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Announcements

- Reading Assignments:  Chapter 3.3 - 3.12.

- Problem Set 4 is due Wednesday, February 18th.

- Problem Set 3 is due Monday, February 16th.

- Next lab is Monday, February 23rd.  Be sure to report 
to FOSC 032 that day.

- If your homework was marked correct, but you have 
more “red ink” than “pencil, black or blue”, you will 
be in trouble (meaning, you will lose points) for the 
next time I grade papers.  Read the homework 
policy!
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Goals for this Class

1. Calculate the free-fall time of the sun.

2. Calculate how long it takes a photon to travel 
from the center of the sun and emerge at its 
surface.
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Free-Fall Timescale of Sun
Free-fall timescale: 

The time it would take a star (or cloud) to collapse to a point if there 
was no outward pressure to counteract gravity. 

We can calculate the free-fall timescale of the sun.

Consider a mass element dm at rest in the sun at a radius r0.  What 
is its potential energy?
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34 CHAPTER 3

3.1 HYDROSTATIC EQUILIBRIUM AND THE VIRIAL THEOREM

A star is a sphere of gas that is held together by its self gravity, and is balanced
against collapse by pressure gradients. To see this, let us calculate the free-fall
timescale of the Sun, i.e., the time it would take to collapse to a point, if there were
no pressure support. Consider a mass element dm at rest in the Sun at a radius r0.
Its potential energy is

dU = −GM(r0)dm

r0
, (3.12)

where M(r0) is the mass interior to r0. From conservation of energy, the velocity
of the element as it falls toward the center is

1
2

µ
dr

dt

∂2

=
GM(r0)

r
− GM(r0)

r0
, (3.13)

where we have assumed that the amount of (also-falling) mass interior to r0 remains
constant. Separating the variables and integrating, we find

τff =
Z τ

ff

0

dt = −
Z 0

r
0

∑
2GM(r0)

µ
1
r
− 1

r0

∂∏−1/2

dr (3.14)

=
µ

r3
0

2GM(r0)

∂ 1

2

Z 1

0

µ
x

1− x

∂ 1

2

dx.

The definite integral on the right equals π/2, and the ratioM(r0)/r3
0 , up to a factor

4π/3, is the mean density ρ̄, so

τff =
µ

3π

32Gρ̄

∂1/2

. (3.15)

For the parameters of the Sun, we obtain

τff⊙ =
µ

3π
32× 6.7× 10−8 cgs× 1.4 g cm−3

∂1/2

= 1800 s. (3.16)

Thus without pressure support, the Sun would collapse to a point within half an
hour.
This has not happened because the Sun is in hydrostatic equilibrium. Consider

now a small, cylinder-shaped mass element inside a star, with A the area of the
cylinder’s base, and dr its height (see Fig. 3.1). If there is a pressure difference dP
between the top of the cylinder and its bottom, this will lead to a net force Adp on
the mass element, in addition to the force of gravity toward the center. Equilibrium
will exist if

−GM(r)dm

r2
−AdP = 0. (3.17)

But

dm = ρ(r)Adr, (3.18)
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Next, apply the conservation of energy:

Ei = Ef

Ui +Ki = Uf +Kf

�GM(r0)dm

r0
+
1

2
dm(

dr

dt
)2 = �GM(r0)dm

r

Remember, we are looking for free-fall time.  Simplify:

(
dr

dt
)2 = 2[

GM(r0)

r0
� GM(r0)

r
]

(
dr

dt
) = [�2GM(r0)(

1

r
� 1

r0
)]

1
2
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Continuing to simplify:

To find tff we integrate:
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4π/3, is the mean density ρ̄, so
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For the parameters of the Sun, we obtain

τff⊙ =
µ

3π
32× 6.7× 10−8 cgs× 1.4 g cm−3

∂1/2

= 1800 s. (3.16)

Thus without pressure support, the Sun would collapse to a point within half an
hour.
This has not happened because the Sun is in hydrostatic equilibrium. Consider

now a small, cylinder-shaped mass element inside a star, with A the area of the
cylinder’s base, and dr its height (see Fig. 3.1). If there is a pressure difference dP
between the top of the cylinder and its bottom, this will lead to a net force Adp on
the mass element, in addition to the force of gravity toward the center. Equilibrium
will exist if

−GM(r)dm

r2
−AdP = 0. (3.17)

But

dm = ρ(r)Adr, (3.18)

As 5 points extra credit (due at the beginning of next class),  show 
that from the above equation, you get the free-fall time of 
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Let's examine the solution.  Does it contain the correct units (use cgs)?
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 G = [erg][cm][g-2] ρ = [g][cm-3] erg = [g][cm2][s-2]

units =
p

[g cm2 s�2][cm][g�2][g][cm�3]
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For the parameters of the Sun, calculate the free-fall timescale.
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Thus without pressure support, the Sun would collapse to a point within half an
hour.
This has not happened because the Sun is in hydrostatic equilibrium. Consider

now a small, cylinder-shaped mass element inside a star, with A the area of the
cylinder’s base, and dr its height (see Fig. 3.1). If there is a pressure difference dP
between the top of the cylinder and its bottom, this will lead to a net force Adp on
the mass element, in addition to the force of gravity toward the center. Equilibrium
will exist if

−GM(r)dm

r2
−AdP = 0. (3.17)

But

dm = ρ(r)Adr, (3.18)

Observation:  Without pressure support, the sun would collapse 
very quickly!

The sun does not collapse because it is in hydrostatic 
equilibrium.  This means that the sun is in a state of 
balance by which the internal pressure exactly balances 
the gravitational pressure.
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Hydrostatic Equilibrium
Back to Introductory Mechanics!
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Figure 3.1 Hydrostatic equilibrium. The gravitational force F
gr

on a mass element of cross-
sectional area A is balanced by the force AdP due to the pressure difference
between the top and the bottom of the mass element.

which leads us to the first equation of stellar structure, the equation of hydrostatic
equilibrium:

dP (r)
dr

= −GM(r)ρ(r)
r2

. (3.19)

Naturally, the pressure gradient is negative, because to counteract gravity, the pres-
sure must decrease outwards (i.e., with increasing radius.)
This simple equation, combined with some thermodynamics, can already provide

valuable insight. Let us multiply both sides of Eq. 3.19 by 4πr3dr and integrate
from r = 0 to r∗, the outer radius of the star:Z r∗

0

4πr3 dP

dr
dr = −

Z r∗

0

GM(r)ρ(r)4πr2dr

r
. (3.20)

The right-hand side, in the form we have written it, is seen to be the energy that
would be gained in constructing the star from the inside out, bringing from infinity
shell by shell (each shell with a mass dM(r) = ρ(r)4πr2dr). This is just the
gravitational potential self energy of the star, Egr. On the left side, integration by
parts gives

[P (r)4πr3]r∗0 − 3
Z r∗

0

P (r)4πr2dr. (3.21)

We will define the surface of the star as the radius at which the pressure goes to
zero. The first term is therefore zero. The second term is seen to be −3 times the
volume-averaged pressure, P̄ , up to division by the volume V of the star. Equating
the two sides, we obtain

P̄ = −1
3

Egr

V
. (3.22)

In words, the mean pressure in a star equals minus one third of its gravitational
energy density. Eq. 3.22 is one form of the so-called virial theorem for a gravita-
tionally bound system.
To see what Eq. 3.22 implies, consider a star composed of a classical, mono-

atomic, non-relativistic, ideal gas of N identical particles.1 At every point in the

1“Classical” means that the typical separations between particles are larger than the de Broglie wave-

Consider a small cylinder-shaped star 
mass element of area A and height dr.  

Equilibrium will exist if there is no net force.

⌃F = 0

The pressure difference between the 
top and bottom of the cylinder is dP.   
It leads to a net force (due to pressure)

Fpressure = AdP
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0 , up to a factor

4π/3, is the mean density ρ̄, so

τff =
µ
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32Gρ̄
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For the parameters of the Sun, we obtain

τff⊙ =
µ

3π
32× 6.7× 10−8 cgs× 1.4 g cm−3

∂1/2

= 1800 s. (3.16)

Thus without pressure support, the Sun would collapse to a point within half an
hour.
This has not happened because the Sun is in hydrostatic equilibrium. Consider

now a small, cylinder-shaped mass element inside a star, with A the area of the
cylinder’s base, and dr its height (see Fig. 3.1). If there is a pressure difference dP
between the top of the cylinder and its bottom, this will lead to a net force Adp on
the mass element, in addition to the force of gravity toward the center. Equilibrium
will exist if

−GM(r)dm

r2
−AdP = 0. (3.17)

But

dm = ρ(r)Adr, (3.18)



Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

The mass element dm is given by the 
definition of density
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hour.
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cylinder’s base, and dr its height (see Fig. 3.1). If there is a pressure difference dP
between the top of the cylinder and its bottom, this will lead to a net force Adp on
the mass element, in addition to the force of gravity toward the center. Equilibrium
will exist if

−GM(r)dm

r2
−AdP = 0. (3.17)

But

dm = ρ(r)Adr, (3.18)

basicastro4 October 26, 2006

STELLAR PHYSICS 35

Figure 3.1 Hydrostatic equilibrium. The gravitational force F
gr

on a mass element of cross-
sectional area A is balanced by the force AdP due to the pressure difference
between the top and the bottom of the mass element.

which leads us to the first equation of stellar structure, the equation of hydrostatic
equilibrium:

dP (r)
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= −GM(r)ρ(r)
r2

. (3.19)

Naturally, the pressure gradient is negative, because to counteract gravity, the pres-
sure must decrease outwards (i.e., with increasing radius.)
This simple equation, combined with some thermodynamics, can already provide

valuable insight. Let us multiply both sides of Eq. 3.19 by 4πr3dr and integrate
from r = 0 to r∗, the outer radius of the star:Z r∗

0

4πr3 dP
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dr = −
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0
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The right-hand side, in the form we have written it, is seen to be the energy that
would be gained in constructing the star from the inside out, bringing from infinity
shell by shell (each shell with a mass dM(r) = ρ(r)4πr2dr). This is just the
gravitational potential self energy of the star, Egr. On the left side, integration by
parts gives

[P (r)4πr3]r∗0 − 3
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0
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We will define the surface of the star as the radius at which the pressure goes to
zero. The first term is therefore zero. The second term is seen to be −3 times the
volume-averaged pressure, P̄ , up to division by the volume V of the star. Equating
the two sides, we obtain

P̄ = −1
3

Egr

V
. (3.22)

In words, the mean pressure in a star equals minus one third of its gravitational
energy density. Eq. 3.22 is one form of the so-called virial theorem for a gravita-
tionally bound system.
To see what Eq. 3.22 implies, consider a star composed of a classical, mono-

atomic, non-relativistic, ideal gas of N identical particles.1 At every point in the

1“Classical” means that the typical separations between particles are larger than the de Broglie wave-
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For the parameters of the Sun, we obtain

τff⊙ =
µ

3π
32× 6.7× 10−8 cgs× 1.4 g cm−3

∂1/2

= 1800 s. (3.16)

Thus without pressure support, the Sun would collapse to a point within half an
hour.
This has not happened because the Sun is in hydrostatic equilibrium. Consider

now a small, cylinder-shaped mass element inside a star, with A the area of the
cylinder’s base, and dr its height (see Fig. 3.1). If there is a pressure difference dP
between the top of the cylinder and its bottom, this will lead to a net force Adp on
the mass element, in addition to the force of gravity toward the center. Equilibrium
will exist if

−GM(r)dm

r2
−AdP = 0. (3.17)

But

dm = ρ(r)Adr, (3.18)

Simplifying gives us the Equation of Hydrostatic Equilibrium, the 
first equation of stellar structure that we will study.
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Figure 3.1 Hydrostatic equilibrium. The gravitational force F
gr

on a mass element of cross-
sectional area A is balanced by the force AdP due to the pressure difference
between the top and the bottom of the mass element.

which leads us to the first equation of stellar structure, the equation of hydrostatic
equilibrium:

dP (r)
dr

= −GM(r)ρ(r)
r2

. (3.19)

Naturally, the pressure gradient is negative, because to counteract gravity, the pres-
sure must decrease outwards (i.e., with increasing radius.)
This simple equation, combined with some thermodynamics, can already provide

valuable insight. Let us multiply both sides of Eq. 3.19 by 4πr3dr and integrate
from r = 0 to r∗, the outer radius of the star:Z r∗

0

4πr3 dP

dr
dr = −

Z r∗

0

GM(r)ρ(r)4πr2dr

r
. (3.20)

The right-hand side, in the form we have written it, is seen to be the energy that
would be gained in constructing the star from the inside out, bringing from infinity
shell by shell (each shell with a mass dM(r) = ρ(r)4πr2dr). This is just the
gravitational potential self energy of the star, Egr. On the left side, integration by
parts gives

[P (r)4πr3]r∗0 − 3
Z r∗

0

P (r)4πr2dr. (3.21)

We will define the surface of the star as the radius at which the pressure goes to
zero. The first term is therefore zero. The second term is seen to be −3 times the
volume-averaged pressure, P̄ , up to division by the volume V of the star. Equating
the two sides, we obtain

P̄ = −1
3

Egr

V
. (3.22)

In words, the mean pressure in a star equals minus one third of its gravitational
energy density. Eq. 3.22 is one form of the so-called virial theorem for a gravita-
tionally bound system.
To see what Eq. 3.22 implies, consider a star composed of a classical, mono-

atomic, non-relativistic, ideal gas of N identical particles.1 At every point in the

1“Classical” means that the typical separations between particles are larger than the de Broglie wave-

Stop and Think:  This pressure gradient is 
negative. Does that make sense?

Combining with our expression for 
equilibrium, we find

AdP = �GM(r)⇢(r)

r2
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Figure 3.1 Hydrostatic equilibrium. The gravitational force F
gr

on a mass element of cross-
sectional area A is balanced by the force AdP due to the pressure difference
between the top and the bottom of the mass element.

which leads us to the first equation of stellar structure, the equation of hydrostatic
equilibrium:

dP (r)
dr

= −GM(r)ρ(r)
r2

. (3.19)

Naturally, the pressure gradient is negative, because to counteract gravity, the pres-
sure must decrease outwards (i.e., with increasing radius.)
This simple equation, combined with some thermodynamics, can already provide

valuable insight. Let us multiply both sides of Eq. 3.19 by 4πr3dr and integrate
from r = 0 to r∗, the outer radius of the star:Z r∗

0

4πr3 dP

dr
dr = −

Z r∗

0

GM(r)ρ(r)4πr2dr

r
. (3.20)

The right-hand side, in the form we have written it, is seen to be the energy that
would be gained in constructing the star from the inside out, bringing from infinity
shell by shell (each shell with a mass dM(r) = ρ(r)4πr2dr). This is just the
gravitational potential self energy of the star, Egr. On the left side, integration by
parts gives

[P (r)4πr3]r∗0 − 3
Z r∗

0

P (r)4πr2dr. (3.21)

We will define the surface of the star as the radius at which the pressure goes to
zero. The first term is therefore zero. The second term is seen to be −3 times the
volume-averaged pressure, P̄ , up to division by the volume V of the star. Equating
the two sides, we obtain

P̄ = −1
3

Egr

V
. (3.22)

In words, the mean pressure in a star equals minus one third of its gravitational
energy density. Eq. 3.22 is one form of the so-called virial theorem for a gravita-
tionally bound system.
To see what Eq. 3.22 implies, consider a star composed of a classical, mono-

atomic, non-relativistic, ideal gas of N identical particles.1 At every point in the

1“Classical” means that the typical separations between particles are larger than the de Broglie wave-

Now let’s add some thermodynamics (for fun):

First, let’s introduce a cleaver 1. Multiply both sides of our equation 
by 4!r3dr.

4⇡r3
dP

dr
dr =

GM(r)⇢(r)

r2
4⇡r3dr

Simplify and integrate from the star’s interior to it’s radius:
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Figure 3.1 Hydrostatic equilibrium. The gravitational force F
gr

on a mass element of cross-
sectional area A is balanced by the force AdP due to the pressure difference
between the top and the bottom of the mass element.

which leads us to the first equation of stellar structure, the equation of hydrostatic
equilibrium:

dP (r)
dr

= −GM(r)ρ(r)
r2

. (3.19)

Naturally, the pressure gradient is negative, because to counteract gravity, the pres-
sure must decrease outwards (i.e., with increasing radius.)
This simple equation, combined with some thermodynamics, can already provide

valuable insight. Let us multiply both sides of Eq. 3.19 by 4πr3dr and integrate
from r = 0 to r∗, the outer radius of the star:Z r∗

0

4πr3 dP

dr
dr = −

Z r∗

0

GM(r)ρ(r)4πr2dr

r
. (3.20)

The right-hand side, in the form we have written it, is seen to be the energy that
would be gained in constructing the star from the inside out, bringing from infinity
shell by shell (each shell with a mass dM(r) = ρ(r)4πr2dr). This is just the
gravitational potential self energy of the star, Egr. On the left side, integration by
parts gives

[P (r)4πr3]r∗0 − 3
Z r∗

0

P (r)4πr2dr. (3.21)

We will define the surface of the star as the radius at which the pressure goes to
zero. The first term is therefore zero. The second term is seen to be −3 times the
volume-averaged pressure, P̄ , up to division by the volume V of the star. Equating
the two sides, we obtain

P̄ = −1
3

Egr

V
. (3.22)

In words, the mean pressure in a star equals minus one third of its gravitational
energy density. Eq. 3.22 is one form of the so-called virial theorem for a gravita-
tionally bound system.
To see what Eq. 3.22 implies, consider a star composed of a classical, mono-

atomic, non-relativistic, ideal gas of N identical particles.1 At every point in the

1“Classical” means that the typical separations between particles are larger than the de Broglie wave-

This is the gravitational self-potential  
energy of the star.  It is equal to Egr.

This side we will have to 
integrate by parts to solve.
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Recall integration by parts:
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Figure 3.1 Hydrostatic equilibrium. The gravitational force F
gr

on a mass element of cross-
sectional area A is balanced by the force AdP due to the pressure difference
between the top and the bottom of the mass element.

which leads us to the first equation of stellar structure, the equation of hydrostatic
equilibrium:

dP (r)
dr

= −GM(r)ρ(r)
r2

. (3.19)

Naturally, the pressure gradient is negative, because to counteract gravity, the pres-
sure must decrease outwards (i.e., with increasing radius.)
This simple equation, combined with some thermodynamics, can already provide

valuable insight. Let us multiply both sides of Eq. 3.19 by 4πr3dr and integrate
from r = 0 to r∗, the outer radius of the star:Z r∗

0

4πr3 dP

dr
dr = −

Z r∗

0

GM(r)ρ(r)4πr2dr

r
. (3.20)

The right-hand side, in the form we have written it, is seen to be the energy that
would be gained in constructing the star from the inside out, bringing from infinity
shell by shell (each shell with a mass dM(r) = ρ(r)4πr2dr). This is just the
gravitational potential self energy of the star, Egr. On the left side, integration by
parts gives

[P (r)4πr3]r∗0 − 3
Z r∗

0

P (r)4πr2dr. (3.21)

We will define the surface of the star as the radius at which the pressure goes to
zero. The first term is therefore zero. The second term is seen to be −3 times the
volume-averaged pressure, P̄ , up to division by the volume V of the star. Equating
the two sides, we obtain

P̄ = −1
3

Egr

V
. (3.22)

In words, the mean pressure in a star equals minus one third of its gravitational
energy density. Eq. 3.22 is one form of the so-called virial theorem for a gravita-
tionally bound system.
To see what Eq. 3.22 implies, consider a star composed of a classical, mono-

atomic, non-relativistic, ideal gas of N identical particles.1 At every point in the

1“Classical” means that the typical separations between particles are larger than the de Broglie wave-

Z
udv = uv �

Z
vdu

du = 3(4⇡r2)dr

Let

u = 4⇡r3 dv =
dP (r)

dr
dr

v =

Z
dP (r)

dr
dr = P (r)

Putting it together:
Z r⇤

0
4⇡r3

dP (r)

dr
dr = [4⇡r3P (r)]r⇤0 �

Z r⇤

0
P (r)(3)(4)⇡r2dr

0

= �3

Z r⇤

0
P (r)4⇡r2dr

This is the volume-averaged pressure 
divided by the volume of the star

= �3
P̄

V
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Putting it all together:
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Figure 3.1 Hydrostatic equilibrium. The gravitational force F
gr

on a mass element of cross-
sectional area A is balanced by the force AdP due to the pressure difference
between the top and the bottom of the mass element.

which leads us to the first equation of stellar structure, the equation of hydrostatic
equilibrium:

dP (r)
dr

= −GM(r)ρ(r)
r2

. (3.19)

Naturally, the pressure gradient is negative, because to counteract gravity, the pres-
sure must decrease outwards (i.e., with increasing radius.)
This simple equation, combined with some thermodynamics, can already provide

valuable insight. Let us multiply both sides of Eq. 3.19 by 4πr3dr and integrate
from r = 0 to r∗, the outer radius of the star:Z r∗

0

4πr3 dP

dr
dr = −

Z r∗

0

GM(r)ρ(r)4πr2dr

r
. (3.20)

The right-hand side, in the form we have written it, is seen to be the energy that
would be gained in constructing the star from the inside out, bringing from infinity
shell by shell (each shell with a mass dM(r) = ρ(r)4πr2dr). This is just the
gravitational potential self energy of the star, Egr. On the left side, integration by
parts gives

[P (r)4πr3]r∗0 − 3
Z r∗

0

P (r)4πr2dr. (3.21)

We will define the surface of the star as the radius at which the pressure goes to
zero. The first term is therefore zero. The second term is seen to be −3 times the
volume-averaged pressure, P̄ , up to division by the volume V of the star. Equating
the two sides, we obtain

P̄ = −1
3

Egr

V
. (3.22)

In words, the mean pressure in a star equals minus one third of its gravitational
energy density. Eq. 3.22 is one form of the so-called virial theorem for a gravita-
tionally bound system.
To see what Eq. 3.22 implies, consider a star composed of a classical, mono-

atomic, non-relativistic, ideal gas of N identical particles.1 At every point in the

1“Classical” means that the typical separations between particles are larger than the de Broglie wave-

�3
P̄

V
= Egr

Which gives the one form of the viral theorem for a gravitationally 
bound system.
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Figure 3.1 Hydrostatic equilibrium. The gravitational force F
gr

on a mass element of cross-
sectional area A is balanced by the force AdP due to the pressure difference
between the top and the bottom of the mass element.

which leads us to the first equation of stellar structure, the equation of hydrostatic
equilibrium:

dP (r)
dr

= −GM(r)ρ(r)
r2

. (3.19)

Naturally, the pressure gradient is negative, because to counteract gravity, the pres-
sure must decrease outwards (i.e., with increasing radius.)
This simple equation, combined with some thermodynamics, can already provide

valuable insight. Let us multiply both sides of Eq. 3.19 by 4πr3dr and integrate
from r = 0 to r∗, the outer radius of the star:Z r∗

0

4πr3 dP

dr
dr = −

Z r∗

0

GM(r)ρ(r)4πr2dr

r
. (3.20)

The right-hand side, in the form we have written it, is seen to be the energy that
would be gained in constructing the star from the inside out, bringing from infinity
shell by shell (each shell with a mass dM(r) = ρ(r)4πr2dr). This is just the
gravitational potential self energy of the star, Egr. On the left side, integration by
parts gives

[P (r)4πr3]r∗0 − 3
Z r∗

0

P (r)4πr2dr. (3.21)

We will define the surface of the star as the radius at which the pressure goes to
zero. The first term is therefore zero. The second term is seen to be −3 times the
volume-averaged pressure, P̄ , up to division by the volume V of the star. Equating
the two sides, we obtain

P̄ = −1
3

Egr

V
. (3.22)

In words, the mean pressure in a star equals minus one third of its gravitational
energy density. Eq. 3.22 is one form of the so-called virial theorem for a gravita-
tionally bound system.
To see what Eq. 3.22 implies, consider a star composed of a classical, mono-

atomic, non-relativistic, ideal gas of N identical particles.1 At every point in the

1“Classical” means that the typical separations between particles are larger than the de Broglie wave-

This tells us that the pressure inside a star is one third its 
gravitational energy density.
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Now let’s add some classical thermodynamics.   If a star is composed 
of a classical, non relativistic, mono-atomic ideal gas of N particles, 
what is the gas equation of stat of the star?

What is its thermal energy?
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star the gas equation of state is
PV = NkT, (3.23)

and its thermal energy is

Eth =
3
2
NkT. (3.24)

Thus,

P =
2
3

Eth

V
, (3.25)

i.e., the local pressure equals 2/3 the local thermal energy density. Multiplying both
sides by 4πr2 and integrating over the volume of the star, we find that

P̄ V =
2
3
Etot

th , (3.26)

withEtot
th the total thermal energy of the star. Substituting from Eq. 3.22, we obtain

Etot
th = −Egr

2
, (3.27)

which is another form of the virial theorem. Eq. 3.27 says that when a star con-
tracts and loses energy, i.e., its gravitational self energy becomes more negative,
its thermal energy rises. This means that stars have negative heat capacity – their
temperatures rise when they lose energy. As we will see, this remarkable fact is at
the crux of all of stellar evolution.
A third form of the virial theorem is obtained by considering the total energy of

a star, both gravitational and thermal,

Etotal = Etot
th + Egr = −Etot

th =
Egr

2
. (3.28)

Thus, the total energy of a star that is composed of a classical, non-relativistic, ideal
gas is negative, meaning the star is bound. (To see what happens in the case of a
relativistic gas, solve Problem 1). Since all stars constantly radiate away their en-
ergy (and hence Etotal becomes more negative), they are doomed to collapse (Egr

becomes more negative), eventually. We will see in Chapter 4 that an exception to
this occurs when the stellar gas moves from the classical to the quantum regime.
We can also use Eq. 3.22 to get an idea of the typical pressure and temperature

inside a star, as follows. The right-hand side of Eq. 3.20 permits evaluating Egr for
a choice of ρ(r). For example, for a constant density profile, ρ =const.,

Egr = −
Z r∗

0

GM(r)ρ(r)4πr2dr

r
= −

Z r∗

0

G 4π
3 r3ρ24πr2dr

r
= −3

5
GM2

∗
r∗

.

(3.29)

lengths of the particles, λ = h/p, where p is the momentum. “Non-relativistic” means that the particle
velocities obey v � c . An ideal gas is defined as a gas in which particles experience only short-range
(compared to their typical separations) interactions with each other – billiard balls on a pool table are
the usual analog.

…(1)
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star the gas equation of state is
PV = NkT, (3.23)

and its thermal energy is

Eth =
3
2
NkT. (3.24)

Thus,

P =
2
3

Eth

V
, (3.25)

i.e., the local pressure equals 2/3 the local thermal energy density. Multiplying both
sides by 4πr2 and integrating over the volume of the star, we find that

P̄ V =
2
3
Etot

th , (3.26)

withEtot
th the total thermal energy of the star. Substituting from Eq. 3.22, we obtain

Etot
th = −Egr

2
, (3.27)

which is another form of the virial theorem. Eq. 3.27 says that when a star con-
tracts and loses energy, i.e., its gravitational self energy becomes more negative,
its thermal energy rises. This means that stars have negative heat capacity – their
temperatures rise when they lose energy. As we will see, this remarkable fact is at
the crux of all of stellar evolution.
A third form of the virial theorem is obtained by considering the total energy of

a star, both gravitational and thermal,

Etotal = Etot
th + Egr = −Etot

th =
Egr

2
. (3.28)

Thus, the total energy of a star that is composed of a classical, non-relativistic, ideal
gas is negative, meaning the star is bound. (To see what happens in the case of a
relativistic gas, solve Problem 1). Since all stars constantly radiate away their en-
ergy (and hence Etotal becomes more negative), they are doomed to collapse (Egr

becomes more negative), eventually. We will see in Chapter 4 that an exception to
this occurs when the stellar gas moves from the classical to the quantum regime.
We can also use Eq. 3.22 to get an idea of the typical pressure and temperature

inside a star, as follows. The right-hand side of Eq. 3.20 permits evaluating Egr for
a choice of ρ(r). For example, for a constant density profile, ρ =const.,

Egr = −
Z r∗

0

GM(r)ρ(r)4πr2dr

r
= −

Z r∗

0

G 4π
3 r3ρ24πr2dr

r
= −3

5
GM2

∗
r∗

.

(3.29)

lengths of the particles, λ = h/p, where p is the momentum. “Non-relativistic” means that the particle
velocities obey v � c . An ideal gas is defined as a gas in which particles experience only short-range
(compared to their typical separations) interactions with each other – billiard balls on a pool table are
the usual analog.

…(2)

Substituting NkT from (2) into (1) we find
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star the gas equation of state is
PV = NkT, (3.23)

and its thermal energy is

Eth =
3
2
NkT. (3.24)

Thus,

P =
2
3

Eth

V
, (3.25)

i.e., the local pressure equals 2/3 the local thermal energy density. Multiplying both
sides by 4πr2 and integrating over the volume of the star, we find that

P̄ V =
2
3
Etot

th , (3.26)

withEtot
th the total thermal energy of the star. Substituting from Eq. 3.22, we obtain

Etot
th = −Egr

2
, (3.27)

which is another form of the virial theorem. Eq. 3.27 says that when a star con-
tracts and loses energy, i.e., its gravitational self energy becomes more negative,
its thermal energy rises. This means that stars have negative heat capacity – their
temperatures rise when they lose energy. As we will see, this remarkable fact is at
the crux of all of stellar evolution.
A third form of the virial theorem is obtained by considering the total energy of

a star, both gravitational and thermal,

Etotal = Etot
th + Egr = −Etot

th =
Egr

2
. (3.28)

Thus, the total energy of a star that is composed of a classical, non-relativistic, ideal
gas is negative, meaning the star is bound. (To see what happens in the case of a
relativistic gas, solve Problem 1). Since all stars constantly radiate away their en-
ergy (and hence Etotal becomes more negative), they are doomed to collapse (Egr

becomes more negative), eventually. We will see in Chapter 4 that an exception to
this occurs when the stellar gas moves from the classical to the quantum regime.
We can also use Eq. 3.22 to get an idea of the typical pressure and temperature

inside a star, as follows. The right-hand side of Eq. 3.20 permits evaluating Egr for
a choice of ρ(r). For example, for a constant density profile, ρ =const.,

Egr = −
Z r∗

0

GM(r)ρ(r)4πr2dr

r
= −

Z r∗

0

G 4π
3 r3ρ24πr2dr

r
= −3

5
GM2

∗
r∗

.

(3.29)

lengths of the particles, λ = h/p, where p is the momentum. “Non-relativistic” means that the particle
velocities obey v � c . An ideal gas is defined as a gas in which particles experience only short-range
(compared to their typical separations) interactions with each other – billiard balls on a pool table are
the usual analog.

The local pressure is equal to 2/3 the local thermal energy density.
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Multiply by 4πr2 and integrating over the volume of the star, we find 
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star the gas equation of state is
PV = NkT, (3.23)

and its thermal energy is

Eth =
3
2
NkT. (3.24)

Thus,

P =
2
3

Eth

V
, (3.25)

i.e., the local pressure equals 2/3 the local thermal energy density. Multiplying both
sides by 4πr2 and integrating over the volume of the star, we find that

P̄ V =
2
3
Etot

th , (3.26)

withEtot
th the total thermal energy of the star. Substituting from Eq. 3.22, we obtain

Etot
th = −Egr

2
, (3.27)

which is another form of the virial theorem. Eq. 3.27 says that when a star con-
tracts and loses energy, i.e., its gravitational self energy becomes more negative,
its thermal energy rises. This means that stars have negative heat capacity – their
temperatures rise when they lose energy. As we will see, this remarkable fact is at
the crux of all of stellar evolution.
A third form of the virial theorem is obtained by considering the total energy of

a star, both gravitational and thermal,

Etotal = Etot
th + Egr = −Etot

th =
Egr

2
. (3.28)

Thus, the total energy of a star that is composed of a classical, non-relativistic, ideal
gas is negative, meaning the star is bound. (To see what happens in the case of a
relativistic gas, solve Problem 1). Since all stars constantly radiate away their en-
ergy (and hence Etotal becomes more negative), they are doomed to collapse (Egr

becomes more negative), eventually. We will see in Chapter 4 that an exception to
this occurs when the stellar gas moves from the classical to the quantum regime.
We can also use Eq. 3.22 to get an idea of the typical pressure and temperature

inside a star, as follows. The right-hand side of Eq. 3.20 permits evaluating Egr for
a choice of ρ(r). For example, for a constant density profile, ρ =const.,

Egr = −
Z r∗

0

GM(r)ρ(r)4πr2dr

r
= −

Z r∗

0

G 4π
3 r3ρ24πr2dr

r
= −3

5
GM2

∗
r∗

.

(3.29)

lengths of the particles, λ = h/p, where p is the momentum. “Non-relativistic” means that the particle
velocities obey v � c . An ideal gas is defined as a gas in which particles experience only short-range
(compared to their typical separations) interactions with each other – billiard balls on a pool table are
the usual analog.

Substituting gives another form of the viral theorem:
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star the gas equation of state is
PV = NkT, (3.23)

and its thermal energy is

Eth =
3
2
NkT. (3.24)

Thus,

P =
2
3

Eth

V
, (3.25)

i.e., the local pressure equals 2/3 the local thermal energy density. Multiplying both
sides by 4πr2 and integrating over the volume of the star, we find that

P̄ V =
2
3
Etot

th , (3.26)

withEtot
th the total thermal energy of the star. Substituting from Eq. 3.22, we obtain

Etot
th = −Egr

2
, (3.27)

which is another form of the virial theorem. Eq. 3.27 says that when a star con-
tracts and loses energy, i.e., its gravitational self energy becomes more negative,
its thermal energy rises. This means that stars have negative heat capacity – their
temperatures rise when they lose energy. As we will see, this remarkable fact is at
the crux of all of stellar evolution.
A third form of the virial theorem is obtained by considering the total energy of

a star, both gravitational and thermal,

Etotal = Etot
th + Egr = −Etot

th =
Egr

2
. (3.28)

Thus, the total energy of a star that is composed of a classical, non-relativistic, ideal
gas is negative, meaning the star is bound. (To see what happens in the case of a
relativistic gas, solve Problem 1). Since all stars constantly radiate away their en-
ergy (and hence Etotal becomes more negative), they are doomed to collapse (Egr

becomes more negative), eventually. We will see in Chapter 4 that an exception to
this occurs when the stellar gas moves from the classical to the quantum regime.
We can also use Eq. 3.22 to get an idea of the typical pressure and temperature

inside a star, as follows. The right-hand side of Eq. 3.20 permits evaluating Egr for
a choice of ρ(r). For example, for a constant density profile, ρ =const.,

Egr = −
Z r∗

0

GM(r)ρ(r)4πr2dr

r
= −

Z r∗

0

G 4π
3 r3ρ24πr2dr

r
= −3

5
GM2

∗
r∗

.

(3.29)

lengths of the particles, λ = h/p, where p is the momentum. “Non-relativistic” means that the particle
velocities obey v � c . An ideal gas is defined as a gas in which particles experience only short-range
(compared to their typical separations) interactions with each other – billiard balls on a pool table are
the usual analog.

Recall the our first form of the viral theorem:
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Figure 3.1 Hydrostatic equilibrium. The gravitational force F
gr

on a mass element of cross-
sectional area A is balanced by the force AdP due to the pressure difference
between the top and the bottom of the mass element.

which leads us to the first equation of stellar structure, the equation of hydrostatic
equilibrium:

dP (r)
dr

= −GM(r)ρ(r)
r2

. (3.19)

Naturally, the pressure gradient is negative, because to counteract gravity, the pres-
sure must decrease outwards (i.e., with increasing radius.)
This simple equation, combined with some thermodynamics, can already provide

valuable insight. Let us multiply both sides of Eq. 3.19 by 4πr3dr and integrate
from r = 0 to r∗, the outer radius of the star:Z r∗

0

4πr3 dP

dr
dr = −

Z r∗

0

GM(r)ρ(r)4πr2dr

r
. (3.20)

The right-hand side, in the form we have written it, is seen to be the energy that
would be gained in constructing the star from the inside out, bringing from infinity
shell by shell (each shell with a mass dM(r) = ρ(r)4πr2dr). This is just the
gravitational potential self energy of the star, Egr. On the left side, integration by
parts gives

[P (r)4πr3]r∗0 − 3
Z r∗

0

P (r)4πr2dr. (3.21)

We will define the surface of the star as the radius at which the pressure goes to
zero. The first term is therefore zero. The second term is seen to be −3 times the
volume-averaged pressure, P̄ , up to division by the volume V of the star. Equating
the two sides, we obtain

P̄ = −1
3

Egr

V
. (3.22)

In words, the mean pressure in a star equals minus one third of its gravitational
energy density. Eq. 3.22 is one form of the so-called virial theorem for a gravita-
tionally bound system.
To see what Eq. 3.22 implies, consider a star composed of a classical, mono-

atomic, non-relativistic, ideal gas of N identical particles.1 At every point in the

1“Classical” means that the typical separations between particles are larger than the de Broglie wave-

The second form of the viral theorem says when a star contacts 
and losses energy, its self gravity becomes more negative.
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Pressure Inside a Star
Let’s examine the following equation again.

This is the gravitational self-potential  
energy of the star.  It is equal to Egr.
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star the gas equation of state is
PV = NkT, (3.23)

and its thermal energy is

Eth =
3
2
NkT. (3.24)

Thus,

P =
2
3

Eth

V
, (3.25)

i.e., the local pressure equals 2/3 the local thermal energy density. Multiplying both
sides by 4πr2 and integrating over the volume of the star, we find that

P̄ V =
2
3
Etot

th , (3.26)

withEtot
th the total thermal energy of the star. Substituting from Eq. 3.22, we obtain

Etot
th = −Egr

2
, (3.27)

which is another form of the virial theorem. Eq. 3.27 says that when a star con-
tracts and loses energy, i.e., its gravitational self energy becomes more negative,
its thermal energy rises. This means that stars have negative heat capacity – their
temperatures rise when they lose energy. As we will see, this remarkable fact is at
the crux of all of stellar evolution.
A third form of the virial theorem is obtained by considering the total energy of

a star, both gravitational and thermal,

Etotal = Etot
th + Egr = −Etot

th =
Egr

2
. (3.28)

Thus, the total energy of a star that is composed of a classical, non-relativistic, ideal
gas is negative, meaning the star is bound. (To see what happens in the case of a
relativistic gas, solve Problem 1). Since all stars constantly radiate away their en-
ergy (and hence Etotal becomes more negative), they are doomed to collapse (Egr

becomes more negative), eventually. We will see in Chapter 4 that an exception to
this occurs when the stellar gas moves from the classical to the quantum regime.
We can also use Eq. 3.22 to get an idea of the typical pressure and temperature

inside a star, as follows. The right-hand side of Eq. 3.20 permits evaluating Egr for
a choice of ρ(r). For example, for a constant density profile, ρ =const.,

Egr = −
Z r∗

0

GM(r)ρ(r)4πr2dr

r
= −

Z r∗

0

G 4π
3 r3ρ24πr2dr

r
= −3

5
GM2

∗
r∗

.

(3.29)

lengths of the particles, λ = h/p, where p is the momentum. “Non-relativistic” means that the particle
velocities obey v � c . An ideal gas is defined as a gas in which particles experience only short-range
(compared to their typical separations) interactions with each other – billiard balls on a pool table are
the usual analog.Let’s assume that the density profile is constant, then
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star the gas equation of state is
PV = NkT, (3.23)

and its thermal energy is

Eth =
3
2
NkT. (3.24)

Thus,

P =
2
3

Eth

V
, (3.25)

i.e., the local pressure equals 2/3 the local thermal energy density. Multiplying both
sides by 4πr2 and integrating over the volume of the star, we find that

P̄ V =
2
3
Etot

th , (3.26)

withEtot
th the total thermal energy of the star. Substituting from Eq. 3.22, we obtain

Etot
th = −Egr

2
, (3.27)

which is another form of the virial theorem. Eq. 3.27 says that when a star con-
tracts and loses energy, i.e., its gravitational self energy becomes more negative,
its thermal energy rises. This means that stars have negative heat capacity – their
temperatures rise when they lose energy. As we will see, this remarkable fact is at
the crux of all of stellar evolution.
A third form of the virial theorem is obtained by considering the total energy of

a star, both gravitational and thermal,

Etotal = Etot
th + Egr = −Etot

th =
Egr

2
. (3.28)

Thus, the total energy of a star that is composed of a classical, non-relativistic, ideal
gas is negative, meaning the star is bound. (To see what happens in the case of a
relativistic gas, solve Problem 1). Since all stars constantly radiate away their en-
ergy (and hence Etotal becomes more negative), they are doomed to collapse (Egr

becomes more negative), eventually. We will see in Chapter 4 that an exception to
this occurs when the stellar gas moves from the classical to the quantum regime.
We can also use Eq. 3.22 to get an idea of the typical pressure and temperature

inside a star, as follows. The right-hand side of Eq. 3.20 permits evaluating Egr for
a choice of ρ(r). For example, for a constant density profile, ρ =const.,

Egr = −
Z r∗

0

GM(r)ρ(r)4πr2dr

r
= −

Z r∗

0

G 4π
3 r3ρ24πr2dr

r
= −3

5
GM2

∗
r∗

.

(3.29)

lengths of the particles, λ = h/p, where p is the momentum. “Non-relativistic” means that the particle
velocities obey v � c . An ideal gas is defined as a gas in which particles experience only short-range
(compared to their typical separations) interactions with each other – billiard balls on a pool table are
the usual analog.

A little math and we get ….

Egr = �3

5

GM2
⇤

r⇤

⇢
const

=
M

V
=

M⇤
4
3⇡r

3
⇤

recall:
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Mean Pressure of the Sun
Take a characteristic Egr ~ -GM2/r and calculate the mean pressure 
in the sun.

Using the first form of the viral theorem, we get

P̄ =
1

3

Egr

V
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A density profile, ρ(r), that falls with radius will give a somewhat more negative
value of Egr. Taking a characteristic Egr ∼ −GM2/r, the mean pressure in the
Sun is

P̄⊙ ∼
1
3

GM2
⊙

4
3πr3

⊙r⊙
=

GM2
⊙

4πr4
⊙
≈ 1015dyne cm−2 = 109Atm. (3.30)

To find a typical temperature, which we will call the virial temperature, let us
assume again a classical nonrelativistic ideal gas, with particles of mean mass m̄.
Equation 3.27 then applies, and

3
2
NkTvir ∼

1
2

GM2
⊙

r⊙
=

1
2

GM⊙Nm̄

r⊙
. (3.31)

The mass of an electron is negligibly small, only ≈ 1/2000 compared to the mass
of a proton. For an ionized hydrogen gas, consisting of an equal number of protons
and electrons, the mean mass m̄,

m̄ =
me + mp

2
=

mH

2
, (3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the
hydrogen atom,mH = 1.7× 10−24 g. The typical thermal energy is then

kTvir ∼
GM⊙mH

6r⊙
=

6.7× 10−8cgs× 2× 1033 g × 1.7× 10−24 g
6× 7× 1010 cm

(3.33)

= 5.4× 10−10 erg = 0.34 keV.

With k = 1.4× 10−16 ergK−1 = 8.6× 10−5 eVK−1, this gives a virial tempera-
ture of about 4×106 K. As we will see, at temperatures of this order of magnitude,
nuclear reactions can take place, and thus replenish the thermal energy that the star
radiates away, halting the gravitational collapse (if only temporarily).
Of course, in reality, just like P (r), the density ρ(r) and the temperature T (r)

are also functions of radius and they grow toward the center of a star. To find
them, we will need to define additional equations. We will see that the equation of
hydrostatic equilibrium is one of four coupled differential equations that determine
stellar structure.

3.2 MASS CONTINUITY

In the hydrostatic equilibrium equation (Eq. 3.19), we haveM(r) and ρ(r), which
are easily related to each other:

dM(r) = ρ(r)4πr2dr, (3.34)
or

dM(r)
dr

= 4πr2ρ(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or
the equation of mass conservation.
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A density profile, ρ(r), that falls with radius will give a somewhat more negative
value of Egr. Taking a characteristic Egr ∼ −GM2/r, the mean pressure in the
Sun is

P̄⊙ ∼
1
3

GM2
⊙

4
3πr3

⊙r⊙
=

GM2
⊙

4πr4
⊙
≈ 1015dyne cm−2 = 109Atm. (3.30)

To find a typical temperature, which we will call the virial temperature, let us
assume again a classical nonrelativistic ideal gas, with particles of mean mass m̄.
Equation 3.27 then applies, and

3
2
NkTvir ∼

1
2

GM2
⊙

r⊙
=

1
2

GM⊙Nm̄

r⊙
. (3.31)

The mass of an electron is negligibly small, only ≈ 1/2000 compared to the mass
of a proton. For an ionized hydrogen gas, consisting of an equal number of protons
and electrons, the mean mass m̄,

m̄ =
me + mp

2
=

mH

2
, (3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the
hydrogen atom,mH = 1.7× 10−24 g. The typical thermal energy is then

kTvir ∼
GM⊙mH

6r⊙
=

6.7× 10−8cgs× 2× 1033 g × 1.7× 10−24 g
6× 7× 1010 cm

(3.33)

= 5.4× 10−10 erg = 0.34 keV.

With k = 1.4× 10−16 ergK−1 = 8.6× 10−5 eVK−1, this gives a virial tempera-
ture of about 4×106 K. As we will see, at temperatures of this order of magnitude,
nuclear reactions can take place, and thus replenish the thermal energy that the star
radiates away, halting the gravitational collapse (if only temporarily).
Of course, in reality, just like P (r), the density ρ(r) and the temperature T (r)

are also functions of radius and they grow toward the center of a star. To find
them, we will need to define additional equations. We will see that the equation of
hydrostatic equilibrium is one of four coupled differential equations that determine
stellar structure.

3.2 MASS CONTINUITY

In the hydrostatic equilibrium equation (Eq. 3.19), we haveM(r) and ρ(r), which
are easily related to each other:

dM(r) = ρ(r)4πr2dr, (3.34)
or

dM(r)
dr

= 4πr2ρ(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or
the equation of mass conservation.

P̄ =
(6.7⇥ 10�8erg cm g�2)(2.0⇥ 1033g)2

4⇡(7.0⇥ 1010cm)4
= 8.9⇥ 1014erg cm�3

P ⇠ 8.9⇥ 1014erg cm�3

Note:  Your textbook uses units of dyne cm-2.  1 dyne = 1 erg cm-1.
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Typical Temperature
Viral Temperature is the typical temperature inside a star.  To 
find the viral temperature we start with our second form of the 
virial theorem.
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star the gas equation of state is
PV = NkT, (3.23)

and its thermal energy is

Eth =
3
2
NkT. (3.24)

Thus,

P =
2
3

Eth

V
, (3.25)

i.e., the local pressure equals 2/3 the local thermal energy density. Multiplying both
sides by 4πr2 and integrating over the volume of the star, we find that

P̄ V =
2
3
Etot

th , (3.26)

withEtot
th the total thermal energy of the star. Substituting from Eq. 3.22, we obtain

Etot
th = −Egr

2
, (3.27)

which is another form of the virial theorem. Eq. 3.27 says that when a star con-
tracts and loses energy, i.e., its gravitational self energy becomes more negative,
its thermal energy rises. This means that stars have negative heat capacity – their
temperatures rise when they lose energy. As we will see, this remarkable fact is at
the crux of all of stellar evolution.
A third form of the virial theorem is obtained by considering the total energy of

a star, both gravitational and thermal,

Etotal = Etot
th + Egr = −Etot

th =
Egr

2
. (3.28)

Thus, the total energy of a star that is composed of a classical, non-relativistic, ideal
gas is negative, meaning the star is bound. (To see what happens in the case of a
relativistic gas, solve Problem 1). Since all stars constantly radiate away their en-
ergy (and hence Etotal becomes more negative), they are doomed to collapse (Egr

becomes more negative), eventually. We will see in Chapter 4 that an exception to
this occurs when the stellar gas moves from the classical to the quantum regime.
We can also use Eq. 3.22 to get an idea of the typical pressure and temperature

inside a star, as follows. The right-hand side of Eq. 3.20 permits evaluating Egr for
a choice of ρ(r). For example, for a constant density profile, ρ =const.,

Egr = −
Z r∗

0

GM(r)ρ(r)4πr2dr

r
= −

Z r∗

0

G 4π
3 r3ρ24πr2dr

r
= −3

5
GM2

∗
r∗

.

(3.29)

lengths of the particles, λ = h/p, where p is the momentum. “Non-relativistic” means that the particle
velocities obey v � c . An ideal gas is defined as a gas in which particles experience only short-range
(compared to their typical separations) interactions with each other – billiard balls on a pool table are
the usual analog.
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A density profile, ρ(r), that falls with radius will give a somewhat more negative
value of Egr. Taking a characteristic Egr ∼ −GM2/r, the mean pressure in the
Sun is

P̄⊙ ∼
1
3

GM2
⊙

4
3πr3

⊙r⊙
=

GM2
⊙

4πr4
⊙
≈ 1015dyne cm−2 = 109Atm. (3.30)

To find a typical temperature, which we will call the virial temperature, let us
assume again a classical nonrelativistic ideal gas, with particles of mean mass m̄.
Equation 3.27 then applies, and

3
2
NkTvir ∼

1
2

GM2
⊙

r⊙
=

1
2

GM⊙Nm̄

r⊙
. (3.31)

The mass of an electron is negligibly small, only ≈ 1/2000 compared to the mass
of a proton. For an ionized hydrogen gas, consisting of an equal number of protons
and electrons, the mean mass m̄,

m̄ =
me + mp

2
=

mH

2
, (3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the
hydrogen atom,mH = 1.7× 10−24 g. The typical thermal energy is then

kTvir ∼
GM⊙mH

6r⊙
=

6.7× 10−8cgs× 2× 1033 g × 1.7× 10−24 g
6× 7× 1010 cm

(3.33)

= 5.4× 10−10 erg = 0.34 keV.

With k = 1.4× 10−16 ergK−1 = 8.6× 10−5 eVK−1, this gives a virial tempera-
ture of about 4×106 K. As we will see, at temperatures of this order of magnitude,
nuclear reactions can take place, and thus replenish the thermal energy that the star
radiates away, halting the gravitational collapse (if only temporarily).
Of course, in reality, just like P (r), the density ρ(r) and the temperature T (r)

are also functions of radius and they grow toward the center of a star. To find
them, we will need to define additional equations. We will see that the equation of
hydrostatic equilibrium is one of four coupled differential equations that determine
stellar structure.

3.2 MASS CONTINUITY

In the hydrostatic equilibrium equation (Eq. 3.19), we haveM(r) and ρ(r), which
are easily related to each other:

dM(r) = ρ(r)4πr2dr, (3.34)
or

dM(r)
dr

= 4πr2ρ(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or
the equation of mass conservation.
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A density profile, ρ(r), that falls with radius will give a somewhat more negative
value of Egr. Taking a characteristic Egr ∼ −GM2/r, the mean pressure in the
Sun is

P̄⊙ ∼
1
3

GM2
⊙

4
3πr3

⊙r⊙
=

GM2
⊙

4πr4
⊙
≈ 1015dyne cm−2 = 109Atm. (3.30)

To find a typical temperature, which we will call the virial temperature, let us
assume again a classical nonrelativistic ideal gas, with particles of mean mass m̄.
Equation 3.27 then applies, and

3
2
NkTvir ∼

1
2

GM2
⊙

r⊙
=

1
2

GM⊙Nm̄

r⊙
. (3.31)

The mass of an electron is negligibly small, only ≈ 1/2000 compared to the mass
of a proton. For an ionized hydrogen gas, consisting of an equal number of protons
and electrons, the mean mass m̄,

m̄ =
me + mp

2
=

mH

2
, (3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the
hydrogen atom,mH = 1.7× 10−24 g. The typical thermal energy is then

kTvir ∼
GM⊙mH

6r⊙
=

6.7× 10−8cgs× 2× 1033 g × 1.7× 10−24 g
6× 7× 1010 cm

(3.33)

= 5.4× 10−10 erg = 0.34 keV.

With k = 1.4× 10−16 ergK−1 = 8.6× 10−5 eVK−1, this gives a virial tempera-
ture of about 4×106 K. As we will see, at temperatures of this order of magnitude,
nuclear reactions can take place, and thus replenish the thermal energy that the star
radiates away, halting the gravitational collapse (if only temporarily).
Of course, in reality, just like P (r), the density ρ(r) and the temperature T (r)

are also functions of radius and they grow toward the center of a star. To find
them, we will need to define additional equations. We will see that the equation of
hydrostatic equilibrium is one of four coupled differential equations that determine
stellar structure.

3.2 MASS CONTINUITY

In the hydrostatic equilibrium equation (Eq. 3.19), we haveM(r) and ρ(r), which
are easily related to each other:

dM(r) = ρ(r)4πr2dr, (3.34)
or

dM(r)
dr

= 4πr2ρ(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or
the equation of mass conservation.

=

If the particles have a mean mass m we can write:
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A density profile, ρ(r), that falls with radius will give a somewhat more negative
value of Egr. Taking a characteristic Egr ∼ −GM2/r, the mean pressure in the
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⊙
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To find a typical temperature, which we will call the virial temperature, let us
assume again a classical nonrelativistic ideal gas, with particles of mean mass m̄.
Equation 3.27 then applies, and

3
2
NkTvir ∼

1
2

GM2
⊙

r⊙
=

1
2

GM⊙Nm̄

r⊙
. (3.31)

The mass of an electron is negligibly small, only ≈ 1/2000 compared to the mass
of a proton. For an ionized hydrogen gas, consisting of an equal number of protons
and electrons, the mean mass m̄,

m̄ =
me + mp

2
=

mH

2
, (3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the
hydrogen atom,mH = 1.7× 10−24 g. The typical thermal energy is then

kTvir ∼
GM⊙mH

6r⊙
=

6.7× 10−8cgs× 2× 1033 g × 1.7× 10−24 g
6× 7× 1010 cm

(3.33)

= 5.4× 10−10 erg = 0.34 keV.

With k = 1.4× 10−16 ergK−1 = 8.6× 10−5 eVK−1, this gives a virial tempera-
ture of about 4×106 K. As we will see, at temperatures of this order of magnitude,
nuclear reactions can take place, and thus replenish the thermal energy that the star
radiates away, halting the gravitational collapse (if only temporarily).
Of course, in reality, just like P (r), the density ρ(r) and the temperature T (r)

are also functions of radius and they grow toward the center of a star. To find
them, we will need to define additional equations. We will see that the equation of
hydrostatic equilibrium is one of four coupled differential equations that determine
stellar structure.

3.2 MASS CONTINUITY

In the hydrostatic equilibrium equation (Eq. 3.19), we haveM(r) and ρ(r), which
are easily related to each other:

dM(r) = ρ(r)4πr2dr, (3.34)
or

dM(r)
dr

= 4πr2ρ(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or
the equation of mass conservation.
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A density profile, ρ(r), that falls with radius will give a somewhat more negative
value of Egr. Taking a characteristic Egr ∼ −GM2/r, the mean pressure in the
Sun is

P̄⊙ ∼
1
3

GM2
⊙

4
3πr3

⊙r⊙
=

GM2
⊙

4πr4
⊙
≈ 1015dyne cm−2 = 109Atm. (3.30)

To find a typical temperature, which we will call the virial temperature, let us
assume again a classical nonrelativistic ideal gas, with particles of mean mass m̄.
Equation 3.27 then applies, and

3
2
NkTvir ∼

1
2

GM2
⊙

r⊙
=

1
2

GM⊙Nm̄

r⊙
. (3.31)

The mass of an electron is negligibly small, only ≈ 1/2000 compared to the mass
of a proton. For an ionized hydrogen gas, consisting of an equal number of protons
and electrons, the mean mass m̄,

m̄ =
me + mp

2
=

mH

2
, (3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the
hydrogen atom,mH = 1.7× 10−24 g. The typical thermal energy is then

kTvir ∼
GM⊙mH

6r⊙
=

6.7× 10−8cgs× 2× 1033 g × 1.7× 10−24 g
6× 7× 1010 cm

(3.33)

= 5.4× 10−10 erg = 0.34 keV.

With k = 1.4× 10−16 ergK−1 = 8.6× 10−5 eVK−1, this gives a virial tempera-
ture of about 4×106 K. As we will see, at temperatures of this order of magnitude,
nuclear reactions can take place, and thus replenish the thermal energy that the star
radiates away, halting the gravitational collapse (if only temporarily).
Of course, in reality, just like P (r), the density ρ(r) and the temperature T (r)

are also functions of radius and they grow toward the center of a star. To find
them, we will need to define additional equations. We will see that the equation of
hydrostatic equilibrium is one of four coupled differential equations that determine
stellar structure.

3.2 MASS CONTINUITY

In the hydrostatic equilibrium equation (Eq. 3.19), we haveM(r) and ρ(r), which
are easily related to each other:

dM(r) = ρ(r)4πr2dr, (3.34)
or

dM(r)
dr

= 4πr2ρ(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or
the equation of mass conservation.

The sun is comprised of mostly ionized hydrogen gas, consisting of 
an equal number of protons and electrons.
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A density profile, ρ(r), that falls with radius will give a somewhat more negative
value of Egr. Taking a characteristic Egr ∼ −GM2/r, the mean pressure in the
Sun is

P̄⊙ ∼
1
3

GM2
⊙

4
3πr3

⊙r⊙
=

GM2
⊙

4πr4
⊙
≈ 1015dyne cm−2 = 109Atm. (3.30)

To find a typical temperature, which we will call the virial temperature, let us
assume again a classical nonrelativistic ideal gas, with particles of mean mass m̄.
Equation 3.27 then applies, and

3
2
NkTvir ∼

1
2

GM2
⊙

r⊙
=

1
2

GM⊙Nm̄

r⊙
. (3.31)

The mass of an electron is negligibly small, only ≈ 1/2000 compared to the mass
of a proton. For an ionized hydrogen gas, consisting of an equal number of protons
and electrons, the mean mass m̄,

m̄ =
me + mp

2
=

mH

2
, (3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the
hydrogen atom,mH = 1.7× 10−24 g. The typical thermal energy is then

kTvir ∼
GM⊙mH

6r⊙
=

6.7× 10−8cgs× 2× 1033 g × 1.7× 10−24 g
6× 7× 1010 cm

(3.33)

= 5.4× 10−10 erg = 0.34 keV.

With k = 1.4× 10−16 ergK−1 = 8.6× 10−5 eVK−1, this gives a virial tempera-
ture of about 4×106 K. As we will see, at temperatures of this order of magnitude,
nuclear reactions can take place, and thus replenish the thermal energy that the star
radiates away, halting the gravitational collapse (if only temporarily).
Of course, in reality, just like P (r), the density ρ(r) and the temperature T (r)

are also functions of radius and they grow toward the center of a star. To find
them, we will need to define additional equations. We will see that the equation of
hydrostatic equilibrium is one of four coupled differential equations that determine
stellar structure.

3.2 MASS CONTINUITY

In the hydrostatic equilibrium equation (Eq. 3.19), we haveM(r) and ρ(r), which
are easily related to each other:

dM(r) = ρ(r)4πr2dr, (3.34)
or

dM(r)
dr

= 4πr2ρ(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or
the equation of mass conservation.

Note:
me << mp, thus mH ~ 1/2 mp.
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A density profile, ρ(r), that falls with radius will give a somewhat more negative
value of Egr. Taking a characteristic Egr ∼ −GM2/r, the mean pressure in the
Sun is

P̄⊙ ∼
1
3

GM2
⊙

4
3πr3

⊙r⊙
=

GM2
⊙

4πr4
⊙
≈ 1015dyne cm−2 = 109Atm. (3.30)

To find a typical temperature, which we will call the virial temperature, let us
assume again a classical nonrelativistic ideal gas, with particles of mean mass m̄.
Equation 3.27 then applies, and

3
2
NkTvir ∼

1
2

GM2
⊙

r⊙
=

1
2

GM⊙Nm̄

r⊙
. (3.31)

The mass of an electron is negligibly small, only ≈ 1/2000 compared to the mass
of a proton. For an ionized hydrogen gas, consisting of an equal number of protons
and electrons, the mean mass m̄,

m̄ =
me + mp

2
=

mH

2
, (3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the
hydrogen atom,mH = 1.7× 10−24 g. The typical thermal energy is then

kTvir ∼
GM⊙mH

6r⊙
=

6.7× 10−8cgs× 2× 1033 g × 1.7× 10−24 g
6× 7× 1010 cm

(3.33)

= 5.4× 10−10 erg = 0.34 keV.

With k = 1.4× 10−16 ergK−1 = 8.6× 10−5 eVK−1, this gives a virial tempera-
ture of about 4×106 K. As we will see, at temperatures of this order of magnitude,
nuclear reactions can take place, and thus replenish the thermal energy that the star
radiates away, halting the gravitational collapse (if only temporarily).
Of course, in reality, just like P (r), the density ρ(r) and the temperature T (r)

are also functions of radius and they grow toward the center of a star. To find
them, we will need to define additional equations. We will see that the equation of
hydrostatic equilibrium is one of four coupled differential equations that determine
stellar structure.

3.2 MASS CONTINUITY

In the hydrostatic equilibrium equation (Eq. 3.19), we haveM(r) and ρ(r), which
are easily related to each other:

dM(r) = ρ(r)4πr2dr, (3.34)
or

dM(r)
dr

= 4πr2ρ(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or
the equation of mass conservation.
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Putting this together, we have
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A density profile, ρ(r), that falls with radius will give a somewhat more negative
value of Egr. Taking a characteristic Egr ∼ −GM2/r, the mean pressure in the
Sun is

P̄⊙ ∼
1
3

GM2
⊙

4
3πr3

⊙r⊙
=

GM2
⊙

4πr4
⊙
≈ 1015dyne cm−2 = 109Atm. (3.30)

To find a typical temperature, which we will call the virial temperature, let us
assume again a classical nonrelativistic ideal gas, with particles of mean mass m̄.
Equation 3.27 then applies, and

3
2
NkTvir ∼

1
2

GM2
⊙

r⊙
=

1
2

GM⊙Nm̄

r⊙
. (3.31)

The mass of an electron is negligibly small, only ≈ 1/2000 compared to the mass
of a proton. For an ionized hydrogen gas, consisting of an equal number of protons
and electrons, the mean mass m̄,

m̄ =
me + mp

2
=

mH

2
, (3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the
hydrogen atom,mH = 1.7× 10−24 g. The typical thermal energy is then

kTvir ∼
GM⊙mH

6r⊙
=

6.7× 10−8cgs× 2× 1033 g × 1.7× 10−24 g
6× 7× 1010 cm

(3.33)

= 5.4× 10−10 erg = 0.34 keV.

With k = 1.4× 10−16 ergK−1 = 8.6× 10−5 eVK−1, this gives a virial tempera-
ture of about 4×106 K. As we will see, at temperatures of this order of magnitude,
nuclear reactions can take place, and thus replenish the thermal energy that the star
radiates away, halting the gravitational collapse (if only temporarily).
Of course, in reality, just like P (r), the density ρ(r) and the temperature T (r)

are also functions of radius and they grow toward the center of a star. To find
them, we will need to define additional equations. We will see that the equation of
hydrostatic equilibrium is one of four coupled differential equations that determine
stellar structure.

3.2 MASS CONTINUITY

In the hydrostatic equilibrium equation (Eq. 3.19), we haveM(r) and ρ(r), which
are easily related to each other:

dM(r) = ρ(r)4πr2dr, (3.34)
or

dM(r)
dr

= 4πr2ρ(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or
the equation of mass conservation.
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A density profile, ρ(r), that falls with radius will give a somewhat more negative
value of Egr. Taking a characteristic Egr ∼ −GM2/r, the mean pressure in the
Sun is

P̄⊙ ∼
1
3

GM2
⊙

4
3πr3

⊙r⊙
=

GM2
⊙

4πr4
⊙
≈ 1015dyne cm−2 = 109Atm. (3.30)

To find a typical temperature, which we will call the virial temperature, let us
assume again a classical nonrelativistic ideal gas, with particles of mean mass m̄.
Equation 3.27 then applies, and

3
2
NkTvir ∼

1
2

GM2
⊙

r⊙
=

1
2

GM⊙Nm̄

r⊙
. (3.31)

The mass of an electron is negligibly small, only ≈ 1/2000 compared to the mass
of a proton. For an ionized hydrogen gas, consisting of an equal number of protons
and electrons, the mean mass m̄,

m̄ =
me + mp

2
=

mH

2
, (3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the
hydrogen atom,mH = 1.7× 10−24 g. The typical thermal energy is then

kTvir ∼
GM⊙mH

6r⊙
=

6.7× 10−8cgs× 2× 1033 g × 1.7× 10−24 g
6× 7× 1010 cm

(3.33)

= 5.4× 10−10 erg = 0.34 keV.

With k = 1.4× 10−16 ergK−1 = 8.6× 10−5 eVK−1, this gives a virial tempera-
ture of about 4×106 K. As we will see, at temperatures of this order of magnitude,
nuclear reactions can take place, and thus replenish the thermal energy that the star
radiates away, halting the gravitational collapse (if only temporarily).
Of course, in reality, just like P (r), the density ρ(r) and the temperature T (r)

are also functions of radius and they grow toward the center of a star. To find
them, we will need to define additional equations. We will see that the equation of
hydrostatic equilibrium is one of four coupled differential equations that determine
stellar structure.

3.2 MASS CONTINUITY

In the hydrostatic equilibrium equation (Eq. 3.19), we haveM(r) and ρ(r), which
are easily related to each other:

dM(r) = ρ(r)4πr2dr, (3.34)
or

dM(r)
dr

= 4πr2ρ(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or
the equation of mass conservation.
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A density profile, ρ(r), that falls with radius will give a somewhat more negative
value of Egr. Taking a characteristic Egr ∼ −GM2/r, the mean pressure in the
Sun is

P̄⊙ ∼
1
3

GM2
⊙

4
3πr3

⊙r⊙
=

GM2
⊙

4πr4
⊙
≈ 1015dyne cm−2 = 109Atm. (3.30)

To find a typical temperature, which we will call the virial temperature, let us
assume again a classical nonrelativistic ideal gas, with particles of mean mass m̄.
Equation 3.27 then applies, and

3
2
NkTvir ∼

1
2

GM2
⊙

r⊙
=

1
2

GM⊙Nm̄

r⊙
. (3.31)

The mass of an electron is negligibly small, only ≈ 1/2000 compared to the mass
of a proton. For an ionized hydrogen gas, consisting of an equal number of protons
and electrons, the mean mass m̄,

m̄ =
me + mp

2
=

mH

2
, (3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the
hydrogen atom,mH = 1.7× 10−24 g. The typical thermal energy is then

kTvir ∼
GM⊙mH

6r⊙
=

6.7× 10−8cgs× 2× 1033 g × 1.7× 10−24 g
6× 7× 1010 cm

(3.33)

= 5.4× 10−10 erg = 0.34 keV.

With k = 1.4× 10−16 ergK−1 = 8.6× 10−5 eVK−1, this gives a virial tempera-
ture of about 4×106 K. As we will see, at temperatures of this order of magnitude,
nuclear reactions can take place, and thus replenish the thermal energy that the star
radiates away, halting the gravitational collapse (if only temporarily).
Of course, in reality, just like P (r), the density ρ(r) and the temperature T (r)

are also functions of radius and they grow toward the center of a star. To find
them, we will need to define additional equations. We will see that the equation of
hydrostatic equilibrium is one of four coupled differential equations that determine
stellar structure.

3.2 MASS CONTINUITY

In the hydrostatic equilibrium equation (Eq. 3.19), we haveM(r) and ρ(r), which
are easily related to each other:

dM(r) = ρ(r)4πr2dr, (3.34)
or

dM(r)
dr

= 4πr2ρ(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or
the equation of mass conservation.
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A density profile, ρ(r), that falls with radius will give a somewhat more negative
value of Egr. Taking a characteristic Egr ∼ −GM2/r, the mean pressure in the
Sun is

P̄⊙ ∼
1
3

GM2
⊙

4
3πr3

⊙r⊙
=

GM2
⊙

4πr4
⊙
≈ 1015dyne cm−2 = 109Atm. (3.30)

To find a typical temperature, which we will call the virial temperature, let us
assume again a classical nonrelativistic ideal gas, with particles of mean mass m̄.
Equation 3.27 then applies, and

3
2
NkTvir ∼

1
2

GM2
⊙

r⊙
=

1
2

GM⊙Nm̄

r⊙
. (3.31)

The mass of an electron is negligibly small, only ≈ 1/2000 compared to the mass
of a proton. For an ionized hydrogen gas, consisting of an equal number of protons
and electrons, the mean mass m̄,

m̄ =
me + mp

2
=

mH

2
, (3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the
hydrogen atom,mH = 1.7× 10−24 g. The typical thermal energy is then

kTvir ∼
GM⊙mH

6r⊙
=

6.7× 10−8cgs× 2× 1033 g × 1.7× 10−24 g
6× 7× 1010 cm

(3.33)

= 5.4× 10−10 erg = 0.34 keV.

With k = 1.4× 10−16 ergK−1 = 8.6× 10−5 eVK−1, this gives a virial tempera-
ture of about 4×106 K. As we will see, at temperatures of this order of magnitude,
nuclear reactions can take place, and thus replenish the thermal energy that the star
radiates away, halting the gravitational collapse (if only temporarily).
Of course, in reality, just like P (r), the density ρ(r) and the temperature T (r)

are also functions of radius and they grow toward the center of a star. To find
them, we will need to define additional equations. We will see that the equation of
hydrostatic equilibrium is one of four coupled differential equations that determine
stellar structure.

3.2 MASS CONTINUITY

In the hydrostatic equilibrium equation (Eq. 3.19), we haveM(r) and ρ(r), which
are easily related to each other:

dM(r) = ρ(r)4πr2dr, (3.34)
or

dM(r)
dr

= 4πr2ρ(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or
the equation of mass conservation.
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A density profile, ρ(r), that falls with radius will give a somewhat more negative
value of Egr. Taking a characteristic Egr ∼ −GM2/r, the mean pressure in the
Sun is

P̄⊙ ∼
1
3

GM2
⊙

4
3πr3

⊙r⊙
=

GM2
⊙

4πr4
⊙
≈ 1015dyne cm−2 = 109Atm. (3.30)

To find a typical temperature, which we will call the virial temperature, let us
assume again a classical nonrelativistic ideal gas, with particles of mean mass m̄.
Equation 3.27 then applies, and

3
2
NkTvir ∼

1
2

GM2
⊙

r⊙
=

1
2

GM⊙Nm̄

r⊙
. (3.31)

The mass of an electron is negligibly small, only ≈ 1/2000 compared to the mass
of a proton. For an ionized hydrogen gas, consisting of an equal number of protons
and electrons, the mean mass m̄,

m̄ =
me + mp

2
=

mH

2
, (3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the
hydrogen atom,mH = 1.7× 10−24 g. The typical thermal energy is then

kTvir ∼
GM⊙mH

6r⊙
=

6.7× 10−8cgs× 2× 1033 g × 1.7× 10−24 g
6× 7× 1010 cm

(3.33)

= 5.4× 10−10 erg = 0.34 keV.

With k = 1.4× 10−16 ergK−1 = 8.6× 10−5 eVK−1, this gives a virial tempera-
ture of about 4×106 K. As we will see, at temperatures of this order of magnitude,
nuclear reactions can take place, and thus replenish the thermal energy that the star
radiates away, halting the gravitational collapse (if only temporarily).
Of course, in reality, just like P (r), the density ρ(r) and the temperature T (r)

are also functions of radius and they grow toward the center of a star. To find
them, we will need to define additional equations. We will see that the equation of
hydrostatic equilibrium is one of four coupled differential equations that determine
stellar structure.

3.2 MASS CONTINUITY

In the hydrostatic equilibrium equation (Eq. 3.19), we haveM(r) and ρ(r), which
are easily related to each other:

dM(r) = ρ(r)4πr2dr, (3.34)
or

dM(r)
dr

= 4πr2ρ(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or
the equation of mass conservation.

Tvir ~ 4 x 10-6 K

Nuclear reactions take place at temperatures of this order of 
magnitude.  So nuclear reactions can take place and thus 
replenish the thermal energy that a star radiates away.  This, 
temporarily halts the gravitational collapse.
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Mass Continuity
For a spherically symmetric star, consider a shell of mass dMr and 
thickness dr located a distance r from 
the center.  If the shell is thin(dr << r)
the volume of the shell can be 
approximated as dV = 4!r2dr.

Re-arranging terms yields the Equation of Mass Continuity.
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A density profile, ρ(r), that falls with radius will give a somewhat more negative
value of Egr. Taking a characteristic Egr ∼ −GM2/r, the mean pressure in the
Sun is

P̄⊙ ∼
1
3

GM2
⊙

4
3πr3

⊙r⊙
=

GM2
⊙

4πr4
⊙
≈ 1015dyne cm−2 = 109Atm. (3.30)

To find a typical temperature, which we will call the virial temperature, let us
assume again a classical nonrelativistic ideal gas, with particles of mean mass m̄.
Equation 3.27 then applies, and

3
2
NkTvir ∼

1
2

GM2
⊙

r⊙
=

1
2

GM⊙Nm̄

r⊙
. (3.31)

The mass of an electron is negligibly small, only ≈ 1/2000 compared to the mass
of a proton. For an ionized hydrogen gas, consisting of an equal number of protons
and electrons, the mean mass m̄,

m̄ =
me + mp

2
=

mH

2
, (3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the
hydrogen atom,mH = 1.7× 10−24 g. The typical thermal energy is then

kTvir ∼
GM⊙mH

6r⊙
=

6.7× 10−8cgs× 2× 1033 g × 1.7× 10−24 g
6× 7× 1010 cm

(3.33)

= 5.4× 10−10 erg = 0.34 keV.

With k = 1.4× 10−16 ergK−1 = 8.6× 10−5 eVK−1, this gives a virial tempera-
ture of about 4×106 K. As we will see, at temperatures of this order of magnitude,
nuclear reactions can take place, and thus replenish the thermal energy that the star
radiates away, halting the gravitational collapse (if only temporarily).
Of course, in reality, just like P (r), the density ρ(r) and the temperature T (r)

are also functions of radius and they grow toward the center of a star. To find
them, we will need to define additional equations. We will see that the equation of
hydrostatic equilibrium is one of four coupled differential equations that determine
stellar structure.

3.2 MASS CONTINUITY

In the hydrostatic equilibrium equation (Eq. 3.19), we haveM(r) and ρ(r), which
are easily related to each other:

dM(r) = ρ(r)4πr2dr, (3.34)
or

dM(r)
dr

= 4πr2ρ(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or
the equation of mass conservation.
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A density profile, ρ(r), that falls with radius will give a somewhat more negative
value of Egr. Taking a characteristic Egr ∼ −GM2/r, the mean pressure in the
Sun is

P̄⊙ ∼
1
3

GM2
⊙

4
3πr3

⊙r⊙
=

GM2
⊙

4πr4
⊙
≈ 1015dyne cm−2 = 109Atm. (3.30)

To find a typical temperature, which we will call the virial temperature, let us
assume again a classical nonrelativistic ideal gas, with particles of mean mass m̄.
Equation 3.27 then applies, and

3
2
NkTvir ∼

1
2

GM2
⊙

r⊙
=

1
2

GM⊙Nm̄

r⊙
. (3.31)

The mass of an electron is negligibly small, only ≈ 1/2000 compared to the mass
of a proton. For an ionized hydrogen gas, consisting of an equal number of protons
and electrons, the mean mass m̄,

m̄ =
me + mp

2
=

mH

2
, (3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the
hydrogen atom,mH = 1.7× 10−24 g. The typical thermal energy is then

kTvir ∼
GM⊙mH

6r⊙
=

6.7× 10−8cgs× 2× 1033 g × 1.7× 10−24 g
6× 7× 1010 cm

(3.33)

= 5.4× 10−10 erg = 0.34 keV.

With k = 1.4× 10−16 ergK−1 = 8.6× 10−5 eVK−1, this gives a virial tempera-
ture of about 4×106 K. As we will see, at temperatures of this order of magnitude,
nuclear reactions can take place, and thus replenish the thermal energy that the star
radiates away, halting the gravitational collapse (if only temporarily).
Of course, in reality, just like P (r), the density ρ(r) and the temperature T (r)

are also functions of radius and they grow toward the center of a star. To find
them, we will need to define additional equations. We will see that the equation of
hydrostatic equilibrium is one of four coupled differential equations that determine
stellar structure.

3.2 MASS CONTINUITY

In the hydrostatic equilibrium equation (Eq. 3.19), we haveM(r) and ρ(r), which
are easily related to each other:

dM(r) = ρ(r)4πr2dr, (3.34)
or

dM(r)
dr

= 4πr2ρ(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or
the equation of mass conservation.

If the local density is given by ρ(r), 
then the shell’s mass is given by
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Next Up

- Radiative Transport

- Conservation of energy (and our 4th equation of 
stellar structure).

- The equation of state

- And more awesome stuff….  



Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

Stay Tuned!


