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Announcements

- Office hours this Thursday and Friday are cancelled.  
Dr. Cooley will be out of town.

- Reading Assignments:  Chapter 2 all, Chapter 3.1 - 
3.2.

- Problem Set 3 is due Monday, February 16th, 2015.

- Next lab is Monday, February 9th.  Be sure to report 
to FOSC 032 that day.
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PHYS 3368 Papers
The paper component of this course is designed to 
accomplish two goals:

1. Acquire a working familiarity with an aspect of 
Astrophysics or Cosmology not covered directly 
in lecture.

2. Organize technical material into a coherent 
document describing your chosen topic.

The paper should conform to the guidelines handed 
out in class.  These guidelines are also available on 
the course website.
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Give some examples of good resources.

Give some examples of not so good resources.

peer reviewed journals (best) 
textbooks 
some websites 
interview with an expert

some websites 
interview with your friend (unless he/she is an expert)

What about wikipedia?

Use with caution case.  Wikipedia is not a PRIMARY 
source.  However, articles often do have primary 
sources as references.
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Primary References
You will be required to use multiple, reliable resources 
from a variety of source types.  What are examples of 
good quality sources?  What are examples of bad quality 
sources?

Peer Reviewed Journal 
article (best). 
Textbook
Interview with an expert.
Some websites.
Some videos/movies/
multimedia.

Some websites 
(Wikipedia,).
Your friend.
Some books.
Some articles.

Good Bad
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Where should you go to find resources?

http://www.smu.edu/Libraries

http://scholar.google.com/

http://www.smu.edu/Libraries
http://scholar.google.com/
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- Reviewed solid angle.

- Reviewed atomic structure and the hydrogen atom.

Last Time:

The Lyman and Balmer series have special names for some transitions.

basicastro4 October 26, 2006

STARS: BASIC OBSERVATIONS 19

Figure 2.5 Energy levels of the hydrogen atom. Arrows indicate excitation from the ground
state (n = 1) to the first excited energy level (n = 2), and de-excitation back
to the ground state. Such excitation and de-excitation could be caused by, e.g.,
absorption by the atom of a Lyman-α photon, and subsequent spontaneous emis-
sion of a Lyman-α photon.

It is customary to group the different energy transitions of atomic hydrogen by a
name identifying the lower energy level involved in the transition, combined with a
greek letter that indicates the upper level of the transition. Thus the Lyman series
consists of all transitions to the n = 1 ground level:
Lyα: 2↔ 1, 1216 Å;
Lyβ: 3↔ 1, 1025 Å;
Lyγ: 4↔ 1, 972 Å;
etc.,
up until the “Lyman continuum”,
Lycon: ∞↔ 1, < 911.5 Å.
Similarly, the Balmer series includes all transitions between the n = 2 state

and higher states:
Hα: 3↔ 2, 6563 Å
Hβ: 4↔ 2, 4861 Å
Hγ: 5↔ 2, 4340 Å
etc.,
up until the “Balmer continuum”,
Bacon: ∞↔ 2, < 3646 Å.
In the same way, the Paschen series, Brackett series, and Pfund series designate

transitions where n = 3, n = 4, and n = 5, respectively, are the lower levels.

Lyman continuum = ∞ ⟷ 1, <911.5 Å…
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Hβ: 4↔ 2, 4861 Å
Hγ: 5↔ 2, 4340 Å
etc.,
up until the “Balmer continuum”,
Bacon: ∞↔ 2, < 3646 Å.
In the same way, the Paschen series, Brackett series, and Pfund series designate

transitions where n = 3, n = 4, and n = 5, respectively, are the lower levels.

Balmer continuum = ∞ ⟷ 2, <3646 Å

…

Photon wavelengths 
are in UV region. 

Photon wavelengths 
are in optical region. 
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Figure 2.1 Flux per wavelength interval emitted by different types of stars, at their “sur-
faces”, compared to blackbody curves of various temperatures. Each black-
body’s temperature is chosen to match the total power (integrated over all wave-
lengths) under the the corresponding stellar spectrum. The wavelength range
shown is from the ultraviolet (1000 Å= 0.1 µm), through the optical range
(3200-10,000 Å), and to the mid-infrared (10

5 Å= 10 µm). Data credit: R.
Kurucz.

(since the solid angle of a full sphere is 4π steradians). The intensity of blackbody
radiation is therefore

Iν =
c

4π
uν =

2hν3

c2

1
ehν/kT − 1

≡ Bν . (2.4)

In cgs, one can see the units now are erg s−1 cm−2 Hz−1 steradian−1. We have kept
the product of units, s−1 Hz−1, even though they formally cancel out, to recall their
different physical origins: one is the time interval over which we are measuring
the amount of energy that flows through a unit area; and the other is the photon
frequency interval over which we bin the spectral distribution. Iν of a blackbody is
often designated “Bν”.
Now, let us find the net flow of energy that emerges from a unit area (small

enough so that it can be presumed to be flat) on the outer surface of a blackbody
(see Fig. 2.2). This is obtained by integrating Iν over solid angle on the half sphere
facing outwards, with each Iν weighted by the cosine of the angle between the
intensity and the perpendicular to the area. This flux, which is generally what one
actually observes from stars and other astronomical sources, is thus

fν =
Z π/2

θ=0

Iν cos θdΩ = Iν2π
1
2

= πIν =
c

4
uν =

2πhν3

c2

1
ehν/kT − 1

. (2.5)

Last Time:

- Stars are classified 
according to their surface 
(color) temperature.

- Spectral types are 
OBAFGKM with a digit 0 - 
9 in order from hottest 
(O1) to coldest (M9).

- A Roman numeral is 
added to the classification 
to indicate size:  I = giant 
and V = dwarf.

Classification of Stars
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Figure 2.6 Zoom-in on the optical wavelength region of the stellar spectra shown in Fig. 2.1.
The curves are labeled with their spectral types, in addition to the correspond-
ing blackbody temperatures, which constitute the “effective temperatures” of the
stars. Note the various labeled absorption features which appear and disappear
as one goes from one spectral type to another. Data credit: R. Kurucz.

The photon wavelengths of the Lyman series are in the ultraviolet (UV) region of
the electromagnetic spectrum, and the Paschen, and higher, series occur at infrared
(IR), and longer, wavelengths. The Balmer series is of particular interest to us here,
as it occurs in the optical region of the spectrum, where Earth’s atmosphere has a
transmission window. The atmosphere is almost completely opaque to photons of
wavelengths shorter than≈ 3100 Å, from ultraviolet through X-rays and γ-rays. At
the infrared wavelengths longer than 10,000 Å (1µm), there are only a few trans-
mission “troughs”, until one gets to millimeter (called “microwave”) wavelengths
and longer, where the atmosphere is again transparent to radio-frequency electro-
magnetic radiation.
Early in the 20th century, before stellar physics was understood, stars were clas-

sified into a series of “spectral types” according to the types and strengths of the
absorption lines appearing in their optical spectra. Figure 2.6 shows examples cov-
ering the range of spectral properties of most stars. Let us begin with “A-type”
stars, the third from the top in the sequence shown (the meanings of the “5” and
of the “V” after the “A” will be explained below, and at the end of this chapter,
respectively). Absorption in the hydrogen Balmer series is the most conspicuous
feature in A-star spectra, starting with Hα at 6563 Å, proceeding up the series to
shorter wavelengths, and to the sharp drop at the wavelength of the Balmer con-
tinuum at 3646 Å. Moving up in the figure to “B-type” stars, the hydrogen lines

Atomic spectral lines produced in the photosphere also depend on 
temperature and provide another means of classification.
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Why do A-type stars have strong hydrogen lines (Balmer series) 
while cooler and hotter stars do not?

To produce a strong H-absorption line in the visible 
spectrum, electrons need to start in the second energy level.  
If the temperature is too low, electrons are in the ground 
state.  If the temperature is too high, most electrons are in 
higher excited states.
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Luminosity and Radius
Luminosity is defined as:
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2.1 and 2.6 are theoretical models calculated by Kurucz). Such theoretically calcu-
lated absorption spectra can be compared to the actual spectrum of a given stellar
type, and thus the photospheric temperature can be accurately determined.
Generations of astronomy students have memorized the names of the stellar spec-

tral types, ordered by decreasing temperature, with the mnemonic: “Oh Be A Fine
Girl/Guy, Kiss Me!”. There is a continuous transition in spectral properties be-
tween types, and astronomers quantify this by assigning, after the letter, a number
between 0 and 9, with a larger number indicating a lower temperature. The Sun is a
G2 star, and its spectrum is largely indistinguishable from that of any other normal
star of this type. As we will see, all of the main physical properties (mass, radius,
luminosity) of the stars sharing a common spectral classification are the same. For
completeness, we note that the spectral sequence extends beyond M stars to two
cooler classes, labeled L and T. Strictly speaking, members of these classes are not
stars but “brown dwarfs”, objects intermediate between stars and giant planets in
their properties. We will return to brown dwarfs in Chapter 4.2.3.4.

2.2.3 Luminosity and Radius

For a star with known distance and measured flux, the luminosity is
L = f4πd2. (2.28)

This luminosity, integrated over all wavelengths, is called the bolometric luminos-
ity. If the temperature of the stellar photosphere is known, one can then derive the
stellar radius, r∗, from

L = 4πr2
∗σT 4. (2.29)

Alternatively, if L and r∗ are known and one determines a temperature from this
relation, then this temperature is called the “effective temperature”, TE . The ra-
dius of the Sun is r⊙ = 7.0× 1010 cm. As will be explained in more detail in Sec-
tion 2.2.4, below, stars that are members of a particular type of binary system, called
“double-lined spectroscopic eclipsing binaries”, can have their radii measured. Of
order 100 stars currently have such radius measurements which are accurate to a
few percent or better. The radii of a few other nearby stars have been measured, in
some cases to better than 1% accuracy, using interferometric observations.

2.2.4 Binary Systems and Measurements of Mass

A direct measurement of stellar mass is generally possible only in certain binary
(i.e., double) or multiple star systems. A significant fraction of all stars are mem-
bers of binary systems. (The Sun is likely an example of a single star.) Observa-
tionally, binary systems are classified into various types. Visual binaries are pairs
of stars in which both members are resolved individually, and may be seen orbiting
their common center of mass. In most cases, the separation between the members
is so large that the orbital period is very long by human timescales. In astrometric
binaries, one observes the minute periodic motion on the sky of one member, as
it orbits the system’s common center of mass, even if the companion is too faint
to be seen. In eclipsing binaries, the orbital plane of a pair (which, in general, is

Recall:  Bolometric Luminosity is the luminosity integrated overall 
wavelengths.

From this you can derive a relationship between the star radius, 
temperature of the star and luminosity.
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The temperature derived from this equation is the effective 
temperature, TE.  It is the temperature of a blackbody that has the 
same luminosity per unit surface area as the star.
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Example:  Effective Temperature of the Sun

Calculate the effective temperature of the sun.

L = 4⇡r2⇤�T
4

= (
3.8⇥ 1033 erg s�1

4⇡ (5.7⇥ 10�5 erg cm�2 s�1 K�4)(7.0⇥ 1010 cm)2
)

1
4T = (

L

4⇡�r2⇤
)

1
4

T = 5700K

5800 K is often quoted as the temperature of the surface of the sun.  
However, this is not entirely true.  The surface of the sun has hotter 
and colder regions.  However, this is the temperature of the material 
that emits the bulk of the suns power.
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Binary Star Systems
A binary star system is composed of two stars whose gravitational 
attraction causes them to orbit each other.
Visual Binaries:
Stars are sufficiently close to the Earth that they can be seen and are 
enough apart from each other that they can be resolved.

Long - term observations of the 
system allow observers to track 
the stars motion over time.

Distance from Earth:  ~1.3 parsec
Separation Distance:  ~23 AU
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Spectroscopic Binaries:   Stars are too close together to be resolved.  The 
pair are revealed by their spectrum.
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Eclipsing Binaries:

The orbital plane of 
the stars is inclined 
such that in our line of 
sight one member of 
the pair eclipses the 
other.
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Astrometric Binaries:

Repeated observations over time reveal a perturbation or “wobble” 
in the stars proper motion.
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Astrometric Binaries:
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in the stars proper motion.
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Sirius A and Sirius B are now considered visual binaries.
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Stellar Mass Determination
Direct measurements of stellar mass is possible in certain 
binary systems. 
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Review:  Keplerian Two-Body Problem

Assume two masses orbiting each other about their common center of 
mass.  Assume their orbits are circular.
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Figure 2.9 Left: A binary system, viewed pole-on, with its members in circular orbits with
physical radii r

1

and r
2

around their common center of mass. Right: The ap-
pearance of the system when viewed as a visual binary, with the orbital plane
inclined by an angle i to the line of sight, and orbital radii subtending angles on
the sky θ

1

and θ
2

. The circular orbits now appear as ellipses, with minor axes
foreshortened by cos i.

circular orbits. The center of mass of two spherical masses is at the point between
them where

r1M1 = r2M2, (2.30)
with M1 and M2 being the masses and r1 and r2 their respective distances to the
center of mass (see Fig. 2.9, left). Thus, if a = r1 + r2 is the separation between
the masses,

r1 =
M2

M1
(a− r1), (2.31)

or

r1 =
M2

M1 + M2
a, (2.32)

and

r2 =
M1

M1 + M2
a. (2.33)

Each of the masses is subject to the mutual gravitational attraction, and as a result
orbits the center of mass with an angular frequency ω. The equation of motion for
the first mass is then

M1ω
2r1 =

GM1M2

a2
, (2.34)

with G the gravitational constant. After substitution of r1 from Eq. 2.32, this be-
comes Kepler’s Law:

ω2 =
G(M1 + M2)

a3
. (2.35)

A simple example in which Kepler’s law can be used to determine a stellar mass is
in the case of the Sun. The mass of the Earth is negligible compared to the Sun, so

M⊙ ≈
ω2a3

G
=

4π2a3

τ2G
, (2.36)

From the definition of center of mass:
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Let a = r1 + r2. 
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=
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Which can be rewritten as
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Recall the first equation of motion 
(for angular motion):
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M1ω
2r1 =

GM1M2

a2
, (2.34)

with G the gravitational constant. After substitution of r1 from Eq. 2.32, this be-
comes Kepler’s Law:

ω2 =
G(M1 + M2)

a3
. (2.35)

A simple example in which Kepler’s law can be used to determine a stellar mass is
in the case of the Sun. The mass of the Earth is negligible compared to the Sun, so

M⊙ ≈
ω2a3

G
=

4π2a3

τ2G
, (2.36)
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in the case of the Sun. The mass of the Earth is negligible compared to the Sun, so
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Substituting in our eqn for r1 and 
solving for ω yields

M1!
2 M2

M1 +M2
a =

GM1M2

a2

basicastro4 October 26, 2006

24 CHAPTER 2

Figure 2.9 Left: A binary system, viewed pole-on, with its members in circular orbits with
physical radii r

1

and r
2

around their common center of mass. Right: The ap-
pearance of the system when viewed as a visual binary, with the orbital plane
inclined by an angle i to the line of sight, and orbital radii subtending angles on
the sky θ

1

and θ
2

. The circular orbits now appear as ellipses, with minor axes
foreshortened by cos i.

circular orbits. The center of mass of two spherical masses is at the point between
them where

r1M1 = r2M2, (2.30)
with M1 and M2 being the masses and r1 and r2 their respective distances to the
center of mass (see Fig. 2.9, left). Thus, if a = r1 + r2 is the separation between
the masses,

r1 =
M2

M1
(a− r1), (2.31)

or

r1 =
M2

M1 + M2
a, (2.32)

and

r2 =
M1

M1 + M2
a. (2.33)

Each of the masses is subject to the mutual gravitational attraction, and as a result
orbits the center of mass with an angular frequency ω. The equation of motion for
the first mass is then

M1ω
2r1 =

GM1M2

a2
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with G the gravitational constant. After substitution of r1 from Eq. 2.32, this be-
comes Kepler’s Law:

ω2 =
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A simple example in which Kepler’s law can be used to determine a stellar mass is
in the case of the Sun. The mass of the Earth is negligible compared to the Sun, so
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Now let’s see how we can 
use this equation do 
determine mass.
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circular orbits. The center of mass of two spherical masses is at the point between
them where

r1M1 = r2M2, (2.30)
with M1 and M2 being the masses and r1 and r2 their respective distances to the
center of mass (see Fig. 2.9, left). Thus, if a = r1 + r2 is the separation between
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or
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and
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Each of the masses is subject to the mutual gravitational attraction, and as a result
orbits the center of mass with an angular frequency ω. The equation of motion for
the first mass is then

M1ω
2r1 =

GM1M2

a2
, (2.34)

with G the gravitational constant. After substitution of r1 from Eq. 2.32, this be-
comes Kepler’s Law:

ω2 =
G(M1 + M2)

a3
. (2.35)

A simple example in which Kepler’s law can be used to determine a stellar mass is
in the case of the Sun. The mass of the Earth is negligible compared to the Sun, so

M⊙ ≈
ω2a3

G
=

4π2a3

τ2G
, (2.36)

Let τ = 2π/ω and substitute for ω.
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circular orbits. The center of mass of two spherical masses is at the point between
them where

r1M1 = r2M2, (2.30)
with M1 and M2 being the masses and r1 and r2 their respective distances to the
center of mass (see Fig. 2.9, left). Thus, if a = r1 + r2 is the separation between
the masses,

r1 =
M2

M1
(a− r1), (2.31)

or

r1 =
M2

M1 + M2
a, (2.32)

and

r2 =
M1

M1 + M2
a. (2.33)

Each of the masses is subject to the mutual gravitational attraction, and as a result
orbits the center of mass with an angular frequency ω. The equation of motion for
the first mass is then

M1ω
2r1 =

GM1M2

a2
, (2.34)

with G the gravitational constant. After substitution of r1 from Eq. 2.32, this be-
comes Kepler’s Law:

ω2 =
G(M1 + M2)

a3
. (2.35)

A simple example in which Kepler’s law can be used to determine a stellar mass is
in the case of the Sun. The mass of the Earth is negligible compared to the Sun, so

M⊙ ≈
ω2a3

G
=

4π2a3

τ2G
, (2.36)

Using this formula, calculate the mass of the sun.
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Figure 2.10 Left: A spectroscopic binary system with circular orbits and with orbital plane
inclined by an angle i to the line of sight. Right: Observed velocity of each of
the components, as deduced from the Doppler shift of its spectral features, as a
function of time. Negative velocities are approaching and positive are receding.
Numbers indicate the corresponding points on the orbits and in the so-called
“radial-velocity curve”.

where τ = 2π/ω is the orbital period, i.e., 1 year. In cgs units the mass of the Sun
is then

M⊙ =
4× π2(1.5× 1013 cm)3

(3.15× 107 s)2 × 6.7× 10−8 erg cm g−2
= 2.0× 1033g. (2.37)

In a visual binary, we can measure directly on the sky the angular separations
θ1 and θ2 between each star and the common center of mass that they orbit. The
perpendicular to the plane of the orbit will generally be inclined to our line of sight
by some angle i, and as a result the circular orbits will appear projected on the sky
as ellipses. If we can follow a good part of an entire orbit, this will not constitute a
problem, as the semi-major axes of the ellipses will correspond to the angular radii
of the deprojected circular orbits (see Fig. 2.9, right). Since both stars are at the
same distance d from us, the ratio of the angles gives the ratio of the stellar masses:

θ1d

θ2d
=

r1

r2
=

M2

M1
. (2.38)

Given the distance (which allows deriving the physical separation a) and the ob-
served period, Kepler’s law yieldsM1 + M2. Together with Eq. 2.38, we can solve
forM1 andM2 individually.
In spectroscopic binaries, we cannot measure directly the separations a, r1, and

r2. Instead, we can use the amplitudes of the oscillations in line-of-sight velocities
deduced from the Doppler shifts. Because the perpendicular to the orbital plane
is inclined to the line of sight by an angle i (see Fig. 2.10), the Doppler velocity
amplitudes we measure will be related to the true orbital velocity amplitudes by

|v1obs| = |v1| sin i, |v2obs| = |v2| sin i. (2.39)
But since

|v1| =
2πr1

τ
, |v2| =

2πr2

τ
, (2.40)

then
|v1obs|
|v2obs|

=
r1

r2
=

M2

M1
. (2.41)

mass of sun
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Spectroscopic Binaries:
We can not directly measure the separations a, r1, and r2.  Amplitudes 
in the line of site velocities can be deduced by Doppler shift.  In most 
cases the perpendicular to the orbital plane is inclined to the line of 
sight, the measured velocities are related to the true orbital velocities 
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Figure 2.10 Left: A spectroscopic binary system with circular orbits and with orbital plane
inclined by an angle i to the line of sight. Right: Observed velocity of each of
the components, as deduced from the Doppler shift of its spectral features, as a
function of time. Negative velocities are approaching and positive are receding.
Numbers indicate the corresponding points on the orbits and in the so-called
“radial-velocity curve”.

where τ = 2π/ω is the orbital period, i.e., 1 year. In cgs units the mass of the Sun
is then

M⊙ =
4× π2(1.5× 1013 cm)3

(3.15× 107 s)2 × 6.7× 10−8 erg cm g−2
= 2.0× 1033g. (2.37)

In a visual binary, we can measure directly on the sky the angular separations
θ1 and θ2 between each star and the common center of mass that they orbit. The
perpendicular to the plane of the orbit will generally be inclined to our line of sight
by some angle i, and as a result the circular orbits will appear projected on the sky
as ellipses. If we can follow a good part of an entire orbit, this will not constitute a
problem, as the semi-major axes of the ellipses will correspond to the angular radii
of the deprojected circular orbits (see Fig. 2.9, right). Since both stars are at the
same distance d from us, the ratio of the angles gives the ratio of the stellar masses:
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. (2.38)

Given the distance (which allows deriving the physical separation a) and the ob-
served period, Kepler’s law yieldsM1 + M2. Together with Eq. 2.38, we can solve
forM1 andM2 individually.
In spectroscopic binaries, we cannot measure directly the separations a, r1, and

r2. Instead, we can use the amplitudes of the oscillations in line-of-sight velocities
deduced from the Doppler shifts. Because the perpendicular to the orbital plane
is inclined to the line of sight by an angle i (see Fig. 2.10), the Doppler velocity
amplitudes we measure will be related to the true orbital velocity amplitudes by

|v1obs| = |v1| sin i, |v2obs| = |v2| sin i. (2.39)
But since

|v1| =
2πr1

τ
, |v2| =

2πr2
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then
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r2
=

M2
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. (2.41)

and
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Given the distance (which allows deriving the physical separation a) and the ob-
served period, Kepler’s law yieldsM1 + M2. Together with Eq. 2.38, we can solve
forM1 andM2 individually.
In spectroscopic binaries, we cannot measure directly the separations a, r1, and
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What is the relationship between linear and angular velocity?
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the components, as deduced from the Doppler shift of its spectral features, as a
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θ1 and θ2 between each star and the common center of mass that they orbit. The
perpendicular to the plane of the orbit will generally be inclined to our line of sight
by some angle i, and as a result the circular orbits will appear projected on the sky
as ellipses. If we can follow a good part of an entire orbit, this will not constitute a
problem, as the semi-major axes of the ellipses will correspond to the angular radii
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deduced from the Doppler shifts. Because the perpendicular to the orbital plane
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r2. Instead, we can use the amplitudes of the oscillations in line-of-sight velocities
deduced from the Doppler shifts. Because the perpendicular to the orbital plane
is inclined to the line of sight by an angle i (see Fig. 2.10), the Doppler velocity
amplitudes we measure will be related to the true orbital velocity amplitudes by

|v1obs| = |v1| sin i, |v2obs| = |v2| sin i. (2.39)
But since

|v1| =
2πr1

τ
, |v2| =

2πr2

τ
, (2.40)

then
|v1obs|
|v2obs|

=
r1

r2
=

M2

M1
. (2.41)

Taking the ratio of the observed velocities yields
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Figure 2.10 Left: A spectroscopic binary system with circular orbits and with orbital plane
inclined by an angle i to the line of sight. Right: Observed velocity of each of
the components, as deduced from the Doppler shift of its spectral features, as a
function of time. Negative velocities are approaching and positive are receding.
Numbers indicate the corresponding points on the orbits and in the so-called
“radial-velocity curve”.

where τ = 2π/ω is the orbital period, i.e., 1 year. In cgs units the mass of the Sun
is then

M⊙ =
4× π2(1.5× 1013 cm)3

(3.15× 107 s)2 × 6.7× 10−8 erg cm g−2
= 2.0× 1033g. (2.37)

In a visual binary, we can measure directly on the sky the angular separations
θ1 and θ2 between each star and the common center of mass that they orbit. The
perpendicular to the plane of the orbit will generally be inclined to our line of sight
by some angle i, and as a result the circular orbits will appear projected on the sky
as ellipses. If we can follow a good part of an entire orbit, this will not constitute a
problem, as the semi-major axes of the ellipses will correspond to the angular radii
of the deprojected circular orbits (see Fig. 2.9, right). Since both stars are at the
same distance d from us, the ratio of the angles gives the ratio of the stellar masses:

θ1d

θ2d
=

r1

r2
=

M2

M1
. (2.38)

Given the distance (which allows deriving the physical separation a) and the ob-
served period, Kepler’s law yieldsM1 + M2. Together with Eq. 2.38, we can solve
forM1 andM2 individually.
In spectroscopic binaries, we cannot measure directly the separations a, r1, and

r2. Instead, we can use the amplitudes of the oscillations in line-of-sight velocities
deduced from the Doppler shifts. Because the perpendicular to the orbital plane
is inclined to the line of sight by an angle i (see Fig. 2.10), the Doppler velocity
amplitudes we measure will be related to the true orbital velocity amplitudes by

|v1obs| = |v1| sin i, |v2obs| = |v2| sin i. (2.39)
But since

|v1| =
2πr1

τ
, |v2| =

2πr2

τ
, (2.40)

then
|v1obs|
|v2obs|

=
r1

r2
=

M2

M1
. (2.41)

Going through a bit of math (exercise for the student), we find
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Replacing, in Kepler’s law, awith r1+r2, and using Eqns. 2.39 and 2.40 to express
r1 and r2, we obtain

(M1 + M2) sin3 i =
τ(|v1obs| + |v2obs|)3

2πG
. (2.42)

We see that in spectroscopic binaries the inclination of the orbits is an additional
unknown variable that enters the mass determination. In such systems, we will
therefore be able to determine the stellar masses only up to a factor sin3 i. An
exception to this is the case of eclipsing spectroscopic binaries. There, the fact that
the members of a pair eclipse each other implies i must be close to 90◦, and the
individual masses can therefore be found. Indeed, in such systems, one can use the
detailed shape of the “light curve” of the eclipse (e.g., Fig. 2.7), combined with the
known relative velocity of the two stars as they pass one in front of the other, to
deduce the physical radii of the two stars (see Problem 5), as well as the precise
value of i.
In many spectroscopic binaries, the spectrum of only one star is detected, due

to the faintness of the “secondary” object, M2. The presence of a companion is
deduced solely from the periodic velocity oscillations in the spectral lines of one
star, say, M1. In this case, we can use Eq. 2.41 to express the unmeasured |v2obs|,
giving

(M1 + M2) sin3 i =
τ |v1obs|3(1 + M1/M2)3

2πG
, (2.43)

or
M3

2

(M1 + M2)2
sin3 i =

τ |v1obs|3

2πG
, (2.44)

and there is now only one equation for three unknowns,M1,M2, and sin i.
An important case is whenM2 �M1, where Eq. 2.44 simplifies to

M2 sin i ≈
≥ τ

2πG

¥1/3

|v1obs| M
2/3
1 . (2.45)

This case applies to searches for extrasolar planets, by means of the small wobble
a planet induces on its parent star. The parent star’s mass,M1 needs to be estimated
by some other means, normally by identifying its spectral type. We can calculate
from Eq. 2.45 the expected amplitude of the velocity oscillations of, say, a 1M⊙
star that is orbited by a Jupiter-mass (10−3M⊙) planet at a radius of 1 AU:

|v1obs| ≈M2 sin i M
−2/3
1

≥ τ

2πG

¥−1/3

(2.46)

= 10−3×2×1033 g×(2×1033 g)−2/3

µ
3.15× 107 s

2π × 6.7× 10−8 cgs

∂−1/3

= 31 m s−1,

where we have assumed sin i ≈ 1. (Here and henceforth, we abbreviate with “cgs”
the units of the gravitational constant G, erg cm gr−2.) Such a velocity produces a
tiny Doppler shift in the star’s spectral lines, of ∆λ/λ = v/c = 10−7. Neverthe-
less, sensitive spectroscopic techniques have been developed for this purpose, and
hundreds of extrasolar planets have been discovered, and their masses determined
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where we have assumed sin i ≈ 1. (Here and henceforth, we abbreviate with “cgs”
the units of the gravitational constant G, erg cm gr−2.) Such a velocity produces a
tiny Doppler shift in the star’s spectral lines, of ∆λ/λ = v/c = 10−7. Neverthe-
less, sensitive spectroscopic techniques have been developed for this purpose, and
hundreds of extrasolar planets have been discovered, and their masses determined

Notice, we can only determine the sum of the masses if we can 
determine the inclination angle i.

This requires that the stars are also eclipsing:
• detailed shape of the light curve  of the eclipse gives i.
• for an eclipse (obviously?), the members of the pair must  

be close to 90°.

Your textbook goes through some special cases, faint second 
object and the case that M2 << M1.  You should review those cases.
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Hertzsprung-Russell Diagram
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Physical Meaning
- It was first (incorrectly) thought the main sequence was a cooling sequence, 

in which stars were born hot and then moved along the sequence as they 
cooled.

- Measurements of binary stars made it clear that the main sequence is a mass 
sequence with high-mass stars at high luminosities and high TE and low-
mass stars at low luminosities with low TE.

- Stars spend most of their lifetime at the same location on the main sequence.

- Stars less massive than 8Msun eventually shed outer layers and become 
white dwarfs.

- Stars more massive than 8Msun past through the giant stage undergo 
gravitational core collapes that sometimes ends in a supernova explosion.

- Neutron stars and black holes are stellar remnants of SN explosions.  They 
are more company and even hotter.  They are not generally plotted on H-R 
diagrams.
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The End (for today)!

\
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