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Announcements

- Reading Assignments:  Chapter 3.3 - 3.12.

- Problem Set 4 is due Wednesday, February 18th, 
2015.

- Next lab is Monday, February 23rd.  Be sure to report 
to FOSC 032 that day.
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Goals for this Class

1. Calculate how long it takes a photon to travel 
from the center of the sun and emerge at its 
surface.

2. Estimate the luminosity of the sun.

3. Derive equations for the gas and radiation 
pressure inside a star.
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From Last Time:

Mean mass m
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A density profile, ρ(r), that falls with radius will give a somewhat more negative
value of Egr. Taking a characteristic Egr ∼ −GM2/r, the mean pressure in the
Sun is

P̄⊙ ∼
1
3

GM2
⊙

4
3πr3

⊙r⊙
=

GM2
⊙

4πr4
⊙
≈ 1015dyne cm−2 = 109Atm. (3.30)

To find a typical temperature, which we will call the virial temperature, let us
assume again a classical nonrelativistic ideal gas, with particles of mean mass m̄.
Equation 3.27 then applies, and

3
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NkTvir ∼

1
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GM2
⊙

r⊙
=

1
2

GM⊙Nm̄

r⊙
. (3.31)

The mass of an electron is negligibly small, only ≈ 1/2000 compared to the mass
of a proton. For an ionized hydrogen gas, consisting of an equal number of protons
and electrons, the mean mass m̄,

m̄ =
me + mp

2
=

mH

2
, (3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the
hydrogen atom,mH = 1.7× 10−24 g. The typical thermal energy is then

kTvir ∼
GM⊙mH

6r⊙
=

6.7× 10−8cgs× 2× 1033 g × 1.7× 10−24 g
6× 7× 1010 cm

(3.33)

= 5.4× 10−10 erg = 0.34 keV.

With k = 1.4× 10−16 ergK−1 = 8.6× 10−5 eVK−1, this gives a virial tempera-
ture of about 4×106 K. As we will see, at temperatures of this order of magnitude,
nuclear reactions can take place, and thus replenish the thermal energy that the star
radiates away, halting the gravitational collapse (if only temporarily).
Of course, in reality, just like P (r), the density ρ(r) and the temperature T (r)

are also functions of radius and they grow toward the center of a star. To find
them, we will need to define additional equations. We will see that the equation of
hydrostatic equilibrium is one of four coupled differential equations that determine
stellar structure.

3.2 MASS CONTINUITY

In the hydrostatic equilibrium equation (Eq. 3.19), we haveM(r) and ρ(r), which
are easily related to each other:

dM(r) = ρ(r)4πr2dr, (3.34)
or

dM(r)
dr

= 4πr2ρ(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or
the equation of mass conservation.

The mean mass is 1/2 the mass of the hydrogen atom.   
Since, the me <<  mp, the mean mass of hydrogen is 
close to 1/2 the mass of a proton.
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Radiative Energy Transport
The radial gradient in pressure that supports a star is produced by a gradient in 
density and temperature.  Pressure, density and temperature are functions of radius.
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Figure 3.2 A volume element in a field of targets as viewed in perspective (left). The target
number density is n, and each target presents a cross section σ. From the base of
the cylindrical volume, ndx targets per unit area are seen in projection (right). A
straight line along the length of the volume will therefore intercept, on average,
nσdx targets.

3.3 RADIATIVE ENERGY TRANSPORT

The radial gradient in P (r) that supports a star is produced by a gradient in ρ(r)
and T (r). In much of the volume of most stars, T (r) is determined by the rate at
which radiative energy flows in and out through every radius, i.e., the luminosity
L(r). To find the equation that determines T (r), we will need to study some of the
basics of “radiative transfer”, the passage of radiation through matter. In some of
the volume of some stars, the energy transport mechanism that dominates is con-
vection, rather than radiative transport. We will discuss convection is Section 3.12.
Energy transport by means of conduction plays a role only in dense stellar remnants
– white dwarfs and neutron stars – which are discussed in Chapter 4.
Photons in stars can be absorbed or scattered out of a beam via interactions with

molecules, with atoms (either neutral or ions), and with electrons. If a photon
traverses a path dx filled with “targets” with a number density n (i.e., the number of
targets per unit volume), then the projected number of targets per unit area lying in
the path of the photon is ndx (see Fig. 3.2). If each target poses an effective “cross
section”2 σ for absorption or scattering, then the fraction of the area covered by
targets is σndx. Thus, the number of targets that will typically be intersected by a
straight line traversing the path dx, or in other words, the number of interactions
the photon undergoes, will be

# of interactions = nσdx. (3.36)
Equation 3.36 defines the concept of cross section. (Cross section can be defined
equivalently as the ratio between the interaction rate per target particle and the
incoming flux of projectiles.) Setting the left-hand side equal to 1, the typical
distance a photon will travel between interactions is called the “mean free path”:

l =
1

nσ
. (3.37)

2The cross section of a particle, which has units of area, quantifies the degree to which the particle is
liable to take part in a particular interaction (e.g., a collision or a reaction) with some other particle.

A photon transverses a path dx, 
filled with “targets” with a 
number density.
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2The cross section of a particle, which has units of area, quantifies the degree to which the particle is
liable to take part in a particular interaction (e.g., a collision or a reaction) with some other particle.

Projected number of targets 
per unit area lying in the path 
of the photon is given as ndx.
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2The cross section of a particle, which has units of area, quantifies the degree to which the particle is
liable to take part in a particular interaction (e.g., a collision or a reaction) with some other particle.

For a straight line along the length of the path

σ = effective cross 
section for absorption 
or scattering.
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Mean free path:
The typical distance a particle will travel between interactions.
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2The cross section of a particle, which has units of area, quantifies the degree to which the particle is
liable to take part in a particular interaction (e.g., a collision or a reaction) with some other particle.

For stellar matter, we need to modify this equation.  Stellar matter 
consists of a variety of absorbers and scatters, each with its own 
density and cross section.
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Figure 3.3 Thomson scattering of a photon on a free electron.

More generally, the stellar matter will consist of a variety of absorbers and scatter-
ers, each with its own density ni and cross section σi. Thus

l =
1P
niσi

≡ 1
ρκ

, (3.38)

where we have used the fact that all the particle densities will be proportional to
the mass density ρ, to define the “opacity” κ. The opacity obviously has cgs units
of cm2 g−1, and will depend on the local density, temperature, and element abun-
dance.
We will return later to the various processes that produce opacity. However, to

get an idea of the magnitude of the scattering process, let us consider one of the
important interactions – Thomson scattering of photons on free electrons (see
Fig. 3.3).
The Thomson cross section is

σT =
8π

3

µ
e2

mec2

∂2

= 6.7× 10−25cm2. (3.39)

It is independent of temperature and photon energy.3 In the hot interiors of stars, the
gas is fully ionized and therefore free electrons are abundant. If we approximate,
for simplicity, that the gas is all hydrogen, then there is one electron per atom of
massmH , and

ne ≈
ρ

mH
. (3.40)

The mean free path for electron scattering is then

les =
1

neσT
≈ mH

ρ σT
≈ 1.7× 10−24 g

1.4 g cm−3 × 6.7× 10−25 cm2
≈ 2 cm, (3.41)

where we have used the mean mass density of the Sun calculated previously. In
reality, the density of the Sun is higher than average in regions where electron
scattering is the dominant source of opacity, while in other regions other processes,
apart from electron scattering, are important. As a result, the actual typical photon
mean free path is even smaller, and is l ≈ 1 mm.

3Note the inverse square dependence of the Thomson cross section on the electron mass. For this
reason, protons and nuclei, which are much heavier, are much-less-effective photon scatterers. Similarly,
the relevant mass for electrons bound in atoms is the mass of the entire atom, and hence bound electrons
pose a very small Thomson scattering cross section.

mean free path of stellar matter

Here we have defined a new term, opacity = κ.  It is found by 
adding together the cross-sections of all the absorbers and 
scatterers in the shell, and dividing by the total mass of the shell.

 =
⌃ni�i

⇢
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Thomson Scattering
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Figure 3.3 Thomson scattering of a photon on a free electron.
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where we have used the fact that all the particle densities will be proportional to
the mass density ρ, to define the “opacity” κ. The opacity obviously has cgs units
of cm2 g−1, and will depend on the local density, temperature, and element abun-
dance.
We will return later to the various processes that produce opacity. However, to

get an idea of the magnitude of the scattering process, let us consider one of the
important interactions – Thomson scattering of photons on free electrons (see
Fig. 3.3).
The Thomson cross section is
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8π
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∂2

= 6.7× 10−25cm2. (3.39)

It is independent of temperature and photon energy.3 In the hot interiors of stars, the
gas is fully ionized and therefore free electrons are abundant. If we approximate,
for simplicity, that the gas is all hydrogen, then there is one electron per atom of
massmH , and

ne ≈
ρ

mH
. (3.40)

The mean free path for electron scattering is then

les =
1

neσT
≈ mH

ρ σT
≈ 1.7× 10−24 g

1.4 g cm−3 × 6.7× 10−25 cm2
≈ 2 cm, (3.41)

where we have used the mean mass density of the Sun calculated previously. In
reality, the density of the Sun is higher than average in regions where electron
scattering is the dominant source of opacity, while in other regions other processes,
apart from electron scattering, are important. As a result, the actual typical photon
mean free path is even smaller, and is l ≈ 1 mm.

3Note the inverse square dependence of the Thomson cross section on the electron mass. For this
reason, protons and nuclei, which are much heavier, are much-less-effective photon scatterers. Similarly,
the relevant mass for electrons bound in atoms is the mass of the entire atom, and hence bound electrons
pose a very small Thomson scattering cross section.

In Thomson Scattering a photon is 
scattered off a free electron.

The cross section for this process is given 
by:
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Figure 3.3 Thomson scattering of a photon on a free electron.
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gas is fully ionized and therefore free electrons are abundant. If we approximate,
for simplicity, that the gas is all hydrogen, then there is one electron per atom of
massmH , and

ne ≈
ρ
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The mean free path for electron scattering is then

les =
1

neσT
≈ mH

ρ σT
≈ 1.7× 10−24 g
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where we have used the mean mass density of the Sun calculated previously. In
reality, the density of the Sun is higher than average in regions where electron
scattering is the dominant source of opacity, while in other regions other processes,
apart from electron scattering, are important. As a result, the actual typical photon
mean free path is even smaller, and is l ≈ 1 mm.

3Note the inverse square dependence of the Thomson cross section on the electron mass. For this
reason, protons and nuclei, which are much heavier, are much-less-effective photon scatterers. Similarly,
the relevant mass for electrons bound in atoms is the mass of the entire atom, and hence bound electrons
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Calculate the Thomson cross section (using cgs units):

�T =
8⇡

3
(

(4.8⇥ 10�10esu)2

9.1⇥ 10�28g ⇥ (3⇥ 1010cm s�1)2
)2
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Figure 3.3 Thomson scattering of a photon on a free electron.
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where we have used the fact that all the particle densities will be proportional to
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It is independent of temperature and photon energy.3 In the hot interiors of stars, the
gas is fully ionized and therefore free electrons are abundant. If we approximate,
for simplicity, that the gas is all hydrogen, then there is one electron per atom of
massmH , and

ne ≈
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The mean free path for electron scattering is then
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1
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ρ σT
≈ 1.7× 10−24 g
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where we have used the mean mass density of the Sun calculated previously. In
reality, the density of the Sun is higher than average in regions where electron
scattering is the dominant source of opacity, while in other regions other processes,
apart from electron scattering, are important. As a result, the actual typical photon
mean free path is even smaller, and is l ≈ 1 mm.

3Note the inverse square dependence of the Thomson cross section on the electron mass. For this
reason, protons and nuclei, which are much heavier, are much-less-effective photon scatterers. Similarly,
the relevant mass for electrons bound in atoms is the mass of the entire atom, and hence bound electrons
pose a very small Thomson scattering cross section.

Note:    1 esu = 1cm/sqrt(dyne) = g1/2 cm3/2 s-1

1 dyne = erg cm-1 ; 1 erg = g cm2 s-2

Note:  Thomson cross section is independent 
of temperature and photon energy.
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Let’s simplify.  Assume all the gas is hydrogen and that there is one 
electron per atom of mass mH. 
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Figure 3.3 Thomson scattering of a photon on a free electron.

More generally, the stellar matter will consist of a variety of absorbers and scatter-
ers, each with its own density ni and cross section σi. Thus
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≡ 1
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where we have used the fact that all the particle densities will be proportional to
the mass density ρ, to define the “opacity” κ. The opacity obviously has cgs units
of cm2 g−1, and will depend on the local density, temperature, and element abun-
dance.
We will return later to the various processes that produce opacity. However, to

get an idea of the magnitude of the scattering process, let us consider one of the
important interactions – Thomson scattering of photons on free electrons (see
Fig. 3.3).
The Thomson cross section is
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∂2

= 6.7× 10−25cm2. (3.39)

It is independent of temperature and photon energy.3 In the hot interiors of stars, the
gas is fully ionized and therefore free electrons are abundant. If we approximate,
for simplicity, that the gas is all hydrogen, then there is one electron per atom of
massmH , and

ne ≈
ρ

mH
. (3.40)

The mean free path for electron scattering is then

les =
1

neσT
≈ mH

ρ σT
≈ 1.7× 10−24 g

1.4 g cm−3 × 6.7× 10−25 cm2
≈ 2 cm, (3.41)

where we have used the mean mass density of the Sun calculated previously. In
reality, the density of the Sun is higher than average in regions where electron
scattering is the dominant source of opacity, while in other regions other processes,
apart from electron scattering, are important. As a result, the actual typical photon
mean free path is even smaller, and is l ≈ 1 mm.

3Note the inverse square dependence of the Thomson cross section on the electron mass. For this
reason, protons and nuclei, which are much heavier, are much-less-effective photon scatterers. Similarly,
the relevant mass for electrons bound in atoms is the mass of the entire atom, and hence bound electrons
pose a very small Thomson scattering cross section.

Calculate the mean free path for electron scattering in this star.  
Assume the mean density to be that of the sun, 1.4 g cm-3.

basicastro4 October 26, 2006

STELLAR PHYSICS 39

Figure 3.3 Thomson scattering of a photon on a free electron.
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3Note the inverse square dependence of the Thomson cross section on the electron mass. For this
reason, protons and nuclei, which are much heavier, are much-less-effective photon scatterers. Similarly,
the relevant mass for electrons bound in atoms is the mass of the entire atom, and hence bound electrons
pose a very small Thomson scattering cross section.
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Figure 3.3 Thomson scattering of a photon on a free electron.

More generally, the stellar matter will consist of a variety of absorbers and scatter-
ers, each with its own density ni and cross section σi. Thus

l =
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≡ 1
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, (3.38)

where we have used the fact that all the particle densities will be proportional to
the mass density ρ, to define the “opacity” κ. The opacity obviously has cgs units
of cm2 g−1, and will depend on the local density, temperature, and element abun-
dance.
We will return later to the various processes that produce opacity. However, to

get an idea of the magnitude of the scattering process, let us consider one of the
important interactions – Thomson scattering of photons on free electrons (see
Fig. 3.3).
The Thomson cross section is
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It is independent of temperature and photon energy.3 In the hot interiors of stars, the
gas is fully ionized and therefore free electrons are abundant. If we approximate,
for simplicity, that the gas is all hydrogen, then there is one electron per atom of
massmH , and

ne ≈
ρ

mH
. (3.40)

The mean free path for electron scattering is then
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In reality, there are regions where electron scattering is more 
prominent and regions where it is less important.  As a result, the 
typical photon mean free path is 1 mm.

In which areas of the star do you suppose electron scattering is more dominant?
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So, we can see that the photons only travel a 
tiny distance before being scattered or 
absorbed and remitted in a new direction.
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Figure 3.4 The net advance of a photon performing a random walk consisting of N steps,
each decribed by a vector li, is the vectorD.

Thus, photons can travel only a tiny distance inside the Sun before being scat-
tered or absorbed and re-emitted in a new direction. Since the new direction is
random, the emergence of photons from the Sun is necessarily a random walk
process. The vectorD describing the change in position of a photon after N steps,
each described by a vector li having length l and random orientation (see Fig. 3.4),
is

D = l1 + l2 + l3 + ... + lN. (3.42)
The square of the linear distance covered is

D2 = |l1|2 + |l2|2 + ... + |lN|2 + 2(l1 · l2 + l1 · l3 + ...), (3.43)
and its expectation value is

�D2� = Nl2. (3.44)
The expectation value of the term in parentheses in Eq. 3.43 is zero because it is a
sum over many vector dot products, each with a random angle, and hence with both
positive and negative cosines contributing equally. The linear distance covered in a
random walk is therefore

�D2�1/2 = D =
√

N l. (3.45)

To gain some intuition, it is instructive to calculate how long it takes a photon
to travel from the center of the Sun, where most of the energy is produced, to the
surface.4 From Eq. 3.45, traveling a distance r⊙ will require N = r2

⊙/l2 steps in
the random walk. Each step requires a time l/c. Thus, the total time for the photon
to emerge from the Sun is

τrw ≈ l

c

r2
⊙
l2

=
r2
⊙
lc

=
(7× 1010 cm)2

10−1 cm× 3× 1010 cm s−1
= 1.6× 1012 s = 52, 000 yr.

(3.46)

4In reality, of course, it is not the same photon that travels this path. In every interaction, the photon
can transfer energy to the particle it scatters on, or distribute its original energy among several photons
that emerge from the interaction. Hence the photon energy is strongly “degraded” during the passage
through the Sun.

Thus, photons in the sun follow a random 
walk process.
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10−1 cm× 3× 1010 cm s−1
= 1.6× 1012 s = 52, 000 yr.

(3.46)

4In reality, of course, it is not the same photon that travels this path. In every interaction, the photon
can transfer energy to the particle it scatters on, or distribute its original energy among several photons
that emerge from the interaction. Hence the photon energy is strongly “degraded” during the passage
through the Sun.

The square of the linear distance covered is
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to travel from the center of the Sun, where most of the energy is produced, to the
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4In reality, of course, it is not the same photon that travels this path. In every interaction, the photon
can transfer energy to the particle it scatters on, or distribute its original energy among several photons
that emerge from the interaction. Hence the photon energy is strongly “degraded” during the passage
through the Sun.

This term approaches zero 
for a large number of steps.

Thus, we can write
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4In reality, of course, it is not the same photon that travels this path. In every interaction, the photon
can transfer energy to the particle it scatters on, or distribute its original energy among several photons
that emerge from the interaction. Hence the photon energy is strongly “degraded” during the passage
through the Sun.
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(3.46)

4In reality, of course, it is not the same photon that travels this path. In every interaction, the photon
can transfer energy to the particle it scatters on, or distribute its original energy among several photons
that emerge from the interaction. Hence the photon energy is strongly “degraded” during the passage
through the Sun.

expectation value linear distance covered in random walk
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Photon Travel Time
Calculate how long it takes for a photon to travel from the center of the sun 
to the surface.

The time it takes for a photon to reach the surface is the time it takes in each 
step, times the number of steps in the random walk.

⌧rw = tstepN

The time for each step is given by

tstep =
`

c

And N is given by our equation for linear distance covered by random walk.

D =
p
N` �! N =

D2

`2
=

r2sun
`2

Put it all together and simplify.

⌧rw =
`

c

r2sun
`2

=
r2sun
c`

=
(7⇥ 1010cm)2

(3⇥ 1010cm s�1)(1010cm)
= 1.6⇥ 1012s = 52, 000 years
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Figure 3.5 Radiative diffusion of energy between volume shells in a star, driven by the gra-
dient in the thermal energy density.

Thus, if the nuclear reactions powering the Sun were to suddenly switch off, we
would not notice5 anything unusual for 50,000 years.
With this background, we can now derive the equation that relates the tempera-

ture profile, T (r), to the flow of radiative energy through a star. The small mean
free path of photons inside the Sun and the very numerous scatterings, absorptions,
and re-emissions every photon undergoes reaffirms that locally, every volume ele-
ment inside the Sun radiates as a blackbody to a very good approximation. How-
ever, there is a net flow of radiation energy outwards, meaning there is some small
anisotropy (a preferred direction), and implying there is a higher energy density, at
smaller radii than at larger radii. The net flow of radiation energy through a mass
shell at radius r, per unit time, is just L(r) (see Fig. 3.5). This must equal the
excess energy in the shell, compared to a shell at larger radius, divided by the time
it takes this excess energy to flow across the shell’s width ∆r. The excess energy
density is∆u, which multiplied by the shell’s volume gives the total excess energy
of the shell, 4πr2∆r∆u. The time for the photons to cross the shell in a random
walk is (∆r)2/lc. Thus

L(r) ≈ −4πr2∆r∆u

(∆r)2/lc
= −4πr2lc

∆u

∆r
. (3.47)

A more rigorous derivation of this equation adds a factor 1/3 on the right hand side,
which comes about from an integration of cos2 θ over solid angle (see the derivation
of the equation of radiation pressure, Eq. 3.74, below). Including this factor and
replacing the differences with differentials, we obtain

L(r)
4πr2

= −cl

3
du

dr
. (3.48)

Note that this is, in effect, a “diffusion equation”, describing the outward flow of
energy. The left-hand side is the energy flux. On the right-hand side, du/dr is the
gradient in energy density, and −cl/3 is a diffusion coefficient that sets the pro-
portionality relating the energy flow and the energy density gradient. The opacity,
as reflected in the mean free path l, controls the flow of radiation through the star.
For low opacity (large l), the flow will be relatively unobstructed, and hence the
luminosity will be high, and vice versa.
Since at every radius the energy density is close to that of blackbody radiation,

then (Eq. 2.9)
u = aT 4, (3.49)

5In fact, even then, nothing dramatic would happen. As we will see in Section 3.9, a slow contraction
of the Sun would begin, with a timescale of ∼ 107 yr. Over ∼ 105 yr, the Solar radius would only
shrink by ∼ 1%, which is small but discernible.

Inside the sun, it is a good approximation that every volume element radiates as a 
blackbody.  However, there is still a net flow of radiation outward.  This implies 
that there is a higher density at smaller radii.

∆u = excess energy density

L(r) = net flow of radiation through a 
mass shell at radius r. 

L(r) =
excess energy

transit time

= transit time for photons to cross shell⌧rw =
r2

c`

Thus, we can write:
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A more rigorous derivation of this equation adds a factor 1/3 on the right hand side,
which comes about from an integration of cos2 θ over solid angle (see the derivation
of the equation of radiation pressure, Eq. 3.74, below). Including this factor and
replacing the differences with differentials, we obtain
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Note that this is, in effect, a “diffusion equation”, describing the outward flow of
energy. The left-hand side is the energy flux. On the right-hand side, du/dr is the
gradient in energy density, and −cl/3 is a diffusion coefficient that sets the pro-
portionality relating the energy flow and the energy density gradient. The opacity,
as reflected in the mean free path l, controls the flow of radiation through the star.
For low opacity (large l), the flow will be relatively unobstructed, and hence the
luminosity will be high, and vice versa.
Since at every radius the energy density is close to that of blackbody radiation,

then (Eq. 2.9)
u = aT 4, (3.49)

5In fact, even then, nothing dramatic would happen. As we will see in Section 3.9, a slow contraction
of the Sun would begin, with a timescale of ∼ 107 yr. Over ∼ 105 yr, the Solar radius would only
shrink by ∼ 1%, which is small but discernible.

WARNING:  this is an approximation
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A rigorous derivation yields:
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it takes this excess energy to flow across the shell’s width ∆r. The excess energy
density is∆u, which multiplied by the shell’s volume gives the total excess energy
of the shell, 4πr2∆r∆u. The time for the photons to cross the shell in a random
walk is (∆r)2/lc. Thus

L(r) ≈ −4πr2∆r∆u

(∆r)2/lc
= −4πr2lc

∆u

∆r
. (3.47)

A more rigorous derivation of this equation adds a factor 1/3 on the right hand side,
which comes about from an integration of cos2 θ over solid angle (see the derivation
of the equation of radiation pressure, Eq. 3.74, below). Including this factor and
replacing the differences with differentials, we obtain

L(r)
4πr2

= −cl

3
du

dr
. (3.48)

Note that this is, in effect, a “diffusion equation”, describing the outward flow of
energy. The left-hand side is the energy flux. On the right-hand side, du/dr is the
gradient in energy density, and −cl/3 is a diffusion coefficient that sets the pro-
portionality relating the energy flow and the energy density gradient. The opacity,
as reflected in the mean free path l, controls the flow of radiation through the star.
For low opacity (large l), the flow will be relatively unobstructed, and hence the
luminosity will be high, and vice versa.
Since at every radius the energy density is close to that of blackbody radiation,

then (Eq. 2.9)
u = aT 4, (3.49)

5In fact, even then, nothing dramatic would happen. As we will see in Section 3.9, a slow contraction
of the Sun would begin, with a timescale of ∼ 107 yr. Over ∼ 105 yr, the Solar radius would only
shrink by ∼ 1%, which is small but discernible.

diffusion coefficient

 gradient in energy

Notes:  This diffusion equation describes the outward flow of energy.
The opacity is reflected in the mean free path (l).

For low opacity (large l), flow is unobstructed and 
luminosity high.
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Figure 3.5 Radiative diffusion of energy between volume shells in a star, driven by the gra-
dient in the thermal energy density.

Thus, if the nuclear reactions powering the Sun were to suddenly switch off, we
would not notice5 anything unusual for 50,000 years.
With this background, we can now derive the equation that relates the tempera-

ture profile, T (r), to the flow of radiative energy through a star. The small mean
free path of photons inside the Sun and the very numerous scatterings, absorptions,
and re-emissions every photon undergoes reaffirms that locally, every volume ele-
ment inside the Sun radiates as a blackbody to a very good approximation. How-
ever, there is a net flow of radiation energy outwards, meaning there is some small
anisotropy (a preferred direction), and implying there is a higher energy density, at
smaller radii than at larger radii. The net flow of radiation energy through a mass
shell at radius r, per unit time, is just L(r) (see Fig. 3.5). This must equal the
excess energy in the shell, compared to a shell at larger radius, divided by the time
it takes this excess energy to flow across the shell’s width ∆r. The excess energy
density is∆u, which multiplied by the shell’s volume gives the total excess energy
of the shell, 4πr2∆r∆u. The time for the photons to cross the shell in a random
walk is (∆r)2/lc. Thus

L(r) ≈ −4πr2∆r∆u

(∆r)2/lc
= −4πr2lc

∆u

∆r
. (3.47)

A more rigorous derivation of this equation adds a factor 1/3 on the right hand side,
which comes about from an integration of cos2 θ over solid angle (see the derivation
of the equation of radiation pressure, Eq. 3.74, below). Including this factor and
replacing the differences with differentials, we obtain

L(r)
4πr2

= −cl

3
du

dr
. (3.48)

Note that this is, in effect, a “diffusion equation”, describing the outward flow of
energy. The left-hand side is the energy flux. On the right-hand side, du/dr is the
gradient in energy density, and −cl/3 is a diffusion coefficient that sets the pro-
portionality relating the energy flow and the energy density gradient. The opacity,
as reflected in the mean free path l, controls the flow of radiation through the star.
For low opacity (large l), the flow will be relatively unobstructed, and hence the
luminosity will be high, and vice versa.
Since at every radius the energy density is close to that of blackbody radiation,

then (Eq. 2.9)
u = aT 4, (3.49)

5In fact, even then, nothing dramatic would happen. As we will see in Section 3.9, a slow contraction
of the Sun would begin, with a timescale of ∼ 107 yr. Over ∼ 105 yr, the Solar radius would only
shrink by ∼ 1%, which is small but discernible.

Let’s revisit blackbody radiation.
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Figure 3.5 Radiative diffusion of energy between volume shells in a star, driven by the gra-
dient in the thermal energy density.

Thus, if the nuclear reactions powering the Sun were to suddenly switch off, we
would not notice5 anything unusual for 50,000 years.
With this background, we can now derive the equation that relates the tempera-

ture profile, T (r), to the flow of radiative energy through a star. The small mean
free path of photons inside the Sun and the very numerous scatterings, absorptions,
and re-emissions every photon undergoes reaffirms that locally, every volume ele-
ment inside the Sun radiates as a blackbody to a very good approximation. How-
ever, there is a net flow of radiation energy outwards, meaning there is some small
anisotropy (a preferred direction), and implying there is a higher energy density, at
smaller radii than at larger radii. The net flow of radiation energy through a mass
shell at radius r, per unit time, is just L(r) (see Fig. 3.5). This must equal the
excess energy in the shell, compared to a shell at larger radius, divided by the time
it takes this excess energy to flow across the shell’s width ∆r. The excess energy
density is∆u, which multiplied by the shell’s volume gives the total excess energy
of the shell, 4πr2∆r∆u. The time for the photons to cross the shell in a random
walk is (∆r)2/lc. Thus

L(r) ≈ −4πr2∆r∆u

(∆r)2/lc
= −4πr2lc

∆u

∆r
. (3.47)

A more rigorous derivation of this equation adds a factor 1/3 on the right hand side,
which comes about from an integration of cos2 θ over solid angle (see the derivation
of the equation of radiation pressure, Eq. 3.74, below). Including this factor and
replacing the differences with differentials, we obtain

L(r)
4πr2

= −cl

3
du

dr
. (3.48)

Note that this is, in effect, a “diffusion equation”, describing the outward flow of
energy. The left-hand side is the energy flux. On the right-hand side, du/dr is the
gradient in energy density, and −cl/3 is a diffusion coefficient that sets the pro-
portionality relating the energy flow and the energy density gradient. The opacity,
as reflected in the mean free path l, controls the flow of radiation through the star.
For low opacity (large l), the flow will be relatively unobstructed, and hence the
luminosity will be high, and vice versa.
Since at every radius the energy density is close to that of blackbody radiation,

then (Eq. 2.9)
u = aT 4, (3.49)

5In fact, even then, nothing dramatic would happen. As we will see in Section 3.9, a slow contraction
of the Sun would begin, with a timescale of ∼ 107 yr. Over ∼ 105 yr, the Solar radius would only
shrink by ∼ 1%, which is small but discernible.

At every radius, we approximate a blackbody. Thus, we can write:
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and
du

dr
=

du

dT

dT

dr
= 4aT 3 dT

dr
. (3.50)

Substituting in eq. 3.48, and expressing l as (κρ)−1, we obtain the equation of
radiative energy transport,

dT (r)
dr

= −3L(r)κ(r)ρ(r)
4πr24acT 3(r)

. (3.51)

From Eqns. 3.48 and 3.49, together with an estimate of the mean free path, we
can make an order-of-magnitude prediction of the Sun’s luminosity. Approximat-
ing −du/dr with ∼ u/r⊙ = aT 4/r⊙, we have

L⊙ ∼ 4πr2
⊙

cl

3
aT 4

r⊙
. (3.52)

Based on the virial theorem and the Sun’s mass and radius, we obtained in Eq. 3.33
an estimate of the Sun’s internal temperature, Tvir ∼ 4 × 106 K. Using this as a
typical temperature and taking l = 0.1 cm, we find

L⊙ ∼
4π

3
7×1010 cm×3×1010 cm s−1×10−1×7.6×10−15 cgs×(4×106 K)4

= 2× 1033 ergs−1, (3.53)

in reasonable agreement with the observed Solar luminosity,L⊙ = 3.8×1033 ergs−1.
(We have abbreviated above the units of the “radiation constant”, a, as “cgs”.) The
above estimate can also be used to argue that, based on its observed luminosity, the
Sun must be composed primarily of ionized hydrogen. If the Sun were composed
of, say, ionized carbon, the mean particle mass would be m̄ ≈ 12mH/7 ≈ 2mH ,
rather than mH/2. Equation 3.33 would then give a virial temperature that is 4
times as high, resulting in a luminosity prediction in Eq. 3.52 that is too high by
two orders of magnitude.

3.4 ENERGY CONSERVATION

We will see that the luminosity of a star is produced by nuclear reactions, with
output energies that depend on the local conditions (density and temperature) and
hence on r. Let us define �(r) as the power produced per unit mass of stellar
material. Energy conservation means that the addition to a star’s luminosity due to
the energy production in a thin shell at radius r is

dL = �dm = �ρ4πr2dr, (3.54)

or

dL(r)
dr

= 4πr2ρ(r)�(r), (3.55)

which is the equation of energy conservation.
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du

dr
=

du

dT

dT

dr
= 4aT 3 dT

dr
. (3.50)

Substituting in eq. 3.48, and expressing l as (κρ)−1, we obtain the equation of
radiative energy transport,

dT (r)
dr

= −3L(r)κ(r)ρ(r)
4πr24acT 3(r)

. (3.51)

From Eqns. 3.48 and 3.49, together with an estimate of the mean free path, we
can make an order-of-magnitude prediction of the Sun’s luminosity. Approximat-
ing −du/dr with ∼ u/r⊙ = aT 4/r⊙, we have

L⊙ ∼ 4πr2
⊙

cl

3
aT 4

r⊙
. (3.52)

Based on the virial theorem and the Sun’s mass and radius, we obtained in Eq. 3.33
an estimate of the Sun’s internal temperature, Tvir ∼ 4 × 106 K. Using this as a
typical temperature and taking l = 0.1 cm, we find

L⊙ ∼
4π

3
7×1010 cm×3×1010 cm s−1×10−1×7.6×10−15 cgs×(4×106 K)4

= 2× 1033 ergs−1, (3.53)

in reasonable agreement with the observed Solar luminosity,L⊙ = 3.8×1033 ergs−1.
(We have abbreviated above the units of the “radiation constant”, a, as “cgs”.) The
above estimate can also be used to argue that, based on its observed luminosity, the
Sun must be composed primarily of ionized hydrogen. If the Sun were composed
of, say, ionized carbon, the mean particle mass would be m̄ ≈ 12mH/7 ≈ 2mH ,
rather than mH/2. Equation 3.33 would then give a virial temperature that is 4
times as high, resulting in a luminosity prediction in Eq. 3.52 that is too high by
two orders of magnitude.

3.4 ENERGY CONSERVATION

We will see that the luminosity of a star is produced by nuclear reactions, with
output energies that depend on the local conditions (density and temperature) and
hence on r. Let us define �(r) as the power produced per unit mass of stellar
material. Energy conservation means that the addition to a star’s luminosity due to
the energy production in a thin shell at radius r is

dL = �dm = �ρ4πr2dr, (3.54)

or

dL(r)
dr

= 4πr2ρ(r)�(r), (3.55)

which is the equation of energy conservation.

Substituting yields (and letting l = (κρ)-1:

This is the Equation of Radiative Energy Transport.  
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The Sun’s Luminosity
Using the diffusion equation together with the mean free path 
estimate we can estimate the luminosity of the sun.
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Figure 3.5 Radiative diffusion of energy between volume shells in a star, driven by the gra-
dient in the thermal energy density.

Thus, if the nuclear reactions powering the Sun were to suddenly switch off, we
would not notice5 anything unusual for 50,000 years.
With this background, we can now derive the equation that relates the tempera-

ture profile, T (r), to the flow of radiative energy through a star. The small mean
free path of photons inside the Sun and the very numerous scatterings, absorptions,
and re-emissions every photon undergoes reaffirms that locally, every volume ele-
ment inside the Sun radiates as a blackbody to a very good approximation. How-
ever, there is a net flow of radiation energy outwards, meaning there is some small
anisotropy (a preferred direction), and implying there is a higher energy density, at
smaller radii than at larger radii. The net flow of radiation energy through a mass
shell at radius r, per unit time, is just L(r) (see Fig. 3.5). This must equal the
excess energy in the shell, compared to a shell at larger radius, divided by the time
it takes this excess energy to flow across the shell’s width ∆r. The excess energy
density is∆u, which multiplied by the shell’s volume gives the total excess energy
of the shell, 4πr2∆r∆u. The time for the photons to cross the shell in a random
walk is (∆r)2/lc. Thus

L(r) ≈ −4πr2∆r∆u

(∆r)2/lc
= −4πr2lc

∆u

∆r
. (3.47)

A more rigorous derivation of this equation adds a factor 1/3 on the right hand side,
which comes about from an integration of cos2 θ over solid angle (see the derivation
of the equation of radiation pressure, Eq. 3.74, below). Including this factor and
replacing the differences with differentials, we obtain

L(r)
4πr2

= −cl

3
du

dr
. (3.48)

Note that this is, in effect, a “diffusion equation”, describing the outward flow of
energy. The left-hand side is the energy flux. On the right-hand side, du/dr is the
gradient in energy density, and −cl/3 is a diffusion coefficient that sets the pro-
portionality relating the energy flow and the energy density gradient. The opacity,
as reflected in the mean free path l, controls the flow of radiation through the star.
For low opacity (large l), the flow will be relatively unobstructed, and hence the
luminosity will be high, and vice versa.
Since at every radius the energy density is close to that of blackbody radiation,

then (Eq. 2.9)
u = aT 4, (3.49)

5In fact, even then, nothing dramatic would happen. As we will see in Section 3.9, a slow contraction
of the Sun would begin, with a timescale of ∼ 107 yr. Over ∼ 105 yr, the Solar radius would only
shrink by ∼ 1%, which is small but discernible.

Approximate

�du

dr
⇠ u

rsun
=

aT 4

rsun
u = aT 4 �! u

r
=

aT 4

r

Recall:

Thus, we can write
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and
du

dr
=

du

dT

dT

dr
= 4aT 3 dT

dr
. (3.50)

Substituting in eq. 3.48, and expressing l as (κρ)−1, we obtain the equation of
radiative energy transport,

dT (r)
dr

= −3L(r)κ(r)ρ(r)
4πr24acT 3(r)

. (3.51)

From Eqns. 3.48 and 3.49, together with an estimate of the mean free path, we
can make an order-of-magnitude prediction of the Sun’s luminosity. Approximat-
ing −du/dr with ∼ u/r⊙ = aT 4/r⊙, we have

L⊙ ∼ 4πr2
⊙

cl

3
aT 4

r⊙
. (3.52)

Based on the virial theorem and the Sun’s mass and radius, we obtained in Eq. 3.33
an estimate of the Sun’s internal temperature, Tvir ∼ 4 × 106 K. Using this as a
typical temperature and taking l = 0.1 cm, we find

L⊙ ∼
4π

3
7×1010 cm×3×1010 cm s−1×10−1×7.6×10−15 cgs×(4×106 K)4

= 2× 1033 ergs−1, (3.53)

in reasonable agreement with the observed Solar luminosity,L⊙ = 3.8×1033 ergs−1.
(We have abbreviated above the units of the “radiation constant”, a, as “cgs”.) The
above estimate can also be used to argue that, based on its observed luminosity, the
Sun must be composed primarily of ionized hydrogen. If the Sun were composed
of, say, ionized carbon, the mean particle mass would be m̄ ≈ 12mH/7 ≈ 2mH ,
rather than mH/2. Equation 3.33 would then give a virial temperature that is 4
times as high, resulting in a luminosity prediction in Eq. 3.52 that is too high by
two orders of magnitude.

3.4 ENERGY CONSERVATION

We will see that the luminosity of a star is produced by nuclear reactions, with
output energies that depend on the local conditions (density and temperature) and
hence on r. Let us define �(r) as the power produced per unit mass of stellar
material. Energy conservation means that the addition to a star’s luminosity due to
the energy production in a thin shell at radius r is

dL = �dm = �ρ4πr2dr, (3.54)

or

dL(r)
dr

= 4πr2ρ(r)�(r), (3.55)

which is the equation of energy conservation.

=
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du

dr
=

du

dT

dT

dr
= 4aT 3 dT

dr
. (3.50)

Substituting in eq. 3.48, and expressing l as (κρ)−1, we obtain the equation of
radiative energy transport,

dT (r)
dr

= −3L(r)κ(r)ρ(r)
4πr24acT 3(r)

. (3.51)

From Eqns. 3.48 and 3.49, together with an estimate of the mean free path, we
can make an order-of-magnitude prediction of the Sun’s luminosity. Approximat-
ing −du/dr with ∼ u/r⊙ = aT 4/r⊙, we have

L⊙ ∼ 4πr2
⊙

cl

3
aT 4

r⊙
. (3.52)

Based on the virial theorem and the Sun’s mass and radius, we obtained in Eq. 3.33
an estimate of the Sun’s internal temperature, Tvir ∼ 4 × 106 K. Using this as a
typical temperature and taking l = 0.1 cm, we find

L⊙ ∼
4π

3
7×1010 cm×3×1010 cm s−1×10−1×7.6×10−15 cgs×(4×106 K)4

= 2× 1033 ergs−1, (3.53)

in reasonable agreement with the observed Solar luminosity,L⊙ = 3.8×1033 ergs−1.
(We have abbreviated above the units of the “radiation constant”, a, as “cgs”.) The
above estimate can also be used to argue that, based on its observed luminosity, the
Sun must be composed primarily of ionized hydrogen. If the Sun were composed
of, say, ionized carbon, the mean particle mass would be m̄ ≈ 12mH/7 ≈ 2mH ,
rather than mH/2. Equation 3.33 would then give a virial temperature that is 4
times as high, resulting in a luminosity prediction in Eq. 3.52 that is too high by
two orders of magnitude.

3.4 ENERGY CONSERVATION

We will see that the luminosity of a star is produced by nuclear reactions, with
output energies that depend on the local conditions (density and temperature) and
hence on r. Let us define �(r) as the power produced per unit mass of stellar
material. Energy conservation means that the addition to a star’s luminosity due to
the energy production in a thin shell at radius r is

dL = �dm = �ρ4πr2dr, (3.54)

or

dL(r)
dr

= 4πr2ρ(r)�(r), (3.55)

which is the equation of energy conservation.
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and
du

dr
=

du

dT

dT

dr
= 4aT 3 dT

dr
. (3.50)

Substituting in eq. 3.48, and expressing l as (κρ)−1, we obtain the equation of
radiative energy transport,

dT (r)
dr

= −3L(r)κ(r)ρ(r)
4πr24acT 3(r)

. (3.51)

From Eqns. 3.48 and 3.49, together with an estimate of the mean free path, we
can make an order-of-magnitude prediction of the Sun’s luminosity. Approximat-
ing −du/dr with ∼ u/r⊙ = aT 4/r⊙, we have

L⊙ ∼ 4πr2
⊙

cl

3
aT 4

r⊙
. (3.52)

Based on the virial theorem and the Sun’s mass and radius, we obtained in Eq. 3.33
an estimate of the Sun’s internal temperature, Tvir ∼ 4 × 106 K. Using this as a
typical temperature and taking l = 0.1 cm, we find

L⊙ ∼
4π

3
7×1010 cm×3×1010 cm s−1×10−1×7.6×10−15 cgs×(4×106 K)4

= 2× 1033 ergs−1, (3.53)

in reasonable agreement with the observed Solar luminosity,L⊙ = 3.8×1033 ergs−1.
(We have abbreviated above the units of the “radiation constant”, a, as “cgs”.) The
above estimate can also be used to argue that, based on its observed luminosity, the
Sun must be composed primarily of ionized hydrogen. If the Sun were composed
of, say, ionized carbon, the mean particle mass would be m̄ ≈ 12mH/7 ≈ 2mH ,
rather than mH/2. Equation 3.33 would then give a virial temperature that is 4
times as high, resulting in a luminosity prediction in Eq. 3.52 that is too high by
two orders of magnitude.

3.4 ENERGY CONSERVATION

We will see that the luminosity of a star is produced by nuclear reactions, with
output energies that depend on the local conditions (density and temperature) and
hence on r. Let us define �(r) as the power produced per unit mass of stellar
material. Energy conservation means that the addition to a star’s luminosity due to
the energy production in a thin shell at radius r is

dL = �dm = �ρ4πr2dr, (3.54)

or

dL(r)
dr

= 4πr2ρ(r)�(r), (3.55)

which is the equation of energy conservation.
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and
du

dr
=

du

dT

dT

dr
= 4aT 3 dT

dr
. (3.50)

Substituting in eq. 3.48, and expressing l as (κρ)−1, we obtain the equation of
radiative energy transport,

dT (r)
dr

= −3L(r)κ(r)ρ(r)
4πr24acT 3(r)

. (3.51)

From Eqns. 3.48 and 3.49, together with an estimate of the mean free path, we
can make an order-of-magnitude prediction of the Sun’s luminosity. Approximat-
ing −du/dr with ∼ u/r⊙ = aT 4/r⊙, we have

L⊙ ∼ 4πr2
⊙

cl

3
aT 4

r⊙
. (3.52)

Based on the virial theorem and the Sun’s mass and radius, we obtained in Eq. 3.33
an estimate of the Sun’s internal temperature, Tvir ∼ 4 × 106 K. Using this as a
typical temperature and taking l = 0.1 cm, we find

L⊙ ∼
4π

3
7×1010 cm×3×1010 cm s−1×10−1×7.6×10−15 cgs×(4×106 K)4

= 2× 1033 ergs−1, (3.53)

in reasonable agreement with the observed Solar luminosity,L⊙ = 3.8×1033 ergs−1.
(We have abbreviated above the units of the “radiation constant”, a, as “cgs”.) The
above estimate can also be used to argue that, based on its observed luminosity, the
Sun must be composed primarily of ionized hydrogen. If the Sun were composed
of, say, ionized carbon, the mean particle mass would be m̄ ≈ 12mH/7 ≈ 2mH ,
rather than mH/2. Equation 3.33 would then give a virial temperature that is 4
times as high, resulting in a luminosity prediction in Eq. 3.52 that is too high by
two orders of magnitude.

3.4 ENERGY CONSERVATION

We will see that the luminosity of a star is produced by nuclear reactions, with
output energies that depend on the local conditions (density and temperature) and
hence on r. Let us define �(r) as the power produced per unit mass of stellar
material. Energy conservation means that the addition to a star’s luminosity due to
the energy production in a thin shell at radius r is

dL = �dm = �ρ4πr2dr, (3.54)

or

dL(r)
dr

= 4πr2ρ(r)�(r), (3.55)

which is the equation of energy conservation.

(compared to 3.8 x 1033 ergs-1)
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Energy Conservation
The luminosity of a star is produced by nuclear reactions.  Let 
ε(r) be the power per unit mass of stellar material.  The star’s 
luminosity due to energy production in a thin shell at radius r is 
given by
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and
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=
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. (3.50)

Substituting in eq. 3.48, and expressing l as (κρ)−1, we obtain the equation of
radiative energy transport,

dT (r)
dr

= −3L(r)κ(r)ρ(r)
4πr24acT 3(r)

. (3.51)

From Eqns. 3.48 and 3.49, together with an estimate of the mean free path, we
can make an order-of-magnitude prediction of the Sun’s luminosity. Approximat-
ing −du/dr with ∼ u/r⊙ = aT 4/r⊙, we have

L⊙ ∼ 4πr2
⊙

cl

3
aT 4

r⊙
. (3.52)

Based on the virial theorem and the Sun’s mass and radius, we obtained in Eq. 3.33
an estimate of the Sun’s internal temperature, Tvir ∼ 4 × 106 K. Using this as a
typical temperature and taking l = 0.1 cm, we find

L⊙ ∼
4π

3
7×1010 cm×3×1010 cm s−1×10−1×7.6×10−15 cgs×(4×106 K)4

= 2× 1033 ergs−1, (3.53)

in reasonable agreement with the observed Solar luminosity,L⊙ = 3.8×1033 ergs−1.
(We have abbreviated above the units of the “radiation constant”, a, as “cgs”.) The
above estimate can also be used to argue that, based on its observed luminosity, the
Sun must be composed primarily of ionized hydrogen. If the Sun were composed
of, say, ionized carbon, the mean particle mass would be m̄ ≈ 12mH/7 ≈ 2mH ,
rather than mH/2. Equation 3.33 would then give a virial temperature that is 4
times as high, resulting in a luminosity prediction in Eq. 3.52 that is too high by
two orders of magnitude.

3.4 ENERGY CONSERVATION

We will see that the luminosity of a star is produced by nuclear reactions, with
output energies that depend on the local conditions (density and temperature) and
hence on r. Let us define �(r) as the power produced per unit mass of stellar
material. Energy conservation means that the addition to a star’s luminosity due to
the energy production in a thin shell at radius r is

dL = �dm = �ρ4πr2dr, (3.54)

or

dL(r)
dr

= 4πr2ρ(r)�(r), (3.55)

which is the equation of energy conservation.

rearranging terms
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and
du

dr
=

du

dT

dT

dr
= 4aT 3 dT

dr
. (3.50)

Substituting in eq. 3.48, and expressing l as (κρ)−1, we obtain the equation of
radiative energy transport,

dT (r)
dr

= −3L(r)κ(r)ρ(r)
4πr24acT 3(r)

. (3.51)

From Eqns. 3.48 and 3.49, together with an estimate of the mean free path, we
can make an order-of-magnitude prediction of the Sun’s luminosity. Approximat-
ing −du/dr with ∼ u/r⊙ = aT 4/r⊙, we have

L⊙ ∼ 4πr2
⊙

cl

3
aT 4

r⊙
. (3.52)

Based on the virial theorem and the Sun’s mass and radius, we obtained in Eq. 3.33
an estimate of the Sun’s internal temperature, Tvir ∼ 4 × 106 K. Using this as a
typical temperature and taking l = 0.1 cm, we find

L⊙ ∼
4π

3
7×1010 cm×3×1010 cm s−1×10−1×7.6×10−15 cgs×(4×106 K)4

= 2× 1033 ergs−1, (3.53)

in reasonable agreement with the observed Solar luminosity,L⊙ = 3.8×1033 ergs−1.
(We have abbreviated above the units of the “radiation constant”, a, as “cgs”.) The
above estimate can also be used to argue that, based on its observed luminosity, the
Sun must be composed primarily of ionized hydrogen. If the Sun were composed
of, say, ionized carbon, the mean particle mass would be m̄ ≈ 12mH/7 ≈ 2mH ,
rather than mH/2. Equation 3.33 would then give a virial temperature that is 4
times as high, resulting in a luminosity prediction in Eq. 3.52 that is too high by
two orders of magnitude.

3.4 ENERGY CONSERVATION

We will see that the luminosity of a star is produced by nuclear reactions, with
output energies that depend on the local conditions (density and temperature) and
hence on r. Let us define �(r) as the power produced per unit mass of stellar
material. Energy conservation means that the addition to a star’s luminosity due to
the energy production in a thin shell at radius r is

dL = �dm = �ρ4πr2dr, (3.54)

or

dL(r)
dr

= 4πr2ρ(r)�(r), (3.55)

which is the equation of energy conservation.
This is the Equation of Energy Conservation.  
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Equations of Stellar Structure
We now have all 4 of the  equations for stellar structure!

And it hardly hurt at all ….
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3.5 THE EQUATIONS OF STELLAR STRUCTURE

We have derived four coupled first-order differential equations describing stellar
structure. Let us re-write them here.

dP (r)
dr

= −GM(r)ρ(r)
r2

, (3.56)

dM(r)
dr

= 4πr2ρ(r), (3.57)

dT (r)
dr

= −3L(r)κ(r)ρ(r)
4πr24acT (r)3

, (3.58)

dL(r)
dr

= 4πr2ρ(r)�(r). (3.59)

We can define four boundary conditions for these equations. For example:

M(r = 0) = 0 (3.60)

L(r = 0) = 0 (3.61)

P (r = r∗) = 0 (3.62)

M(r = r∗) = M∗ (3.63)

whereM∗ is the total mass of the star. (In reality, at the radius r∗ of the photosphere
of the star, P does not really go completely to zero, nor do T and ρ, and more
sophisticated boundary conditions are required, which account for the processes in
the photosphere.)
To these four differential equations we need to add three equations connecting

the pressure, the opacity, and the energy production rate of the gas with its density,
temperature, and composition:

P = P (ρ, T, composition); (3.64)

κ = κ(ρ, T, composition); (3.65)

� = �(ρ, T, composition). (3.66)

P (ρ, T ) is usually called the equation of state. Each of these three functions will
depend on the composition through the element abundances and the ionization
states of each element in the gas. It is common in astronomy to parametrize the
mass abundances of hydrogen, helium, and the heavier elements (the latter are
often referred to collectively by the term “metals”) as

X ≡ ρH

ρ
, Y ≡ ρHe

ρ
, Z ≡ ρmetals

ρ
. (3.67)
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To solve these equations, we need to define boundary conditions.
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We can define four boundary conditions for these equations. For example:

M(r = 0) = 0 (3.60)

L(r = 0) = 0 (3.61)

P (r = r∗) = 0 (3.62)

M(r = r∗) = M∗ (3.63)

whereM∗ is the total mass of the star. (In reality, at the radius r∗ of the photosphere
of the star, P does not really go completely to zero, nor do T and ρ, and more
sophisticated boundary conditions are required, which account for the processes in
the photosphere.)
To these four differential equations we need to add three equations connecting

the pressure, the opacity, and the energy production rate of the gas with its density,
temperature, and composition:

P = P (ρ, T, composition); (3.64)

κ = κ(ρ, T, composition); (3.65)

� = �(ρ, T, composition). (3.66)

P (ρ, T ) is usually called the equation of state. Each of these three functions will
depend on the composition through the element abundances and the ionization
states of each element in the gas. It is common in astronomy to parametrize the
mass abundances of hydrogen, helium, and the heavier elements (the latter are
often referred to collectively by the term “metals”) as

X ≡ ρH

ρ
, Y ≡ ρHe

ρ
, Z ≡ ρmetals

ρ
. (3.67)

Vogt-Russell Conjecture:

Properties and evolution of a star are fully determined by its 
initial mass and its chemical composition.

From this we can determine a stars observable parameters:  
surface temperature, radius and luminosity.
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Ancillary Equations

The mass abundances of He, H and heavier elements are 
parameterized by
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3.5 THE EQUATIONS OF STELLAR STRUCTURE

We have derived four coupled first-order differential equations describing stellar
structure. Let us re-write them here.
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, (3.56)
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= 4πr2ρ(r), (3.57)
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= −3L(r)κ(r)ρ(r)
4πr24acT (r)3

, (3.58)

dL(r)
dr

= 4πr2ρ(r)�(r). (3.59)

We can define four boundary conditions for these equations. For example:

M(r = 0) = 0 (3.60)

L(r = 0) = 0 (3.61)

P (r = r∗) = 0 (3.62)

M(r = r∗) = M∗ (3.63)

whereM∗ is the total mass of the star. (In reality, at the radius r∗ of the photosphere
of the star, P does not really go completely to zero, nor do T and ρ, and more
sophisticated boundary conditions are required, which account for the processes in
the photosphere.)
To these four differential equations we need to add three equations connecting

the pressure, the opacity, and the energy production rate of the gas with its density,
temperature, and composition:

P = P (ρ, T, composition); (3.64)

κ = κ(ρ, T, composition); (3.65)

� = �(ρ, T, composition). (3.66)

P (ρ, T ) is usually called the equation of state. Each of these three functions will
depend on the composition through the element abundances and the ionization
states of each element in the gas. It is common in astronomy to parametrize the
mass abundances of hydrogen, helium, and the heavier elements (the latter are
often referred to collectively by the term “metals”) as

X ≡ ρH

ρ
, Y ≡ ρHe

ρ
, Z ≡ ρmetals

ρ
. (3.67)
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We can define four boundary conditions for these equations. For example:

M(r = 0) = 0 (3.60)

L(r = 0) = 0 (3.61)

P (r = r∗) = 0 (3.62)

M(r = r∗) = M∗ (3.63)

whereM∗ is the total mass of the star. (In reality, at the radius r∗ of the photosphere
of the star, P does not really go completely to zero, nor do T and ρ, and more
sophisticated boundary conditions are required, which account for the processes in
the photosphere.)
To these four differential equations we need to add three equations connecting

the pressure, the opacity, and the energy production rate of the gas with its density,
temperature, and composition:

P = P (ρ, T, composition); (3.64)

κ = κ(ρ, T, composition); (3.65)

� = �(ρ, T, composition). (3.66)

P (ρ, T ) is usually called the equation of state. Each of these three functions will
depend on the composition through the element abundances and the ionization
states of each element in the gas. It is common in astronomy to parametrize the
mass abundances of hydrogen, helium, and the heavier elements (the latter are
often referred to collectively by the term “metals”) as

X ≡ ρH

ρ
, Y ≡ ρHe

ρ
, Z ≡ ρmetals

ρ
. (3.67)

“equation of state”

“opacity”

“energy generation”

The Equations of Stellar Structure do not give us enough information 
to understand how the gas in the sun behaves.  So, we add to the 
following equations to connect pressure, opacity, energy generations, 
density and temperature.
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Equation of State
In most normal stars, the classical, nonrelativistic ideal gas law is a 
good approximation for the equation of state:
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We have thus ended up with seven coupled equations defining the seven unknown
functions: P (r),M(r), ρ(r), T (r), κ(r), L(r), and �(r). As there are four bound-
ary conditions for the four first-order differential equations, if there is a solution, it
is unique. This is usually expressed in the form of the “Vogt-Russell conjecture”,
which states that the properties and evolution of an isolated star are fully deter-
mined by its initial mass and its chemical abundances. These determine the star’s
observable parameters: its surface temperature, radius, and luminosity. Two vari-
ables which we have neglected in this treatment, and which have minor influence
on stellar structure, are stellar rotation and magnetic fields. To proceed, we need to
define the three functions, P , κ, and �.

3.6 THE EQUATION OF STATE

Different equations of state P (ρ, T,X, Y, Z) apply for different ranges of gas den-
sity, temperature, and abundance. Under the conditions in most normal stars, the
equation of state of a classical, nonrelativistic, ideal gas, provides a good descrip-
tion. Consider, for example, such a gas, composed of three different kinds of par-
ticles, each with its own mass mi and density ni. The mean particle mass will
be

m̄ =
n1m1 + n2m2 + n3m3

n1 + n2 + n3
=

ρ

n
. (3.68)

The gas pressure will then be

Pg = nkT =
ρ

m̄
kT. (3.69)

The mean mass will depend on the chemical abundance and ionization state of the
gas. As we have already seen, for completely ionized pure hydrogen,

m̄ =
mH

2
, (3.70)

and therefore m̄/mH = 0.5.
More generally, the number densities of hydrogen, helium, or an element of

atomic mass number A (i.e., an element with a total of A protons and neutrons in
each atomic nucleus) will be

nH =
Xρ

mH
, nHe =

Y ρ

4mH
, nA =

ZAρ

AmH
, (3.71)

where ZA is the mass abundance of an element of atomic mass number A. Com-
plete ionization of hydrogen results in two particles (an electron and a proton); of
helium, three particles (two electrons and a nucleus); and of an atom with atomic
number Z (i.e., with Z protons or electrons), Z + 1 particles, which for heavy
enough atoms is always close to A/2. Thus, for an ionized gas we will have

n = 2nH + 3nHe +
X A

2
nA =

ρ

mH

µ
2X +

3
4
Y +

1
2
Z

∂

=
ρ

2mH

µ
3X +

Y

2
+ 1

∂
, (3.72)

The number density n is related to the mean mass.  Consider gas 
of three kinds of particles.
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and therefore m̄/mH = 0.5.
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where ZA is the mass abundance of an element of atomic mass number A. Com-
plete ionization of hydrogen results in two particles (an electron and a proton); of
helium, three particles (two electrons and a nucleus); and of an atom with atomic
number Z (i.e., with Z protons or electrons), Z + 1 particles, which for heavy
enough atoms is always close to A/2. Thus, for an ionized gas we will have

n = 2nH + 3nHe +
X A

2
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Y +
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ables which we have neglected in this treatment, and which have minor influence
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Different equations of state P (ρ, T,X, Y, Z) apply for different ranges of gas den-
sity, temperature, and abundance. Under the conditions in most normal stars, the
equation of state of a classical, nonrelativistic, ideal gas, provides a good descrip-
tion. Consider, for example, such a gas, composed of three different kinds of par-
ticles, each with its own mass mi and density ni. The mean particle mass will
be

m̄ =
n1m1 + n2m2 + n3m3

n1 + n2 + n3
=

ρ

n
. (3.68)

The gas pressure will then be

Pg = nkT =
ρ

m̄
kT. (3.69)

The mean mass will depend on the chemical abundance and ionization state of the
gas. As we have already seen, for completely ionized pure hydrogen,

m̄ =
mH

2
, (3.70)

and therefore m̄/mH = 0.5.
More generally, the number densities of hydrogen, helium, or an element of

atomic mass number A (i.e., an element with a total of A protons and neutrons in
each atomic nucleus) will be

nH =
Xρ

mH
, nHe =

Y ρ

4mH
, nA =

ZAρ

AmH
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where ZA is the mass abundance of an element of atomic mass number A. Com-
plete ionization of hydrogen results in two particles (an electron and a proton); of
helium, three particles (two electrons and a nucleus); and of an atom with atomic
number Z (i.e., with Z protons or electrons), Z + 1 particles, which for heavy
enough atoms is always close to A/2. Thus, for an ionized gas we will have

n = 2nH + 3nHe +
X A

2
nA =

ρ

mH

µ
2X +

3
4
Y +

1
2
Z

∂

=
ρ

2mH

µ
3X +

Y

2
+ 1

∂
, (3.72)

Which means we can write

Pg =
⇢

m̄
kT

This is the kinetic gas pressure
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3.5 THE EQUATIONS OF STELLAR STRUCTURE

We have derived four coupled first-order differential equations describing stellar
structure. Let us re-write them here.

dP (r)
dr

= −GM(r)ρ(r)
r2

, (3.56)

dM(r)
dr

= 4πr2ρ(r), (3.57)

dT (r)
dr

= −3L(r)κ(r)ρ(r)
4πr24acT (r)3

, (3.58)

dL(r)
dr

= 4πr2ρ(r)�(r). (3.59)

We can define four boundary conditions for these equations. For example:

M(r = 0) = 0 (3.60)

L(r = 0) = 0 (3.61)

P (r = r∗) = 0 (3.62)

M(r = r∗) = M∗ (3.63)

whereM∗ is the total mass of the star. (In reality, at the radius r∗ of the photosphere
of the star, P does not really go completely to zero, nor do T and ρ, and more
sophisticated boundary conditions are required, which account for the processes in
the photosphere.)
To these four differential equations we need to add three equations connecting

the pressure, the opacity, and the energy production rate of the gas with its density,
temperature, and composition:

P = P (ρ, T, composition); (3.64)

κ = κ(ρ, T, composition); (3.65)

� = �(ρ, T, composition). (3.66)

P (ρ, T ) is usually called the equation of state. Each of these three functions will
depend on the composition through the element abundances and the ionization
states of each element in the gas. It is common in astronomy to parametrize the
mass abundances of hydrogen, helium, and the heavier elements (the latter are
often referred to collectively by the term “metals”) as

X ≡ ρH

ρ
, Y ≡ ρHe

ρ
, Z ≡ ρmetals

ρ
. (3.67)We can more generally write the number densities

of H, He and metals.
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is unique. This is usually expressed in the form of the “Vogt-Russell conjecture”,
which states that the properties and evolution of an isolated star are fully deter-
mined by its initial mass and its chemical abundances. These determine the star’s
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ables which we have neglected in this treatment, and which have minor influence
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equation of state of a classical, nonrelativistic, ideal gas, provides a good descrip-
tion. Consider, for example, such a gas, composed of three different kinds of par-
ticles, each with its own mass mi and density ni. The mean particle mass will
be

m̄ =
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=

ρ

n
. (3.68)

The gas pressure will then be

Pg = nkT =
ρ

m̄
kT. (3.69)

The mean mass will depend on the chemical abundance and ionization state of the
gas. As we have already seen, for completely ionized pure hydrogen,

m̄ =
mH

2
, (3.70)

and therefore m̄/mH = 0.5.
More generally, the number densities of hydrogen, helium, or an element of

atomic mass number A (i.e., an element with a total of A protons and neutrons in
each atomic nucleus) will be

nH =
Xρ

mH
, nHe =

Y ρ
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, nA =

ZAρ

AmH
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where ZA is the mass abundance of an element of atomic mass number A. Com-
plete ionization of hydrogen results in two particles (an electron and a proton); of
helium, three particles (two electrons and a nucleus); and of an atom with atomic
number Z (i.e., with Z protons or electrons), Z + 1 particles, which for heavy
enough atoms is always close to A/2. Thus, for an ionized gas we will have

n = 2nH + 3nHe +
X A

2
nA =

ρ

mH

µ
2X +

3
4
Y +

1
2
Z

∂

=
ρ

2mH

µ
3X +

Y

2
+ 1

∂
, (3.72)

How many particles results from the complete ionization of 
hydrogen? 
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define the three functions, P , κ, and �.
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equation of state of a classical, nonrelativistic, ideal gas, provides a good descrip-
tion. Consider, for example, such a gas, composed of three different kinds of par-
ticles, each with its own mass mi and density ni. The mean particle mass will
be

m̄ =
n1m1 + n2m2 + n3m3

n1 + n2 + n3
=

ρ

n
. (3.68)

The gas pressure will then be

Pg = nkT =
ρ

m̄
kT. (3.69)

The mean mass will depend on the chemical abundance and ionization state of the
gas. As we have already seen, for completely ionized pure hydrogen,

m̄ =
mH

2
, (3.70)

and therefore m̄/mH = 0.5.
More generally, the number densities of hydrogen, helium, or an element of

atomic mass number A (i.e., an element with a total of A protons and neutrons in
each atomic nucleus) will be

nH =
Xρ

mH
, nHe =

Y ρ

4mH
, nA =

ZAρ

AmH
, (3.71)

where ZA is the mass abundance of an element of atomic mass number A. Com-
plete ionization of hydrogen results in two particles (an electron and a proton); of
helium, three particles (two electrons and a nucleus); and of an atom with atomic
number Z (i.e., with Z protons or electrons), Z + 1 particles, which for heavy
enough atoms is always close to A/2. Thus, for an ionized gas we will have

n = 2nH + 3nHe +
X A

2
nA =

ρ

mH

µ
2X +

3
4
Y +

1
2
Z

∂

=
ρ

2mH

µ
3X +

Y

2
+ 1

∂
, (3.72)

Thus, for an ionized gas:
Helium?

n =
⇢

mH
(2X +

3

4
Y +

1

2
Z)
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Different equations of state P (ρ, T,X, Y, Z) apply for different ranges of gas den-
sity, temperature, and abundance. Under the conditions in most normal stars, the
equation of state of a classical, nonrelativistic, ideal gas, provides a good descrip-
tion. Consider, for example, such a gas, composed of three different kinds of par-
ticles, each with its own mass mi and density ni. The mean particle mass will
be

m̄ =
n1m1 + n2m2 + n3m3

n1 + n2 + n3
=

ρ

n
. (3.68)

The gas pressure will then be

Pg = nkT =
ρ

m̄
kT. (3.69)

The mean mass will depend on the chemical abundance and ionization state of the
gas. As we have already seen, for completely ionized pure hydrogen,

m̄ =
mH

2
, (3.70)

and therefore m̄/mH = 0.5.
More generally, the number densities of hydrogen, helium, or an element of

atomic mass number A (i.e., an element with a total of A protons and neutrons in
each atomic nucleus) will be

nH =
Xρ

mH
, nHe =

Y ρ

4mH
, nA =

ZAρ

AmH
, (3.71)

where ZA is the mass abundance of an element of atomic mass number A. Com-
plete ionization of hydrogen results in two particles (an electron and a proton); of
helium, three particles (two electrons and a nucleus); and of an atom with atomic
number Z (i.e., with Z protons or electrons), Z + 1 particles, which for heavy
enough atoms is always close to A/2. Thus, for an ionized gas we will have

n = 2nH + 3nHe +
X A

2
nA =

ρ

mH

µ
2X +

3
4
Y +

1
2
Z

∂

=
ρ

2mH

µ
3X +

Y

2
+ 1

∂
, (3.72)
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Figure 3.6 Calculation of radiation pressure. A beam of photons with blackbody intensity
B strikes the wall of a container at an angle θ to its perpendicular. The projected
area of the beam, dA, is increased by 1/ cos θ, and therefore the power reaching
the wall per unit area is decreased to B cos θ. Since a photon’s momentum,
p, is its energy divided by c, the momentum flux in the beam is B/c. Every
reflection of a photon transfers twice its perpendicular component of momentum,
and therefore the momentum transfer per unit time and per unit area, i.e., the
pressure, is 2B cos

2 θ/c. The total pressure is obtained by integrating over all
angles of the beams that approach the wall.

where we have used the fact that X + Y + Z = 1. Thus,
m̄

mH
=

ρ

nmH
=

2
1 + 3X + 0.5Y

(3.73)

for a totally ionized gas. For Solar abundances, X = 0.71, Y = 0.27, Z = 0.02,
and therefore m̄/mH = 0.61. In the central regions of the Sun, about half of the
hydrogen has already been converted into helium by nuclear reactions, and as a
result X = 0.34, Y = 0.64, and Z = 0.02, giving m̄/mH = 0.85.
In addition to the kinetic gas pressure, the photons in a star exert radiation pres-

sure. Let us digress briefly, and derive the equation of state for this kind of pres-
sure. Consider photons inside a blackbody radiator with an intensity given by the
Planck function, Iν = Bν , which, when integrated over wavelength, we denoted
as B. As illustrated in Fig. 3.6, the energy arriving at the surface of the radiator
per unit time, per unit area, at some angle θ to the perpendicular to the surface, is
B cos θ, because the area of the beam, when projected onto the wall of the radiator,
is increased by 1/ cos θ. Now, consider the photons in the beam, which strike the
fully reflective surface of the radiator at the angle θ. Every photon of energy E
has momentum p = E/c. When reflected, it transmits to the surface a momentum
∆p = (2E/c) cos θ. Therefore, there is a second factor of cos θ that must be ap-
plied to the incoming beam. The rate of momentum tranfer per unit area will be
obtained by integrating over all angles at which the photons hit the surface. But,
the rate of momentum transfer (i.e., the force) per unit area is, by definition, the
pressure. Thus,

P =
F

A
=

dp/dt

A
=

2
c

Z π

π/2

B cos2 θ sin θdθdφ =
4π

3c
B =

1
3
u, (3.74)

where in the last equality we have used the previously found relation (Eq. 2.4)
between intensity and energy density. Note that the derivation above applies not

Recall, m = ρ/n

Here we used the fact
X + Y + Z = 1
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The mean mass to hydrogen mass ratio for 
pure hydrogen = 1/2.  (X = 1, Y = 0, Z = 0).

m̄

mH
=

2

1 + 3X + 0.5Y

For solar abundances, X = 0.71, Y = 0.27 and Z = 0.02.  Calculate the 
mean to hydrogen mass ratio.

In the core of the sun, X = 0.34, Y = 0.64 and Z = 0.02.  Calculate the 
mean to hydrogen mass ratio.

Notice:  X + Y + Z = 1.
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Figure 3.6 Calculation of radiation pressure. A beam of photons with blackbody intensity
B strikes the wall of a container at an angle θ to its perpendicular. The projected
area of the beam, dA, is increased by 1/ cos θ, and therefore the power reaching
the wall per unit area is decreased to B cos θ. Since a photon’s momentum,
p, is its energy divided by c, the momentum flux in the beam is B/c. Every
reflection of a photon transfers twice its perpendicular component of momentum,
and therefore the momentum transfer per unit time and per unit area, i.e., the
pressure, is 2B cos

2 θ/c. The total pressure is obtained by integrating over all
angles of the beams that approach the wall.

where we have used the fact that X + Y + Z = 1. Thus,
m̄

mH
=

ρ

nmH
=

2
1 + 3X + 0.5Y

(3.73)

for a totally ionized gas. For Solar abundances, X = 0.71, Y = 0.27, Z = 0.02,
and therefore m̄/mH = 0.61. In the central regions of the Sun, about half of the
hydrogen has already been converted into helium by nuclear reactions, and as a
result X = 0.34, Y = 0.64, and Z = 0.02, giving m̄/mH = 0.85.
In addition to the kinetic gas pressure, the photons in a star exert radiation pres-

sure. Let us digress briefly, and derive the equation of state for this kind of pres-
sure. Consider photons inside a blackbody radiator with an intensity given by the
Planck function, Iν = Bν , which, when integrated over wavelength, we denoted
as B. As illustrated in Fig. 3.6, the energy arriving at the surface of the radiator
per unit time, per unit area, at some angle θ to the perpendicular to the surface, is
B cos θ, because the area of the beam, when projected onto the wall of the radiator,
is increased by 1/ cos θ. Now, consider the photons in the beam, which strike the
fully reflective surface of the radiator at the angle θ. Every photon of energy E
has momentum p = E/c. When reflected, it transmits to the surface a momentum
∆p = (2E/c) cos θ. Therefore, there is a second factor of cos θ that must be ap-
plied to the incoming beam. The rate of momentum tranfer per unit area will be
obtained by integrating over all angles at which the photons hit the surface. But,
the rate of momentum transfer (i.e., the force) per unit area is, by definition, the
pressure. Thus,

P =
F

A
=

dp/dt

A
=

2
c

Z π

π/2

B cos2 θ sin θdθdφ =
4π

3c
B =

1
3
u, (3.74)

where in the last equality we have used the previously found relation (Eq. 2.4)
between intensity and energy density. Note that the derivation above applies not
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Figure 3.6 Calculation of radiation pressure. A beam of photons with blackbody intensity
B strikes the wall of a container at an angle θ to its perpendicular. The projected
area of the beam, dA, is increased by 1/ cos θ, and therefore the power reaching
the wall per unit area is decreased to B cos θ. Since a photon’s momentum,
p, is its energy divided by c, the momentum flux in the beam is B/c. Every
reflection of a photon transfers twice its perpendicular component of momentum,
and therefore the momentum transfer per unit time and per unit area, i.e., the
pressure, is 2B cos

2 θ/c. The total pressure is obtained by integrating over all
angles of the beams that approach the wall.

where we have used the fact that X + Y + Z = 1. Thus,
m̄

mH
=

ρ

nmH
=

2
1 + 3X + 0.5Y

(3.73)

for a totally ionized gas. For Solar abundances, X = 0.71, Y = 0.27, Z = 0.02,
and therefore m̄/mH = 0.61. In the central regions of the Sun, about half of the
hydrogen has already been converted into helium by nuclear reactions, and as a
result X = 0.34, Y = 0.64, and Z = 0.02, giving m̄/mH = 0.85.
In addition to the kinetic gas pressure, the photons in a star exert radiation pres-

sure. Let us digress briefly, and derive the equation of state for this kind of pres-
sure. Consider photons inside a blackbody radiator with an intensity given by the
Planck function, Iν = Bν , which, when integrated over wavelength, we denoted
as B. As illustrated in Fig. 3.6, the energy arriving at the surface of the radiator
per unit time, per unit area, at some angle θ to the perpendicular to the surface, is
B cos θ, because the area of the beam, when projected onto the wall of the radiator,
is increased by 1/ cos θ. Now, consider the photons in the beam, which strike the
fully reflective surface of the radiator at the angle θ. Every photon of energy E
has momentum p = E/c. When reflected, it transmits to the surface a momentum
∆p = (2E/c) cos θ. Therefore, there is a second factor of cos θ that must be ap-
plied to the incoming beam. The rate of momentum tranfer per unit area will be
obtained by integrating over all angles at which the photons hit the surface. But,
the rate of momentum transfer (i.e., the force) per unit area is, by definition, the
pressure. Thus,

P =
F

A
=

dp/dt

A
=

2
c

Z π

π/2

B cos2 θ sin θdθdφ =
4π

3c
B =

1
3
u, (3.74)

where in the last equality we have used the previously found relation (Eq. 2.4)
between intensity and energy density. Note that the derivation above applies not
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Radiation Pressure
Since the gas in a star locally emits as  a blackbody, the blackbody 
photons will produce radiation pressure.

The projected area of the beam is 
increased by 1/cosθ, thus the energy 
per unit time (power) arriving at the 
surface is Bcosθ.

The intensity of this radiation (B) is integrated over all frequencies and 
directions. 

B =

Z
I�d�

Reminder: 
Intensity = power/area
Power = energy/time
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Figure 3.6 Calculation of radiation pressure. A beam of photons with blackbody intensity
B strikes the wall of a container at an angle θ to its perpendicular. The projected
area of the beam, dA, is increased by 1/ cos θ, and therefore the power reaching
the wall per unit area is decreased to B cos θ. Since a photon’s momentum,
p, is its energy divided by c, the momentum flux in the beam is B/c. Every
reflection of a photon transfers twice its perpendicular component of momentum,
and therefore the momentum transfer per unit time and per unit area, i.e., the
pressure, is 2B cos

2 θ/c. The total pressure is obtained by integrating over all
angles of the beams that approach the wall.

where we have used the fact that X + Y + Z = 1. Thus,
m̄

mH
=

ρ

nmH
=

2
1 + 3X + 0.5Y

(3.73)

for a totally ionized gas. For Solar abundances, X = 0.71, Y = 0.27, Z = 0.02,
and therefore m̄/mH = 0.61. In the central regions of the Sun, about half of the
hydrogen has already been converted into helium by nuclear reactions, and as a
result X = 0.34, Y = 0.64, and Z = 0.02, giving m̄/mH = 0.85.
In addition to the kinetic gas pressure, the photons in a star exert radiation pres-

sure. Let us digress briefly, and derive the equation of state for this kind of pres-
sure. Consider photons inside a blackbody radiator with an intensity given by the
Planck function, Iν = Bν , which, when integrated over wavelength, we denoted
as B. As illustrated in Fig. 3.6, the energy arriving at the surface of the radiator
per unit time, per unit area, at some angle θ to the perpendicular to the surface, is
B cos θ, because the area of the beam, when projected onto the wall of the radiator,
is increased by 1/ cos θ. Now, consider the photons in the beam, which strike the
fully reflective surface of the radiator at the angle θ. Every photon of energy E
has momentum p = E/c. When reflected, it transmits to the surface a momentum
∆p = (2E/c) cos θ. Therefore, there is a second factor of cos θ that must be ap-
plied to the incoming beam. The rate of momentum tranfer per unit area will be
obtained by integrating over all angles at which the photons hit the surface. But,
the rate of momentum transfer (i.e., the force) per unit area is, by definition, the
pressure. Thus,

P =
F

A
=

dp/dt

A
=

2
c

Z π

π/2

B cos2 θ sin θdθdφ =
4π

3c
B =

1
3
u, (3.74)

where in the last equality we have used the previously found relation (Eq. 2.4)
between intensity and energy density. Note that the derivation above applies not



Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

For a photon, p=E/c, incident 
at angle θ, the photon surface 
density is reduced by a factor 
cosθ.  The momentum transfer 
is then 

basicastro4 October 26, 2006

STELLAR PHYSICS 45

Figure 3.6 Calculation of radiation pressure. A beam of photons with blackbody intensity
B strikes the wall of a container at an angle θ to its perpendicular. The projected
area of the beam, dA, is increased by 1/ cos θ, and therefore the power reaching
the wall per unit area is decreased to B cos θ. Since a photon’s momentum,
p, is its energy divided by c, the momentum flux in the beam is B/c. Every
reflection of a photon transfers twice its perpendicular component of momentum,
and therefore the momentum transfer per unit time and per unit area, i.e., the
pressure, is 2B cos

2 θ/c. The total pressure is obtained by integrating over all
angles of the beams that approach the wall.

where we have used the fact that X + Y + Z = 1. Thus,
m̄

mH
=

ρ

nmH
=

2
1 + 3X + 0.5Y

(3.73)

for a totally ionized gas. For Solar abundances, X = 0.71, Y = 0.27, Z = 0.02,
and therefore m̄/mH = 0.61. In the central regions of the Sun, about half of the
hydrogen has already been converted into helium by nuclear reactions, and as a
result X = 0.34, Y = 0.64, and Z = 0.02, giving m̄/mH = 0.85.
In addition to the kinetic gas pressure, the photons in a star exert radiation pres-

sure. Let us digress briefly, and derive the equation of state for this kind of pres-
sure. Consider photons inside a blackbody radiator with an intensity given by the
Planck function, Iν = Bν , which, when integrated over wavelength, we denoted
as B. As illustrated in Fig. 3.6, the energy arriving at the surface of the radiator
per unit time, per unit area, at some angle θ to the perpendicular to the surface, is
B cos θ, because the area of the beam, when projected onto the wall of the radiator,
is increased by 1/ cos θ. Now, consider the photons in the beam, which strike the
fully reflective surface of the radiator at the angle θ. Every photon of energy E
has momentum p = E/c. When reflected, it transmits to the surface a momentum
∆p = (2E/c) cos θ. Therefore, there is a second factor of cos θ that must be ap-
plied to the incoming beam. The rate of momentum tranfer per unit area will be
obtained by integrating over all angles at which the photons hit the surface. But,
the rate of momentum transfer (i.e., the force) per unit area is, by definition, the
pressure. Thus,

P =
F

A
=

dp/dt

A
=

2
c

Z π

π/2

B cos2 θ sin θdθdφ =
4π

3c
B =

1
3
u, (3.74)

where in the last equality we have used the previously found relation (Eq. 2.4)
between intensity and energy density. Note that the derivation above applies not

So we can write
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Figure 3.6 Calculation of radiation pressure. A beam of photons with blackbody intensity
B strikes the wall of a container at an angle θ to its perpendicular. The projected
area of the beam, dA, is increased by 1/ cos θ, and therefore the power reaching
the wall per unit area is decreased to B cos θ. Since a photon’s momentum,
p, is its energy divided by c, the momentum flux in the beam is B/c. Every
reflection of a photon transfers twice its perpendicular component of momentum,
and therefore the momentum transfer per unit time and per unit area, i.e., the
pressure, is 2B cos

2 θ/c. The total pressure is obtained by integrating over all
angles of the beams that approach the wall.

where we have used the fact that X + Y + Z = 1. Thus,
m̄

mH
=

ρ

nmH
=

2
1 + 3X + 0.5Y

(3.73)

for a totally ionized gas. For Solar abundances, X = 0.71, Y = 0.27, Z = 0.02,
and therefore m̄/mH = 0.61. In the central regions of the Sun, about half of the
hydrogen has already been converted into helium by nuclear reactions, and as a
result X = 0.34, Y = 0.64, and Z = 0.02, giving m̄/mH = 0.85.
In addition to the kinetic gas pressure, the photons in a star exert radiation pres-

sure. Let us digress briefly, and derive the equation of state for this kind of pres-
sure. Consider photons inside a blackbody radiator with an intensity given by the
Planck function, Iν = Bν , which, when integrated over wavelength, we denoted
as B. As illustrated in Fig. 3.6, the energy arriving at the surface of the radiator
per unit time, per unit area, at some angle θ to the perpendicular to the surface, is
B cos θ, because the area of the beam, when projected onto the wall of the radiator,
is increased by 1/ cos θ. Now, consider the photons in the beam, which strike the
fully reflective surface of the radiator at the angle θ. Every photon of energy E
has momentum p = E/c. When reflected, it transmits to the surface a momentum
∆p = (2E/c) cos θ. Therefore, there is a second factor of cos θ that must be ap-
plied to the incoming beam. The rate of momentum tranfer per unit area will be
obtained by integrating over all angles at which the photons hit the surface. But,
the rate of momentum transfer (i.e., the force) per unit area is, by definition, the
pressure. Thus,

P =
F

A
=

dp/dt

A
=

2
c

Z π

π/2

B cos2 θ sin θdθdφ =
4π

3c
B =

1
3
u, (3.74)

where in the last equality we have used the previously found relation (Eq. 2.4)
between intensity and energy density. Note that the derivation above applies not
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Figure 3.6 Calculation of radiation pressure. A beam of photons with blackbody intensity
B strikes the wall of a container at an angle θ to its perpendicular. The projected
area of the beam, dA, is increased by 1/ cos θ, and therefore the power reaching
the wall per unit area is decreased to B cos θ. Since a photon’s momentum,
p, is its energy divided by c, the momentum flux in the beam is B/c. Every
reflection of a photon transfers twice its perpendicular component of momentum,
and therefore the momentum transfer per unit time and per unit area, i.e., the
pressure, is 2B cos

2 θ/c. The total pressure is obtained by integrating over all
angles of the beams that approach the wall.

where we have used the fact that X + Y + Z = 1. Thus,
m̄

mH
=

ρ

nmH
=

2
1 + 3X + 0.5Y
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for a totally ionized gas. For Solar abundances, X = 0.71, Y = 0.27, Z = 0.02,
and therefore m̄/mH = 0.61. In the central regions of the Sun, about half of the
hydrogen has already been converted into helium by nuclear reactions, and as a
result X = 0.34, Y = 0.64, and Z = 0.02, giving m̄/mH = 0.85.
In addition to the kinetic gas pressure, the photons in a star exert radiation pres-

sure. Let us digress briefly, and derive the equation of state for this kind of pres-
sure. Consider photons inside a blackbody radiator with an intensity given by the
Planck function, Iν = Bν , which, when integrated over wavelength, we denoted
as B. As illustrated in Fig. 3.6, the energy arriving at the surface of the radiator
per unit time, per unit area, at some angle θ to the perpendicular to the surface, is
B cos θ, because the area of the beam, when projected onto the wall of the radiator,
is increased by 1/ cos θ. Now, consider the photons in the beam, which strike the
fully reflective surface of the radiator at the angle θ. Every photon of energy E
has momentum p = E/c. When reflected, it transmits to the surface a momentum
∆p = (2E/c) cos θ. Therefore, there is a second factor of cos θ that must be ap-
plied to the incoming beam. The rate of momentum tranfer per unit area will be
obtained by integrating over all angles at which the photons hit the surface. But,
the rate of momentum transfer (i.e., the force) per unit area is, by definition, the
pressure. Thus,

P =
F

A
=

dp/dt

A
=

2
c

Z π

π/2

B cos2 θ sin θdθdφ =
4π

3c
B =
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where in the last equality we have used the previously found relation (Eq. 2.4)
between intensity and energy density. Note that the derivation above applies not
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Figure 3.6 Calculation of radiation pressure. A beam of photons with blackbody intensity
B strikes the wall of a container at an angle θ to its perpendicular. The projected
area of the beam, dA, is increased by 1/ cos θ, and therefore the power reaching
the wall per unit area is decreased to B cos θ. Since a photon’s momentum,
p, is its energy divided by c, the momentum flux in the beam is B/c. Every
reflection of a photon transfers twice its perpendicular component of momentum,
and therefore the momentum transfer per unit time and per unit area, i.e., the
pressure, is 2B cos

2 θ/c. The total pressure is obtained by integrating over all
angles of the beams that approach the wall.

where we have used the fact that X + Y + Z = 1. Thus,
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ρ
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2
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for a totally ionized gas. For Solar abundances, X = 0.71, Y = 0.27, Z = 0.02,
and therefore m̄/mH = 0.61. In the central regions of the Sun, about half of the
hydrogen has already been converted into helium by nuclear reactions, and as a
result X = 0.34, Y = 0.64, and Z = 0.02, giving m̄/mH = 0.85.
In addition to the kinetic gas pressure, the photons in a star exert radiation pres-

sure. Let us digress briefly, and derive the equation of state for this kind of pres-
sure. Consider photons inside a blackbody radiator with an intensity given by the
Planck function, Iν = Bν , which, when integrated over wavelength, we denoted
as B. As illustrated in Fig. 3.6, the energy arriving at the surface of the radiator
per unit time, per unit area, at some angle θ to the perpendicular to the surface, is
B cos θ, because the area of the beam, when projected onto the wall of the radiator,
is increased by 1/ cos θ. Now, consider the photons in the beam, which strike the
fully reflective surface of the radiator at the angle θ. Every photon of energy E
has momentum p = E/c. When reflected, it transmits to the surface a momentum
∆p = (2E/c) cos θ. Therefore, there is a second factor of cos θ that must be ap-
plied to the incoming beam. The rate of momentum tranfer per unit area will be
obtained by integrating over all angles at which the photons hit the surface. But,
the rate of momentum transfer (i.e., the force) per unit area is, by definition, the
pressure. Thus,

P =
F

A
=

dp/dt

A
=
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π/2

B cos2 θ sin θdθdφ =
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where in the last equality we have used the previously found relation (Eq. 2.4)
between intensity and energy density. Note that the derivation above applies not
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Figure 3.6 Calculation of radiation pressure. A beam of photons with blackbody intensity
B strikes the wall of a container at an angle θ to its perpendicular. The projected
area of the beam, dA, is increased by 1/ cos θ, and therefore the power reaching
the wall per unit area is decreased to B cos θ. Since a photon’s momentum,
p, is its energy divided by c, the momentum flux in the beam is B/c. Every
reflection of a photon transfers twice its perpendicular component of momentum,
and therefore the momentum transfer per unit time and per unit area, i.e., the
pressure, is 2B cos

2 θ/c. The total pressure is obtained by integrating over all
angles of the beams that approach the wall.

where we have used the fact that X + Y + Z = 1. Thus,
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for a totally ionized gas. For Solar abundances, X = 0.71, Y = 0.27, Z = 0.02,
and therefore m̄/mH = 0.61. In the central regions of the Sun, about half of the
hydrogen has already been converted into helium by nuclear reactions, and as a
result X = 0.34, Y = 0.64, and Z = 0.02, giving m̄/mH = 0.85.
In addition to the kinetic gas pressure, the photons in a star exert radiation pres-

sure. Let us digress briefly, and derive the equation of state for this kind of pres-
sure. Consider photons inside a blackbody radiator with an intensity given by the
Planck function, Iν = Bν , which, when integrated over wavelength, we denoted
as B. As illustrated in Fig. 3.6, the energy arriving at the surface of the radiator
per unit time, per unit area, at some angle θ to the perpendicular to the surface, is
B cos θ, because the area of the beam, when projected onto the wall of the radiator,
is increased by 1/ cos θ. Now, consider the photons in the beam, which strike the
fully reflective surface of the radiator at the angle θ. Every photon of energy E
has momentum p = E/c. When reflected, it transmits to the surface a momentum
∆p = (2E/c) cos θ. Therefore, there is a second factor of cos θ that must be ap-
plied to the incoming beam. The rate of momentum tranfer per unit area will be
obtained by integrating over all angles at which the photons hit the surface. But,
the rate of momentum transfer (i.e., the force) per unit area is, by definition, the
pressure. Thus,
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=
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where in the last equality we have used the previously found relation (Eq. 2.4)
between intensity and energy density. Note that the derivation above applies not

B =
c

4⇡
u

Recall:  The energy per unit time (power) arriving at the surface is Bcosθ.

=

Z 2⇡

⇡=0

Z ⇡

⇡
2

2

c
B cos

2 ✓ sin ✓d✓d�



Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

basicastro4 October 26, 2006

STELLAR PHYSICS 45

Figure 3.6 Calculation of radiation pressure. A beam of photons with blackbody intensity
B strikes the wall of a container at an angle θ to its perpendicular. The projected
area of the beam, dA, is increased by 1/ cos θ, and therefore the power reaching
the wall per unit area is decreased to B cos θ. Since a photon’s momentum,
p, is its energy divided by c, the momentum flux in the beam is B/c. Every
reflection of a photon transfers twice its perpendicular component of momentum,
and therefore the momentum transfer per unit time and per unit area, i.e., the
pressure, is 2B cos

2 θ/c. The total pressure is obtained by integrating over all
angles of the beams that approach the wall.

where we have used the fact that X + Y + Z = 1. Thus,
m̄

mH
=

ρ

nmH
=

2
1 + 3X + 0.5Y

(3.73)

for a totally ionized gas. For Solar abundances, X = 0.71, Y = 0.27, Z = 0.02,
and therefore m̄/mH = 0.61. In the central regions of the Sun, about half of the
hydrogen has already been converted into helium by nuclear reactions, and as a
result X = 0.34, Y = 0.64, and Z = 0.02, giving m̄/mH = 0.85.
In addition to the kinetic gas pressure, the photons in a star exert radiation pres-

sure. Let us digress briefly, and derive the equation of state for this kind of pres-
sure. Consider photons inside a blackbody radiator with an intensity given by the
Planck function, Iν = Bν , which, when integrated over wavelength, we denoted
as B. As illustrated in Fig. 3.6, the energy arriving at the surface of the radiator
per unit time, per unit area, at some angle θ to the perpendicular to the surface, is
B cos θ, because the area of the beam, when projected onto the wall of the radiator,
is increased by 1/ cos θ. Now, consider the photons in the beam, which strike the
fully reflective surface of the radiator at the angle θ. Every photon of energy E
has momentum p = E/c. When reflected, it transmits to the surface a momentum
∆p = (2E/c) cos θ. Therefore, there is a second factor of cos θ that must be ap-
plied to the incoming beam. The rate of momentum tranfer per unit area will be
obtained by integrating over all angles at which the photons hit the surface. But,
the rate of momentum transfer (i.e., the force) per unit area is, by definition, the
pressure. Thus,

P =
F

A
=

dp/dt

A
=

2
c

Z π

π/2

B cos2 θ sin θdθdφ =
4π

3c
B =

1
3
u, (3.74)

where in the last equality we have used the previously found relation (Eq. 2.4)
between intensity and energy density. Note that the derivation above applies not
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We can relate this to the energy density and the 
temperature using relations for blackbody radiation.
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only to photons, but to any particles with an isotropic velocity distribution, and with
kinetic energies large compared to their rest-mass energies, so that the relation p ≈
E/c (which is exact for photons) is a good approximation. Thus, the equation of
state in which the radiation pressure equals one-third of the thermal energy density
holds for any ultra-relativistic gas.
Returning to the case of the pressure due to a thermal photon gas inside a star,

we can write

Prad =
1
3
u =

1
3
aT 4, (3.75)

which under some circumstances can become important or dominant (see Problems
2 and 3). The full equation of state for normal stars will therefore be

P = Pg + Prad =
ρkT

m̄
+

1
3
aT 4. (3.76)

We will see in Chapter 4 that the conditions in white dwarfs and in neutron stars
dictate equations of state that are very different from this form.

3.7 OPACITY

Like the equation of state, the opacity, κ, at every radius in the star will depend on
the density, the temperature, and the chemical composition at that radius. We have
already mentioned one important source of opacity, Thomson scattering of photons
off free electrons. Let us now calculate correctly the electron density for an ionized
gas of arbitrary abundance (rather than pure hydrogen, as before):

ne = nH+2nHe+
X A

2
nA =

ρ

mH

µ
X +

2
4
Y +

1
2
Z

∂
=

ρ

2mH
(1+X), (3.77)

where we have again assumed that the number of electrons in an atom of mass
number A is A/2. Therefore,

κes =
neσT

ρ
=

σT

2mH
(1 + X) = (1 + X) 0.2 cm2 g−1. (3.78)

In regions of a star with relatively low temperatures, such that some or all of the
electrons are still bound to their atoms, three additional processes that are important
sources of opacity are bound-bound, bound-free (also called photoionization),
and free-free absorption. In bound-bound and bound-free absorption, which
we have already discussed in the context of photospheric absorption features, an
atom or ion is excited to a higher energy level, or ionized to a higher degree of
ionization, by absorbing a photon. Free-free absorption is the inverse process of
free-free emission, often called Bremsstrahlung (“braking radiation” in German).
In free-free emission (see Fig. 3.7), a free electron is accelerated by the electric
potential of an ion, and as a result radiates. Thus, in free-free absorption, a photon
is absorbed by a free electron and an ion, which share the photon’s momentum
and energy. All three processes depend on photon wavelength, in addition to gas
temperature, density, and composition.

The total pressure is then the sum of the gas pressure and the 
radiation pressure.
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potential of an ion, and as a result radiates. Thus, in free-free absorption, a photon
is absorbed by a free electron and an ion, which share the photon’s momentum
and energy. All three processes depend on photon wavelength, in addition to gas
temperature, density, and composition.

In normal starts, the gas (“kinetic”) pressure usually dominates.  
Can you think of when this might not be the case?
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