) is 10−8 cm.
The wavelength or frequency of the peak of a blackbody spectrum can be found

by taking its derivative and equating to zero:
dBν

dν
= 0, (2.13)

or
dBλ

dλ
= 0, (2.14)

which lead to the two forms ofWien’s Law:

λmaxT = 0.29 cm K, (2.15)

and

hνmax = 2.8 kT. (2.16)

For example, the nearest star – the Sun – which radiates approximately like a
blackbody at T = 5800K, has a peak in Bλ at 5000 Å, which is the wavelength of
green light, in the middle of the visual regime. In fact, the eyesight of most animals
on Earth apparently evolved to have the most sensitivity in the wavelength range
within which the Sun emits the most energy. (No less important, this wavelength
range also coincides with the transmission range of water vapor in the atmosphere.)
Note that the frequency νmax where Bν peaks is not the same as the frequency ν =
c/λmax at which Bλ peaks. The two spectral distributions are different, because a
constant frequency interval dν corresponds to a changing wavelength interval

dλ =
ØØØØ
dλ

dν

ØØØØ dν =
c

ν2
dν (2.17)

Thus,
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Here the units are erg s−1 cm−2 cm−1 steradian−1, where we have separated the
two length units (cm−2 and cm−1), since one is the unit area through which the
radiation flux is passing, and the other is the wavelength interval over which we
bin the radiation energy. Non-cgs units for the wavelength interval are common
in astronomy. For example, flux per wavelength interval at visual wavelengths is
often given in units of erg s−1 cm−2 Å−1. An Å (called “Ångstrom”) is 10−8 cm.
The wavelength or frequency of the peak of a blackbody spectrum can be found

by taking its derivative and equating to zero:
dBν

dν
= 0, (2.13)

or
dBλ

dλ
= 0, (2.14)

which lead to the two forms ofWien’s Law:

λmaxT = 0.29 cm K, (2.15)

and

hνmax = 2.8 kT. (2.16)

For example, the nearest star – the Sun – which radiates approximately like a
blackbody at T = 5800K, has a peak in Bλ at 5000 Å, which is the wavelength of
green light, in the middle of the visual regime. In fact, the eyesight of most animals
on Earth apparently evolved to have the most sensitivity in the wavelength range
within which the Sun emits the most energy. (No less important, this wavelength
range also coincides with the transmission range of water vapor in the atmosphere.)
Note that the frequency νmax where Bν peaks is not the same as the frequency ν =
c/λmax at which Bλ peaks. The two spectral distributions are different, because a
constant frequency interval dν corresponds to a changing wavelength interval

dλ =
ØØØØ
dλ

dν

ØØØØ dν =
c

ν2
dν (2.17)

Recall:  ν = c/λ
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How can we find the peak of the blackbody spectrum?

  

Blackbody Radiation

● Intensity of blackbody radiation is

● Falls off at high frequencies = high 
energies as exp(-hν/kT). This is the 
'Wein tail'.

● Falls off at low frequencies = low 
energies as ν2.  This is the 
Rayleigh-Jeans law.

● Spectrum peaks at 
        hν

max
 = 2.8 kT = 2.4 eV T/104 K

        λ
max

 T = 0.29 cm K

       (How to find peak?)

Bν=
2h ν3

c
2

1

e
h ν/kT−1

Wein

Rayleigh
-Jeans

2.82.8 kT

Take the derivative of the 
blackbody spectrum and 
set it equal to zero.
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and
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For example, the nearest star – the Sun – which radiates approximately like a
blackbody at T = 5800K, has a peak in Bλ at 5000 Å, which is the wavelength of
green light, in the middle of the visual regime. In fact, the eyesight of most animals
on Earth apparently evolved to have the most sensitivity in the wavelength range
within which the Sun emits the most energy. (No less important, this wavelength
range also coincides with the transmission range of water vapor in the atmosphere.)
Note that the frequency νmax where Bν peaks is not the same as the frequency ν =
c/λmax at which Bλ peaks. The two spectral distributions are different, because a
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Leads to
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Example:  CMB
The cosmic microwave background (CMB) radiation is a thermal 
radiation left over from the big bang.  It fills the observable 
universe almost uniformly.  The CMB has a thermal blackbody 
spectrum at a temperature of 2.7 K.
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radiation left over from the big bang.  It fills the observable 
universe almost uniformly.  The CMB has a thermal blackbody 
spectrum at a temperature of 2.7 K.
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Example:  CMB
The cosmic microwave background (CMB) radiation is a thermal 
radiation left over from the big bang.  It fills the observable 
universe almost uniformly.  The CMB has a thermal blackbody 
spectrum at a temperature of 2.7 K.

What is the wavelength at the maximum intensity of the 
spectrum of this radiation?

�
max

T = 0.29 cmK

�
max

=
0.29 cmK

T
=

0.29 cmK

2.7K

 �
max

= 0.11 cm
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Example:  CMB
The cosmic microwave background (CMB) radiation is a thermal 
radiation left over from the big bang.  It fills the observable 
universe almost uniformly.  The CMB has a thermal blackbody 
spectrum at a temperature of 2.7 K.

What is the total power incident on Earth from this radiation?

f = �T 4P

A
=

P = 4⇡r2E�T
4

P = 4⇡(6.4⇥ 108 cm)2(5.7⇥ 10�5 erg cm�2 s�1 K�4) (2.7K)4

 P = 1.6 x 1016 erg s-1
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Final Notes on Blackbody Radiation

The functions uν, Βλ, etc. are 
determined uniquely by one 
parameter, T (temperature).

Far from their peaks, the 
spectra assume tow simple 
forms: 

ν << peak:  Rayleigh Jeans side ν >> peak:  Wein tail side
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that grows with wavelength (and falls with frequency).
Figure 2.1 shows blackbody spectral distributions for a variety of temperatures.

The following features are important to note. First, the functions described above
(uν , Bλ, etc.) are determined uniquely by one parameter, the temperature. Second,
far from their peak frequencies or wavelengths, the Planck blackbody spectra as-
sume two simple forms, as can be easily verified by taking the appropriate limits
in Eqns. 2.4 and 2.12. At frequencies ν much lower than the peak (i.e., at photon
energies hν � kT ),

Bν ≈
2ν2

c2
kT, (2.18)

or

Bλ ≈ 2ckTλ−4. (2.19)
This is called the Rayleigh-Jeans side of the thermal spectrum. At frequencies
much higher than the peak (photon energies hν � kT ) the blackbody spectrum
falls off exponentially with frequency as

Bν ∼ e−(hν/kT ), (2.20)
or with decreasing wavelength as

Bλ ∼ e−(hc/λkT ). (2.21)
This is called the “Wien tail” of the distribution.

2.2 MEASUREMENT OF STELLAR PARAMETERS

2.2.1 Distance

Distances to the nearest stars can be measured via trigonometric parallax. With
current technology, about 100,000 stars have had their distances measured in this
way. The motion of the Earth around the Sun produces an apparent movement
on the sky of nearby stars, relative to more distant stars. Stars in the direction
perpendicular to the plane of the Earth’s orbit (called the “ecliptic plane”) will
trace a circle on the sky in the course of a year (see Fig. 2.3), whereas stars in
the directions of the ecliptic plane will trace on the sky a line segment that doubles
back on itself. In other directions, stars will trace out an ellipse. The angular size
of the semi-major axis of the ellipse will obviously be

α =
d⊙
d

, (2.22)

with d⊙ the Earth-Sun distance and d the distance to the star. (The subscript ⊙
marks properties of the Sun – distance, mass, radius, etc.). The distance d⊙, which
is also referred to as 1 “astronomical unit” (AU), is about 1.5 × 108 km. Parallax
is actually used to define another unit of length, a parsec (pc). One pc is defined as
the distance for which the parallax is 1 arcsecond [i.e., 1/3600 of a degree of arc,
or π/(180× 3600) radian]. Thus

1pc = 2.1× 105 AU = 3.1× 1018cm = 3.3 ly, (2.23)
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● Falls off at high frequencies = high 
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The constellation Orion has two well known stars - 
Betelgeuse and Rigel.

Which has the greater surface temperature?

Betelgeuse appears red.

Rigel appears blue-whitish.
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Remember, as the temperature increases the 
wavelength decreases.  

λmax ∝

1

T
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Constellation Orion
Betelgeuse has a surface temperature of  3600 K and Rigel has a 
surface temperature of 13,000 K.  Treat both stars as blackbodies 
and calculate the peak of their spectrums.

λmax =
2.898× 10−3m ·K

3600K
= 8.05× 10

−7
m = 805nm

Betelgeuse:

infared

λmax =
2.898× 10−3m ·K

13, 000K
= 2.23× 10

−7m = 223nm

Rigel:

ultraviolet
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Distance Ladder
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Trigonometric Parallax
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Figure 2.3 Schematic view of the apparent parallax motion of a nearby star, situated in the
direction above the ecliptic plane, due to the Earth’s circular orbit around the
Sun.

where we have also expressed a parsec in light years (ly), the distance light travels
in vacuum during a year. A light year is

1 ly = 365.25× 24× 3600× c = 3.15× 107 s× 3× 1010 cm s−1. (2.24)

It is convenient to remember that the number of seconds in a year is (by pure coin-
cidence) close to π× 107. The few nearest stars to the Solar system have distances
of about 1 pc. Most of the stars visible to the naked eye are closer than 100 pc.
At larger distances, convenient units are the kiloparsec (kpc; 103 pc), megaparsec
(Mpc; 106 pc), and gigaparsec (Gpc; 109 pc).
Apart from the apparent motion of stars due to parallax, stars have real motions

relative to each other, and hence relative to the Sun. Over human timescales, these
real relative motions will generally appear on the sky to have constant velocity and
direction. In practice, therefore, the parallax motion of nearby stars will often be
superimposed on a linear “proper motion” , producing a curly or wavy trajectory
on the sky.

2.2.2 Stellar Temperatures and Stellar Types

As we will see later on, the volume of every star has a range of temperatures,
from millions of degrees Kelvin in its core to only thousands in the outer regions.
However, the emitted spectrum of a star is largely determined by the temperature in
the outermost “surface”, or more correctly, in its “photosphere”. The photosphere
can be roughly defined as the region from which photons are able to escape a star

Stars perpendicular to the Ecliptic 
plane trace a circle in the sky.

Ecliptic Plane:   Plane perpendicular to the Earth’s orbit.

Stars parallel to the Ecliptic plane trace 
a line segment in the sky.

Stars in other directions trace out an 
ellipse on the sky:

basicastro4 October 26, 2006

STARS: BASIC OBSERVATIONS 15

that grows with wavelength (and falls with frequency).
Figure 2.1 shows blackbody spectral distributions for a variety of temperatures.

The following features are important to note. First, the functions described above
(uν , Bλ, etc.) are determined uniquely by one parameter, the temperature. Second,
far from their peak frequencies or wavelengths, the Planck blackbody spectra as-
sume two simple forms, as can be easily verified by taking the appropriate limits
in Eqns. 2.4 and 2.12. At frequencies ν much lower than the peak (i.e., at photon
energies hν � kT ),

Bν ≈
2ν2

c2
kT, (2.18)

or

Bλ ≈ 2ckTλ−4. (2.19)
This is called the Rayleigh-Jeans side of the thermal spectrum. At frequencies
much higher than the peak (photon energies hν � kT ) the blackbody spectrum
falls off exponentially with frequency as

Bν ∼ e−(hν/kT ), (2.20)
or with decreasing wavelength as

Bλ ∼ e−(hc/λkT ). (2.21)
This is called the “Wien tail” of the distribution.

2.2 MEASUREMENT OF STELLAR PARAMETERS

2.2.1 Distance

Distances to the nearest stars can be measured via trigonometric parallax. With
current technology, about 100,000 stars have had their distances measured in this
way. The motion of the Earth around the Sun produces an apparent movement
on the sky of nearby stars, relative to more distant stars. Stars in the direction
perpendicular to the plane of the Earth’s orbit (called the “ecliptic plane”) will
trace a circle on the sky in the course of a year (see Fig. 2.3), whereas stars in
the directions of the ecliptic plane will trace on the sky a line segment that doubles
back on itself. In other directions, stars will trace out an ellipse. The angular size
of the semi-major axis of the ellipse will obviously be

α =
d⊙
d

, (2.22)

with d⊙ the Earth-Sun distance and d the distance to the star. (The subscript ⊙
marks properties of the Sun – distance, mass, radius, etc.). The distance d⊙, which
is also referred to as 1 “astronomical unit” (AU), is about 1.5 × 108 km. Parallax
is actually used to define another unit of length, a parsec (pc). One pc is defined as
the distance for which the parallax is 1 arcsecond [i.e., 1/3600 of a degree of arc,
or π/(180× 3600) radian]. Thus

1pc = 2.1× 105 AU = 3.1× 1018cm = 3.3 ly, (2.23)

this subscript 
marks properties 
of the sun
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More Units

astronomical unit; 1 AU is the distance between the Earth 
and the sun

AU:

1AU = 1.5⇥ 108 km

pc:
parsec; 1 pc is defined as the distance for which the parallax 
is 1 arcsecond (1/3600 of a degree of arc).
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that grows with wavelength (and falls with frequency).
Figure 2.1 shows blackbody spectral distributions for a variety of temperatures.

The following features are important to note. First, the functions described above
(uν , Bλ, etc.) are determined uniquely by one parameter, the temperature. Second,
far from their peak frequencies or wavelengths, the Planck blackbody spectra as-
sume two simple forms, as can be easily verified by taking the appropriate limits
in Eqns. 2.4 and 2.12. At frequencies ν much lower than the peak (i.e., at photon
energies hν � kT ),

Bν ≈
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or

Bλ ≈ 2ckTλ−4. (2.19)
This is called the Rayleigh-Jeans side of the thermal spectrum. At frequencies
much higher than the peak (photon energies hν � kT ) the blackbody spectrum
falls off exponentially with frequency as

Bν ∼ e−(hν/kT ), (2.20)
or with decreasing wavelength as

Bλ ∼ e−(hc/λkT ). (2.21)
This is called the “Wien tail” of the distribution.

2.2 MEASUREMENT OF STELLAR PARAMETERS

2.2.1 Distance

Distances to the nearest stars can be measured via trigonometric parallax. With
current technology, about 100,000 stars have had their distances measured in this
way. The motion of the Earth around the Sun produces an apparent movement
on the sky of nearby stars, relative to more distant stars. Stars in the direction
perpendicular to the plane of the Earth’s orbit (called the “ecliptic plane”) will
trace a circle on the sky in the course of a year (see Fig. 2.3), whereas stars in
the directions of the ecliptic plane will trace on the sky a line segment that doubles
back on itself. In other directions, stars will trace out an ellipse. The angular size
of the semi-major axis of the ellipse will obviously be

α =
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with d⊙ the Earth-Sun distance and d the distance to the star. (The subscript ⊙
marks properties of the Sun – distance, mass, radius, etc.). The distance d⊙, which
is also referred to as 1 “astronomical unit” (AU), is about 1.5 × 108 km. Parallax
is actually used to define another unit of length, a parsec (pc). One pc is defined as
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ly:
lightyear;  distance light travels in vacuum in one year.

1 ly = 9.46⇥ 1017 cm
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The End (for today)!


