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We can more generally write the number densities
of H, He and metals.
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We have thus ended up with seven coupled equations defining the seven unknown
functions: P (r),M(r), ρ(r), T (r), κ(r), L(r), and �(r). As there are four bound-
ary conditions for the four first-order differential equations, if there is a solution, it
is unique. This is usually expressed in the form of the “Vogt-Russell conjecture”,
which states that the properties and evolution of an isolated star are fully deter-
mined by its initial mass and its chemical abundances. These determine the star’s
observable parameters: its surface temperature, radius, and luminosity. Two vari-
ables which we have neglected in this treatment, and which have minor influence
on stellar structure, are stellar rotation and magnetic fields. To proceed, we need to
define the three functions, P , κ, and �.

3.6 THE EQUATION OF STATE

Different equations of state P (ρ, T,X, Y, Z) apply for different ranges of gas den-
sity, temperature, and abundance. Under the conditions in most normal stars, the
equation of state of a classical, nonrelativistic, ideal gas, provides a good descrip-
tion. Consider, for example, such a gas, composed of three different kinds of par-
ticles, each with its own mass mi and density ni. The mean particle mass will
be

m̄ =
n1m1 + n2m2 + n3m3

n1 + n2 + n3
=

ρ

n
. (3.68)

The gas pressure will then be

Pg = nkT =
ρ

m̄
kT. (3.69)

The mean mass will depend on the chemical abundance and ionization state of the
gas. As we have already seen, for completely ionized pure hydrogen,

m̄ =
mH

2
, (3.70)

and therefore m̄/mH = 0.5.
More generally, the number densities of hydrogen, helium, or an element of

atomic mass number A (i.e., an element with a total of A protons and neutrons in
each atomic nucleus) will be

nH =
Xρ

mH
, nHe =

Y ρ

4mH
, nA =

ZAρ

AmH
, (3.71)

where ZA is the mass abundance of an element of atomic mass number A. Com-
plete ionization of hydrogen results in two particles (an electron and a proton); of
helium, three particles (two electrons and a nucleus); and of an atom with atomic
number Z (i.e., with Z protons or electrons), Z + 1 particles, which for heavy
enough atoms is always close to A/2. Thus, for an ionized gas we will have

n = 2nH + 3nHe +
X A

2
nA =

ρ

mH

µ
2X +

3
4
Y +

1
2
Z

∂

=
ρ

2mH

µ
3X +

Y

2
+ 1

∂
, (3.72)

How many particles results from the complete ionization of 
hydrogen? 
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Thus, for an ionized gas:

Helium?

From Last Time:

2 = 1 proton + 1 electron

3 = 2 electrons + 1 nucleus
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Opacity
How can a photon scatter (lose energy or be absorbed)?

- Thomson Scattering - photon scatters off free electron
- Interaction with an atom 

- Bound-Bound Absorption - electron stays bound
- Bound-Free Absorption - electron is ejected = 

photoionization
- Free-Free Absorption - photon absorbed by free electron or 

ion, and as a result radiates (Bremsstrahlung)
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Figure 3.7 Left: A free electron accelerating in the Coulomb potential of an ion emits
Bremsstrahlung, or “free-free” radiation. Right: In the inverse process of free-
free absorption, a photon is absorbed by a free electron. The process is possible
only if a neighboring ion, which can share some of the photon’s momentum, is
present.

When averaged over all wavelengths, the “mean opacity” due to both bound-free
absorption and free-free absorption behave approximately as

κ̄bf,ff ∼
ρ

T 3.5
, (3.79)

which is called a Kramers opacity law. This behavior holds only over limited ranges
in temperature and density. For example, free-free absorption actually increases
with temperature at low temperature and density, with the increase in free electron
density. Similarly, bound-free opacity cuts off at high temperatures at which the
atoms are fully ionized. Additional sources of opacity, significant especially in
low-mass stars, are molecules and H− ions.6

3.8 SCALING RELATIONS ON THE MAIN SEQUENCE

From the equations we have derived so far, we can already deduce and understand
the observed functional forms of the mass-luminosity relation, L ∼ Mα, and the
effective-temperature-luminosity relation, L ∼ T 8

E , that are observed for main se-
quence stars. Let us assume, for simplicity, that the functions P (r), M(r), ρ(r),
and T (r) are roughly power laws, i.e., P (r) ∼ rβ , M(r) ∼ rγ , etc. If so, we can
immediately write the first three differential equations (Eqns. 3.56, 3.57, and 3.58)
as scaling relations,

P ∼ Mρ

r
, (3.80)

M ∼ r3ρ, (3.81)
and

L ∼ T 4r

κρ
(3.82)

(just as, instead of solving a differential equation, say, df/dx = x4, we can write
directly f ∼ x5). For moderately massive stars, the pressure will be dominated by

6The negative H− ion forms when a second electron attaches (with a quite weak bond) to a hydrogen
atom.
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Free electron accelerating in a Coulomb potential 
of an ion emits Bremsstrahlung radiation .

A photon is absorbed by a free electron.  This 
is the inverse process of Bremsstrahlung.  
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Thomson scattering has a constant cross-section, but we need to know 
the number density of free electrons. 
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only to photons, but to any particles with an isotropic velocity distribution, and with
kinetic energies large compared to their rest-mass energies, so that the relation p ≈
E/c (which is exact for photons) is a good approximation. Thus, the equation of
state in which the radiation pressure equals one-third of the thermal energy density
holds for any ultra-relativistic gas.
Returning to the case of the pressure due to a thermal photon gas inside a star,

we can write

Prad =
1
3
u =

1
3
aT 4, (3.75)

which under some circumstances can become important or dominant (see Problems
2 and 3). The full equation of state for normal stars will therefore be

P = Pg + Prad =
ρkT

m̄
+

1
3
aT 4. (3.76)

We will see in Chapter 4 that the conditions in white dwarfs and in neutron stars
dictate equations of state that are very different from this form.

3.7 OPACITY

Like the equation of state, the opacity, κ, at every radius in the star will depend on
the density, the temperature, and the chemical composition at that radius. We have
already mentioned one important source of opacity, Thomson scattering of photons
off free electrons. Let us now calculate correctly the electron density for an ionized
gas of arbitrary abundance (rather than pure hydrogen, as before):

ne = nH+2nHe+
X A

2
nA =

ρ

mH

µ
X +

2
4
Y +

1
2
Z

∂
=

ρ

2mH
(1+X), (3.77)

where we have again assumed that the number of electrons in an atom of mass
number A is A/2. Therefore,

κes =
neσT

ρ
=

σT

2mH
(1 + X) = (1 + X) 0.2 cm2 g−1. (3.78)

In regions of a star with relatively low temperatures, such that some or all of the
electrons are still bound to their atoms, three additional processes that are important
sources of opacity are bound-bound, bound-free (also called photoionization),
and free-free absorption. In bound-bound and bound-free absorption, which
we have already discussed in the context of photospheric absorption features, an
atom or ion is excited to a higher energy level, or ionized to a higher degree of
ionization, by absorbing a photon. Free-free absorption is the inverse process of
free-free emission, often called Bremsstrahlung (“braking radiation” in German).
In free-free emission (see Fig. 3.7), a free electron is accelerated by the electric
potential of an ion, and as a result radiates. Thus, in free-free absorption, a photon
is absorbed by a free electron and an ion, which share the photon’s momentum
and energy. All three processes depend on photon wavelength, in addition to gas
temperature, density, and composition.

This calculation is similar to that we did for hydrogen:
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Recall,

Substitute
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only to photons, but to any particles with an isotropic velocity distribution, and with
kinetic energies large compared to their rest-mass energies, so that the relation p ≈
E/c (which is exact for photons) is a good approximation. Thus, the equation of
state in which the radiation pressure equals one-third of the thermal energy density
holds for any ultra-relativistic gas.
Returning to the case of the pressure due to a thermal photon gas inside a star,

we can write

Prad =
1
3
u =

1
3
aT 4, (3.75)

which under some circumstances can become important or dominant (see Problems
2 and 3). The full equation of state for normal stars will therefore be

P = Pg + Prad =
ρkT

m̄
+

1
3
aT 4. (3.76)

We will see in Chapter 4 that the conditions in white dwarfs and in neutron stars
dictate equations of state that are very different from this form.

3.7 OPACITY

Like the equation of state, the opacity, κ, at every radius in the star will depend on
the density, the temperature, and the chemical composition at that radius. We have
already mentioned one important source of opacity, Thomson scattering of photons
off free electrons. Let us now calculate correctly the electron density for an ionized
gas of arbitrary abundance (rather than pure hydrogen, as before):

ne = nH+2nHe+
X A

2
nA =

ρ

mH

µ
X +

2
4
Y +

1
2
Z

∂
=

ρ

2mH
(1+X), (3.77)

where we have again assumed that the number of electrons in an atom of mass
number A is A/2. Therefore,

κes =
neσT

ρ
=

σT

2mH
(1 + X) = (1 + X) 0.2 cm2 g−1. (3.78)

In regions of a star with relatively low temperatures, such that some or all of the
electrons are still bound to their atoms, three additional processes that are important
sources of opacity are bound-bound, bound-free (also called photoionization),
and free-free absorption. In bound-bound and bound-free absorption, which
we have already discussed in the context of photospheric absorption features, an
atom or ion is excited to a higher energy level, or ionized to a higher degree of
ionization, by absorbing a photon. Free-free absorption is the inverse process of
free-free emission, often called Bremsstrahlung (“braking radiation” in German).
In free-free emission (see Fig. 3.7), a free electron is accelerated by the electric
potential of an ion, and as a result radiates. Thus, in free-free absorption, a photon
is absorbed by a free electron and an ion, which share the photon’s momentum
and energy. All three processes depend on photon wavelength, in addition to gas
temperature, density, and composition.
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In regions of a star with relatively low temperatures, such that some or all of the
electrons are still bound to their atoms, three additional processes that are important
sources of opacity are bound-bound, bound-free (also called photoionization),
and free-free absorption. In bound-bound and bound-free absorption, which
we have already discussed in the context of photospheric absorption features, an
atom or ion is excited to a higher energy level, or ionized to a higher degree of
ionization, by absorbing a photon. Free-free absorption is the inverse process of
free-free emission, often called Bremsstrahlung (“braking radiation” in German).
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and energy. All three processes depend on photon wavelength, in addition to gas
temperature, density, and composition.

Recalling the relationship between mean free path and opacity:
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temperature, density, and composition.
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only to photons, but to any particles with an isotropic velocity distribution, and with
kinetic energies large compared to their rest-mass energies, so that the relation p ≈
E/c (which is exact for photons) is a good approximation. Thus, the equation of
state in which the radiation pressure equals one-third of the thermal energy density
holds for any ultra-relativistic gas.
Returning to the case of the pressure due to a thermal photon gas inside a star,

we can write

Prad =
1
3
u =

1
3
aT 4, (3.75)

which under some circumstances can become important or dominant (see Problems
2 and 3). The full equation of state for normal stars will therefore be

P = Pg + Prad =
ρkT

m̄
+

1
3
aT 4. (3.76)

We will see in Chapter 4 that the conditions in white dwarfs and in neutron stars
dictate equations of state that are very different from this form.

3.7 OPACITY

Like the equation of state, the opacity, κ, at every radius in the star will depend on
the density, the temperature, and the chemical composition at that radius. We have
already mentioned one important source of opacity, Thomson scattering of photons
off free electrons. Let us now calculate correctly the electron density for an ionized
gas of arbitrary abundance (rather than pure hydrogen, as before):

ne = nH+2nHe+
X A

2
nA =

ρ

mH

µ
X +

2
4
Y +

1
2
Z

∂
=

ρ

2mH
(1+X), (3.77)

where we have again assumed that the number of electrons in an atom of mass
number A is A/2. Therefore,

κes =
neσT

ρ
=

σT

2mH
(1 + X) = (1 + X) 0.2 cm2 g−1. (3.78)

In regions of a star with relatively low temperatures, such that some or all of the
electrons are still bound to their atoms, three additional processes that are important
sources of opacity are bound-bound, bound-free (also called photoionization),
and free-free absorption. In bound-bound and bound-free absorption, which
we have already discussed in the context of photospheric absorption features, an
atom or ion is excited to a higher energy level, or ionized to a higher degree of
ionization, by absorbing a photon. Free-free absorption is the inverse process of
free-free emission, often called Bremsstrahlung (“braking radiation” in German).
In free-free emission (see Fig. 3.7), a free electron is accelerated by the electric
potential of an ion, and as a result radiates. Thus, in free-free absorption, a photon
is absorbed by a free electron and an ion, which share the photon’s momentum
and energy. All three processes depend on photon wavelength, in addition to gas
temperature, density, and composition.
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Figure 3.7 Left: A free electron accelerating in the Coulomb potential of an ion emits
Bremsstrahlung, or “free-free” radiation. Right: In the inverse process of free-
free absorption, a photon is absorbed by a free electron. The process is possible
only if a neighboring ion, which can share some of the photon’s momentum, is
present.

When averaged over all wavelengths, the “mean opacity” due to both bound-free
absorption and free-free absorption behave approximately as

κ̄bf,ff ∼
ρ

T 3.5
, (3.79)

which is called a Kramers opacity law. This behavior holds only over limited ranges
in temperature and density. For example, free-free absorption actually increases
with temperature at low temperature and density, with the increase in free electron
density. Similarly, bound-free opacity cuts off at high temperatures at which the
atoms are fully ionized. Additional sources of opacity, significant especially in
low-mass stars, are molecules and H− ions.6

3.8 SCALING RELATIONS ON THE MAIN SEQUENCE

From the equations we have derived so far, we can already deduce and understand
the observed functional forms of the mass-luminosity relation, L ∼ Mα, and the
effective-temperature-luminosity relation, L ∼ T 8

E , that are observed for main se-
quence stars. Let us assume, for simplicity, that the functions P (r), M(r), ρ(r),
and T (r) are roughly power laws, i.e., P (r) ∼ rβ , M(r) ∼ rγ , etc. If so, we can
immediately write the first three differential equations (Eqns. 3.56, 3.57, and 3.58)
as scaling relations,

P ∼ Mρ

r
, (3.80)

M ∼ r3ρ, (3.81)
and

L ∼ T 4r

κρ
(3.82)

(just as, instead of solving a differential equation, say, df/dx = x4, we can write
directly f ∼ x5). For moderately massive stars, the pressure will be dominated by

6The negative H− ion forms when a second electron attaches (with a quite weak bond) to a hydrogen
atom.

This law is only an approximation that holds over a limited range 
in temperature and density, but it is often used in modeling stellar 
structure.
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Calculate how far you could see through the Earth’s atmosphere 
if it had the opacity of the solar photosphere.  The opacity of the 
sun’s photosphere is 0.3 cm2 g-1  and the density of the Earth’s 
atmosphere is 1.2 x 10-3 g cm-3.

` =
1

⇢
=

1

(1.2⇥ 10�3)(0.3)

` = 2.7⇥ 103cm
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Figure 2.12 Schematic example of an H-R diagram, showing stellar luminosity vs. effective
surface temperature. Note that the axes are logarithmic and that the temperature
grows to the left. The dashed lines show the luminosity temperature relation,
L = 4πr2

∗σT 4

E , for objects of constant radius. The three lines correspond, from
top to bottom, to r∗ = 100r⊙, r⊙, and 0.01r⊙.

2.3 THE HERTZSPRUNG-RUSSELL DIAGRAM

A crucial step toward understanding stellar physics was taken in 1911 indepen-
dently by two astronomers, Hertzsprung and Russell, who placed measurements of
stars on a logarithmic plot with axes of luminosity and effective surface tempera-
ture1. Fig. 2.12 shows an example of such anH-R diagram. Note that temperature
is traditionally shown growing to the left on such a plot. Almost all known stars
are concentrated in several well-defined loci on such a diagram. About 80-90% of
all stars (depending on what stellar environment one looks at) lie in a narrow diag-
onal strip called the main sequence which corresponds very roughly to a relation
L ∼ T 8

E . Since the luminosity of a spherical blackbody radiator is
L = 4πr2

∗σT 4
E , (2.47)

this immediately implies that hotter stars are bigger, with r∗ ∼ T 2
E . The Sun is a

main sequence star. Since the coolest stars have about half the surface temperature
of the Sun and the hottest stars have about 5 times the Solar temperature, the radii
of main-sequence stars are in the range of about 1/4 to 25 times the Solar radius.
Two other stellar loci are apparent on the H-R diagram. There is a concentration

of points corresponding to stars that are cool (i.e., red) yet with luminosities orders
of magnitudes higher than those of main sequence stars. Clearly, these must be
objects with large surface areas, with radii of order 100 times the Solar radius, i.e.,

1Historically, what was first plotted was the fluxes from stars that are in a cluster, and hence all at the
same distance, and their colors.
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3.5 THE EQUATIONS OF STELLAR STRUCTURE

We have derived four coupled first-order differential equations describing stellar
structure. Let us re-write them here.

dP (r)
dr

= −GM(r)ρ(r)
r2

, (3.56)

dM(r)
dr

= 4πr2ρ(r), (3.57)

dT (r)
dr

= −3L(r)κ(r)ρ(r)
4πr24acT (r)3

, (3.58)

dL(r)
dr

= 4πr2ρ(r)�(r). (3.59)

We can define four boundary conditions for these equations. For example:

M(r = 0) = 0 (3.60)

L(r = 0) = 0 (3.61)

P (r = r∗) = 0 (3.62)

M(r = r∗) = M∗ (3.63)

whereM∗ is the total mass of the star. (In reality, at the radius r∗ of the photosphere
of the star, P does not really go completely to zero, nor do T and ρ, and more
sophisticated boundary conditions are required, which account for the processes in
the photosphere.)
To these four differential equations we need to add three equations connecting

the pressure, the opacity, and the energy production rate of the gas with its density,
temperature, and composition:

P = P (ρ, T, composition); (3.64)

κ = κ(ρ, T, composition); (3.65)

� = �(ρ, T, composition). (3.66)

P (ρ, T ) is usually called the equation of state. Each of these three functions will
depend on the composition through the element abundances and the ionization
states of each element in the gas. It is common in astronomy to parametrize the
mass abundances of hydrogen, helium, and the heavier elements (the latter are
often referred to collectively by the term “metals”) as

X ≡ ρH

ρ
, Y ≡ ρHe

ρ
, Z ≡ ρmetals

ρ
. (3.67)

Equations of Stellar Structure HR Diagram

Can we understand the observed forms of the 
mass-luminosity and temperature-luminosity relations?
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Equations of Stellar Structure Scaling Relations:
P(r), M(r), ρ(r) and T(r) are roughly 
power laws
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Figure 3.7 Left: A free electron accelerating in the Coulomb potential of an ion emits
Bremsstrahlung, or “free-free” radiation. Right: In the inverse process of free-
free absorption, a photon is absorbed by a free electron. The process is possible
only if a neighboring ion, which can share some of the photon’s momentum, is
present.

When averaged over all wavelengths, the “mean opacity” due to both bound-free
absorption and free-free absorption behave approximately as

κ̄bf,ff ∼
ρ

T 3.5
, (3.79)

which is called a Kramers opacity law. This behavior holds only over limited ranges
in temperature and density. For example, free-free absorption actually increases
with temperature at low temperature and density, with the increase in free electron
density. Similarly, bound-free opacity cuts off at high temperatures at which the
atoms are fully ionized. Additional sources of opacity, significant especially in
low-mass stars, are molecules and H− ions.6

3.8 SCALING RELATIONS ON THE MAIN SEQUENCE

From the equations we have derived so far, we can already deduce and understand
the observed functional forms of the mass-luminosity relation, L ∼ Mα, and the
effective-temperature-luminosity relation, L ∼ T 8

E , that are observed for main se-
quence stars. Let us assume, for simplicity, that the functions P (r), M(r), ρ(r),
and T (r) are roughly power laws, i.e., P (r) ∼ rβ , M(r) ∼ rγ , etc. If so, we can
immediately write the first three differential equations (Eqns. 3.56, 3.57, and 3.58)
as scaling relations,

P ∼ Mρ

r
, (3.80)

M ∼ r3ρ, (3.81)
and

L ∼ T 4r

κρ
(3.82)

(just as, instead of solving a differential equation, say, df/dx = x4, we can write
directly f ∼ x5). For moderately massive stars, the pressure will be dominated by

6The negative H− ion forms when a second electron attaches (with a quite weak bond) to a hydrogen
atom.
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(just as, instead of solving a differential equation, say, df/dx = x4, we can write
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6The negative H− ion forms when a second electron attaches (with a quite weak bond) to a hydrogen
atom.

For moderately massive stars, kinetic gas pressure dominates and 
opacity is dominated by electron scattering.
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the kinetic gas pressure, and the opacity by electron scattering. Therefore

P ∼ ρT (3.83)

and (Eq. 3.78)

κ = const. (3.84)

Equating 3.80 and 3.83, we find

T ∼ M

r
(3.85)

(which is basically just the virial theorem again, for a non-relativistic, classical,
ideal gas – Eq. 3.27). Substituting this into 3.82, and using 3.81 to express r3ρ, we
find

L ∼M3, (3.86)

as observed for main-sequence stars more massive than the Sun.
Equation 3.85 also suggests that r ∼ M on the main sequence. To see this, con-

sider a star that is forming from a massM that is contracting under its own gravity
and heating up (star formation will be discussed in some detail in Chapter 5). The
contraction will stop, and an equilibrium will be set up, once the density and the
temperature in the core are high enough for the onset of nuclear reactions. We will
see that the nuclear power density depends mainly on temperature. Thus, for any
initial mass, r will stop shrinking when a particular core temperature is reached.
Therefore, the internal temperature T is comparable in all main-sequence stars (i.e,
it is weakly dependent on mass, and hence approximately constant), and

r ∼M. (3.87)

Detailed models confirm that the core temperature varies only by a factor ≈ 4 over
a range of ∼ 100 in mass on the main sequence. With r ∼ M , we see from Eq.
3.81 that the density of a star decreases as M−2, so that more massive stars will
have low density, and low-mass stars will have high density.
Proceeding to low-mass stars, the high density means there is a dominant role

for bound-free and free-free opacity,

κ ∼ ρ

T 3.5
. (3.88)

Since T ∼const., r ∼M , and ρ ∼M−2, then κ ∼ ρ ∼M−2, and eq. 3.82 gives

L ∼ T 4r

κρ
∼ r

ρ2
∼M5, (3.89)

as seen in low-mass stars.
For the most massive stars, the low gas density will make radiation pressure

dominant in the equation of state (see Problem 3),

P ∼ T 4, (3.90)

and electron scattering, with κ =const., will again be the main source of opacity.
Equating with 3.80 and substituting for T 4 in Eq. 3.82, we find

L ∼ M, (3.91)

and
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for bound-free and free-free opacity,

κ ∼ ρ

T 3.5
. (3.88)

Since T ∼const., r ∼M , and ρ ∼M−2, then κ ∼ ρ ∼M−2, and eq. 3.82 gives

L ∼ T 4r

κρ
∼ r

ρ2
∼M5, (3.89)

as seen in low-mass stars.
For the most massive stars, the low gas density will make radiation pressure

dominant in the equation of state (see Problem 3),

P ∼ T 4, (3.90)

and electron scattering, with κ =const., will again be the main source of opacity.
Equating with 3.80 and substituting for T 4 in Eq. 3.82, we find

L ∼ M, (3.91)

Consider the relation below for the case of a star contracting under 
its own gravity and heating up.

- Once the temperature of the core is high enough for nuclear 
reactions to occur, the star will stop contacting and equilibrium 
will be set up.

- The nuclear power density depends mainly on T.

- For any initial mass, the radius will stop shrinking when 
a particular core T is reached.
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Figure 3.7 Left: A free electron accelerating in the Coulomb potential of an ion emits
Bremsstrahlung, or “free-free” radiation. Right: In the inverse process of free-
free absorption, a photon is absorbed by a free electron. The process is possible
only if a neighboring ion, which can share some of the photon’s momentum, is
present.

When averaged over all wavelengths, the “mean opacity” due to both bound-free
absorption and free-free absorption behave approximately as

κ̄bf,ff ∼
ρ

T 3.5
, (3.79)

which is called a Kramers opacity law. This behavior holds only over limited ranges
in temperature and density. For example, free-free absorption actually increases
with temperature at low temperature and density, with the increase in free electron
density. Similarly, bound-free opacity cuts off at high temperatures at which the
atoms are fully ionized. Additional sources of opacity, significant especially in
low-mass stars, are molecules and H− ions.6

3.8 SCALING RELATIONS ON THE MAIN SEQUENCE

From the equations we have derived so far, we can already deduce and understand
the observed functional forms of the mass-luminosity relation, L ∼ Mα, and the
effective-temperature-luminosity relation, L ∼ T 8

E , that are observed for main se-
quence stars. Let us assume, for simplicity, that the functions P (r), M(r), ρ(r),
and T (r) are roughly power laws, i.e., P (r) ∼ rβ , M(r) ∼ rγ , etc. If so, we can
immediately write the first three differential equations (Eqns. 3.56, 3.57, and 3.58)
as scaling relations,

P ∼ Mρ

r
, (3.80)

M ∼ r3ρ, (3.81)
and

L ∼ T 4r

κρ
(3.82)

(just as, instead of solving a differential equation, say, df/dx = x4, we can write
directly f ∼ x5). For moderately massive stars, the pressure will be dominated by

6The negative H− ion forms when a second electron attaches (with a quite weak bond) to a hydrogen
atom.
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6The negative H− ion forms when a second electron attaches (with a quite weak bond) to a hydrogen
atom.

Thus, the internal T is comparable in all main-sequence stars.  So, 
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the kinetic gas pressure, and the opacity by electron scattering. Therefore

P ∼ ρT (3.83)

and (Eq. 3.78)

κ = const. (3.84)

Equating 3.80 and 3.83, we find

T ∼ M

r
(3.85)

(which is basically just the virial theorem again, for a non-relativistic, classical,
ideal gas – Eq. 3.27). Substituting this into 3.82, and using 3.81 to express r3ρ, we
find

L ∼M3, (3.86)

as observed for main-sequence stars more massive than the Sun.
Equation 3.85 also suggests that r ∼ M on the main sequence. To see this, con-

sider a star that is forming from a massM that is contracting under its own gravity
and heating up (star formation will be discussed in some detail in Chapter 5). The
contraction will stop, and an equilibrium will be set up, once the density and the
temperature in the core are high enough for the onset of nuclear reactions. We will
see that the nuclear power density depends mainly on temperature. Thus, for any
initial mass, r will stop shrinking when a particular core temperature is reached.
Therefore, the internal temperature T is comparable in all main-sequence stars (i.e,
it is weakly dependent on mass, and hence approximately constant), and

r ∼M. (3.87)

Detailed models confirm that the core temperature varies only by a factor ≈ 4 over
a range of ∼ 100 in mass on the main sequence. With r ∼ M , we see from Eq.
3.81 that the density of a star decreases as M−2, so that more massive stars will
have low density, and low-mass stars will have high density.
Proceeding to low-mass stars, the high density means there is a dominant role

for bound-free and free-free opacity,

κ ∼ ρ

T 3.5
. (3.88)

Since T ∼const., r ∼M , and ρ ∼M−2, then κ ∼ ρ ∼M−2, and eq. 3.82 gives

L ∼ T 4r

κρ
∼ r

ρ2
∼M5, (3.89)

as seen in low-mass stars.
For the most massive stars, the low gas density will make radiation pressure

dominant in the equation of state (see Problem 3),

P ∼ T 4, (3.90)

and electron scattering, with κ =const., will again be the main source of opacity.
Equating with 3.80 and substituting for T 4 in Eq. 3.82, we find

L ∼ M, (3.91)

Given this, how does the density of the star scale with mass?

ρ ~ M-2
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Figure 3.7 Left: A free electron accelerating in the Coulomb potential of an ion emits
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free absorption, a photon is absorbed by a free electron. The process is possible
only if a neighboring ion, which can share some of the photon’s momentum, is
present.
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E , that are observed for main se-
quence stars. Let us assume, for simplicity, that the functions P (r), M(r), ρ(r),
and T (r) are roughly power laws, i.e., P (r) ∼ rβ , M(r) ∼ rγ , etc. If so, we can
immediately write the first three differential equations (Eqns. 3.56, 3.57, and 3.58)
as scaling relations,

P ∼ Mρ

r
, (3.80)

M ∼ r3ρ, (3.81)
and

L ∼ T 4r

κρ
(3.82)

(just as, instead of solving a differential equation, say, df/dx = x4, we can write
directly f ∼ x5). For moderately massive stars, the pressure will be dominated by

6The negative H− ion forms when a second electron attaches (with a quite weak bond) to a hydrogen
atom.

Low Mass Stars:
These stars have high density which means there is a dominant 
role for bound-free and free-free opacity.
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the kinetic gas pressure, and the opacity by electron scattering. Therefore

P ∼ ρT (3.83)

and (Eq. 3.78)

κ = const. (3.84)

Equating 3.80 and 3.83, we find

T ∼ M

r
(3.85)

(which is basically just the virial theorem again, for a non-relativistic, classical,
ideal gas – Eq. 3.27). Substituting this into 3.82, and using 3.81 to express r3ρ, we
find

L ∼M3, (3.86)

as observed for main-sequence stars more massive than the Sun.
Equation 3.85 also suggests that r ∼ M on the main sequence. To see this, con-

sider a star that is forming from a massM that is contracting under its own gravity
and heating up (star formation will be discussed in some detail in Chapter 5). The
contraction will stop, and an equilibrium will be set up, once the density and the
temperature in the core are high enough for the onset of nuclear reactions. We will
see that the nuclear power density depends mainly on temperature. Thus, for any
initial mass, r will stop shrinking when a particular core temperature is reached.
Therefore, the internal temperature T is comparable in all main-sequence stars (i.e,
it is weakly dependent on mass, and hence approximately constant), and

r ∼M. (3.87)

Detailed models confirm that the core temperature varies only by a factor ≈ 4 over
a range of ∼ 100 in mass on the main sequence. With r ∼ M , we see from Eq.
3.81 that the density of a star decreases as M−2, so that more massive stars will
have low density, and low-mass stars will have high density.
Proceeding to low-mass stars, the high density means there is a dominant role

for bound-free and free-free opacity,

κ ∼ ρ

T 3.5
. (3.88)

Since T ∼const., r ∼M , and ρ ∼M−2, then κ ∼ ρ ∼M−2, and eq. 3.82 gives

L ∼ T 4r

κρ
∼ r

ρ2
∼M5, (3.89)

as seen in low-mass stars.
For the most massive stars, the low gas density will make radiation pressure

dominant in the equation of state (see Problem 3),

P ∼ T 4, (3.90)

and electron scattering, with κ =const., will again be the main source of opacity.
Equating with 3.80 and substituting for T 4 in Eq. 3.82, we find

L ∼ M, (3.91)

ρ ~ M-2 r ~ Μ

Keeping in mind that T ~ const, how are L and M scaled?
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6The negative H− ion forms when a second electron attaches (with a quite weak bond) to a hydrogen
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the kinetic gas pressure, and the opacity by electron scattering. Therefore

P ∼ ρT (3.83)

and (Eq. 3.78)

κ = const. (3.84)

Equating 3.80 and 3.83, we find
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(3.85)

(which is basically just the virial theorem again, for a non-relativistic, classical,
ideal gas – Eq. 3.27). Substituting this into 3.82, and using 3.81 to express r3ρ, we
find

L ∼M3, (3.86)

as observed for main-sequence stars more massive than the Sun.
Equation 3.85 also suggests that r ∼ M on the main sequence. To see this, con-

sider a star that is forming from a massM that is contracting under its own gravity
and heating up (star formation will be discussed in some detail in Chapter 5). The
contraction will stop, and an equilibrium will be set up, once the density and the
temperature in the core are high enough for the onset of nuclear reactions. We will
see that the nuclear power density depends mainly on temperature. Thus, for any
initial mass, r will stop shrinking when a particular core temperature is reached.
Therefore, the internal temperature T is comparable in all main-sequence stars (i.e,
it is weakly dependent on mass, and hence approximately constant), and

r ∼M. (3.87)

Detailed models confirm that the core temperature varies only by a factor ≈ 4 over
a range of ∼ 100 in mass on the main sequence. With r ∼ M , we see from Eq.
3.81 that the density of a star decreases as M−2, so that more massive stars will
have low density, and low-mass stars will have high density.
Proceeding to low-mass stars, the high density means there is a dominant role

for bound-free and free-free opacity,

κ ∼ ρ

T 3.5
. (3.88)

Since T ∼const., r ∼M , and ρ ∼M−2, then κ ∼ ρ ∼M−2, and eq. 3.82 gives

L ∼ T 4r

κρ
∼ r

ρ2
∼M5, (3.89)

as seen in low-mass stars.
For the most massive stars, the low gas density will make radiation pressure

dominant in the equation of state (see Problem 3),

P ∼ T 4, (3.90)

and electron scattering, with κ =const., will again be the main source of opacity.
Equating with 3.80 and substituting for T 4 in Eq. 3.82, we find

L ∼ M, (3.91)
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L ⇠ M5
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Figure 3.7 Left: A free electron accelerating in the Coulomb potential of an ion emits
Bremsstrahlung, or “free-free” radiation. Right: In the inverse process of free-
free absorption, a photon is absorbed by a free electron. The process is possible
only if a neighboring ion, which can share some of the photon’s momentum, is
present.

When averaged over all wavelengths, the “mean opacity” due to both bound-free
absorption and free-free absorption behave approximately as

κ̄bf,ff ∼
ρ

T 3.5
, (3.79)

which is called a Kramers opacity law. This behavior holds only over limited ranges
in temperature and density. For example, free-free absorption actually increases
with temperature at low temperature and density, with the increase in free electron
density. Similarly, bound-free opacity cuts off at high temperatures at which the
atoms are fully ionized. Additional sources of opacity, significant especially in
low-mass stars, are molecules and H− ions.6

3.8 SCALING RELATIONS ON THE MAIN SEQUENCE

From the equations we have derived so far, we can already deduce and understand
the observed functional forms of the mass-luminosity relation, L ∼ Mα, and the
effective-temperature-luminosity relation, L ∼ T 8

E , that are observed for main se-
quence stars. Let us assume, for simplicity, that the functions P (r), M(r), ρ(r),
and T (r) are roughly power laws, i.e., P (r) ∼ rβ , M(r) ∼ rγ , etc. If so, we can
immediately write the first three differential equations (Eqns. 3.56, 3.57, and 3.58)
as scaling relations,

P ∼ Mρ

r
, (3.80)

M ∼ r3ρ, (3.81)
and

L ∼ T 4r

κρ
(3.82)

(just as, instead of solving a differential equation, say, df/dx = x4, we can write
directly f ∼ x5). For moderately massive stars, the pressure will be dominated by

6The negative H− ion forms when a second electron attaches (with a quite weak bond) to a hydrogen
atom.

High Mass Stars:
In these stars, the low gas density makes radiation pressure 
dominant.  The opacity will primarily be due to electron 
scattering.

ρ ~ M-2 r ~ Μ

What can we say about the scaling relation between L and M?
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3.81 that the density of a star decreases as M−2, so that more massive stars will
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Since T ∼const., r ∼M , and ρ ∼M−2, then κ ∼ ρ ∼M−2, and eq. 3.82 gives
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as seen in low-mass stars.
For the most massive stars, the low gas density will make radiation pressure

dominant in the equation of state (see Problem 3),

P ∼ T 4, (3.90)

and electron scattering, with κ =const., will again be the main source of opacity.
Equating with 3.80 and substituting for T 4 in Eq. 3.82, we find

L ∼ M, (3.91)
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the kinetic gas pressure, and the opacity by electron scattering. Therefore

P ∼ ρT (3.83)

and (Eq. 3.78)

κ = const. (3.84)

Equating 3.80 and 3.83, we find

T ∼ M

r
(3.85)
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L ∼M3, (3.86)

as observed for main-sequence stars more massive than the Sun.
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sider a star that is forming from a massM that is contracting under its own gravity
and heating up (star formation will be discussed in some detail in Chapter 5). The
contraction will stop, and an equilibrium will be set up, once the density and the
temperature in the core are high enough for the onset of nuclear reactions. We will
see that the nuclear power density depends mainly on temperature. Thus, for any
initial mass, r will stop shrinking when a particular core temperature is reached.
Therefore, the internal temperature T is comparable in all main-sequence stars (i.e,
it is weakly dependent on mass, and hence approximately constant), and

r ∼M. (3.87)
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3.81 that the density of a star decreases as M−2, so that more massive stars will
have low density, and low-mass stars will have high density.
Proceeding to low-mass stars, the high density means there is a dominant role

for bound-free and free-free opacity,
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T 3.5
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Since T ∼const., r ∼M , and ρ ∼M−2, then κ ∼ ρ ∼M−2, and eq. 3.82 gives

L ∼ T 4r

κρ
∼ r

ρ2
∼M5, (3.89)

as seen in low-mass stars.
For the most massive stars, the low gas density will make radiation pressure

dominant in the equation of state (see Problem 3),

P ∼ T 4, (3.90)

and electron scattering, with κ =const., will again be the main source of opacity.
Equating with 3.80 and substituting for T 4 in Eq. 3.82, we find

L ∼ M, (3.91)
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Figure 3.7 Left: A free electron accelerating in the Coulomb potential of an ion emits
Bremsstrahlung, or “free-free” radiation. Right: In the inverse process of free-
free absorption, a photon is absorbed by a free electron. The process is possible
only if a neighboring ion, which can share some of the photon’s momentum, is
present.

When averaged over all wavelengths, the “mean opacity” due to both bound-free
absorption and free-free absorption behave approximately as

κ̄bf,ff ∼
ρ

T 3.5
, (3.79)

which is called a Kramers opacity law. This behavior holds only over limited ranges
in temperature and density. For example, free-free absorption actually increases
with temperature at low temperature and density, with the increase in free electron
density. Similarly, bound-free opacity cuts off at high temperatures at which the
atoms are fully ionized. Additional sources of opacity, significant especially in
low-mass stars, are molecules and H− ions.6

3.8 SCALING RELATIONS ON THE MAIN SEQUENCE

From the equations we have derived so far, we can already deduce and understand
the observed functional forms of the mass-luminosity relation, L ∼ Mα, and the
effective-temperature-luminosity relation, L ∼ T 8

E , that are observed for main se-
quence stars. Let us assume, for simplicity, that the functions P (r), M(r), ρ(r),
and T (r) are roughly power laws, i.e., P (r) ∼ rβ , M(r) ∼ rγ , etc. If so, we can
immediately write the first three differential equations (Eqns. 3.56, 3.57, and 3.58)
as scaling relations,

P ∼ Mρ

r
, (3.80)

M ∼ r3ρ, (3.81)
and

L ∼ T 4r

κρ
(3.82)

(just as, instead of solving a differential equation, say, df/dx = x4, we can write
directly f ∼ x5). For moderately massive stars, the pressure will be dominated by

6The negative H− ion forms when a second electron attaches (with a quite weak bond) to a hydrogen
atom.
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Functional Dependence of Main Sequence:

For low mass:
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a flattening of the mass-luminosity relationship that is, in fact, observed for the
most massive stars.
Finally, we can also reproduce the functional dependence of the main sequence

in the H-R diagram. We saw that L ∼ M5 for low-mass stars and L ∼ M3 for
moderately massive stars. Let us then take an intermediate slope, L ∼ M4, as
representative. Since r ∼M , then

σT 4
E =

L

4πr2
∗
∼ M4

M2
∼ M2 ∼ L1/2, (3.92)

so

L ∼ T 8
E , (3.93)

as observed.
We have thus seen that the mass vs. luminosity relation and the surface-temperature

vs. luminosity relation of main-sequence stars are simply consequences of the dif-
ferent sources of pressure and opacity in stars of different masses, and of the fact
that the onset of nuclear hydrogen burning keeps the core temperatures of all main-
sequence stars in a narrow range. The latter fact will be elucidated below.

3.9 NUCLEAR ENERGY PRODUCTION

The last function we still need to describe is the power density �(ρ, T, X, Y, Z). To
see that the energy source behind � must be nuclear burning, we will consider the
alternatives. Suppose that the source of the Sun’s energy were gravitational, i.e.,
that the Sun had radiated until now the potential energy liberated by contracting
from infinity to its present radius. From the virial theorem, we saw that the thermal
energy resulting from such a contraction is minus one-half the gravitational energy,

Egr = −2Eth. (3.94)

Therefore, the thermal energy that results from the contraction, and which the Sun
can radiate is

Eth ∼
1
2

GM2
⊙

r⊙
. (3.95)

To see how long the Sun could shine at its present luminosity with this energy
source, we divide this energy by the Solar luminosity. This gives the so-called
Kelvin-Helmholtz timescale,

τkh ∼
1
2

GM2
⊙

r⊙

1
L⊙

=
6.7× 10−8 cgs× (2× 1033 g)2

2× 7× 1010 cm× 3.8× 1033 erg s−1

= 5× 1014 s = 1.6× 107 yr. (3.96)

The geological record shows that the Earth andMoon have existed for over 4 billion
years, and that the Sun has been shining with about the same luminosity during all
of this period. A similar calculation shows that chemical reactions (e.g., if the Sun

For moderate mass:

basicastro4 October 26, 2006

STELLAR PHYSICS 49

a flattening of the mass-luminosity relationship that is, in fact, observed for the
most massive stars.
Finally, we can also reproduce the functional dependence of the main sequence

in the H-R diagram. We saw that L ∼ M5 for low-mass stars and L ∼ M3 for
moderately massive stars. Let us then take an intermediate slope, L ∼ M4, as
representative. Since r ∼M , then

σT 4
E =

L

4πr2
∗
∼ M4

M2
∼ M2 ∼ L1/2, (3.92)

so

L ∼ T 8
E , (3.93)

as observed.
We have thus seen that the mass vs. luminosity relation and the surface-temperature

vs. luminosity relation of main-sequence stars are simply consequences of the dif-
ferent sources of pressure and opacity in stars of different masses, and of the fact
that the onset of nuclear hydrogen burning keeps the core temperatures of all main-
sequence stars in a narrow range. The latter fact will be elucidated below.

3.9 NUCLEAR ENERGY PRODUCTION

The last function we still need to describe is the power density �(ρ, T, X, Y, Z). To
see that the energy source behind � must be nuclear burning, we will consider the
alternatives. Suppose that the source of the Sun’s energy were gravitational, i.e.,
that the Sun had radiated until now the potential energy liberated by contracting
from infinity to its present radius. From the virial theorem, we saw that the thermal
energy resulting from such a contraction is minus one-half the gravitational energy,

Egr = −2Eth. (3.94)

Therefore, the thermal energy that results from the contraction, and which the Sun
can radiate is

Eth ∼
1
2

GM2
⊙

r⊙
. (3.95)

To see how long the Sun could shine at its present luminosity with this energy
source, we divide this energy by the Solar luminosity. This gives the so-called
Kelvin-Helmholtz timescale,

τkh ∼
1
2

GM2
⊙

r⊙

1
L⊙

=
6.7× 10−8 cgs× (2× 1033 g)2

2× 7× 1010 cm× 3.8× 1033 erg s−1

= 5× 1014 s = 1.6× 107 yr. (3.96)

The geological record shows that the Earth andMoon have existed for over 4 billion
years, and that the Sun has been shining with about the same luminosity during all
of this period. A similar calculation shows that chemical reactions (e.g., if the Sun

So, it seems reasonable to take an intermediate slope, L ~ M4 as 
representative.
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Figure 3.7 Left: A free electron accelerating in the Coulomb potential of an ion emits
Bremsstrahlung, or “free-free” radiation. Right: In the inverse process of free-
free absorption, a photon is absorbed by a free electron. The process is possible
only if a neighboring ion, which can share some of the photon’s momentum, is
present.

When averaged over all wavelengths, the “mean opacity” due to both bound-free
absorption and free-free absorption behave approximately as

κ̄bf,ff ∼
ρ

T 3.5
, (3.79)

which is called a Kramers opacity law. This behavior holds only over limited ranges
in temperature and density. For example, free-free absorption actually increases
with temperature at low temperature and density, with the increase in free electron
density. Similarly, bound-free opacity cuts off at high temperatures at which the
atoms are fully ionized. Additional sources of opacity, significant especially in
low-mass stars, are molecules and H− ions.6

3.8 SCALING RELATIONS ON THE MAIN SEQUENCE

From the equations we have derived so far, we can already deduce and understand
the observed functional forms of the mass-luminosity relation, L ∼ Mα, and the
effective-temperature-luminosity relation, L ∼ T 8

E , that are observed for main se-
quence stars. Let us assume, for simplicity, that the functions P (r), M(r), ρ(r),
and T (r) are roughly power laws, i.e., P (r) ∼ rβ , M(r) ∼ rγ , etc. If so, we can
immediately write the first three differential equations (Eqns. 3.56, 3.57, and 3.58)
as scaling relations,

P ∼ Mρ

r
, (3.80)

M ∼ r3ρ, (3.81)
and

L ∼ T 4r

κρ
(3.82)

(just as, instead of solving a differential equation, say, df/dx = x4, we can write
directly f ∼ x5). For moderately massive stars, the pressure will be dominated by

6The negative H− ion forms when a second electron attaches (with a quite weak bond) to a hydrogen
atom.

ρ ~ M-2 r ~ Μ
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Figure 3.7 Left: A free electron accelerating in the Coulomb potential of an ion emits
Bremsstrahlung, or “free-free” radiation. Right: In the inverse process of free-
free absorption, a photon is absorbed by a free electron. The process is possible
only if a neighboring ion, which can share some of the photon’s momentum, is
present.

When averaged over all wavelengths, the “mean opacity” due to both bound-free
absorption and free-free absorption behave approximately as

κ̄bf,ff ∼
ρ

T 3.5
, (3.79)

which is called a Kramers opacity law. This behavior holds only over limited ranges
in temperature and density. For example, free-free absorption actually increases
with temperature at low temperature and density, with the increase in free electron
density. Similarly, bound-free opacity cuts off at high temperatures at which the
atoms are fully ionized. Additional sources of opacity, significant especially in
low-mass stars, are molecules and H− ions.6

3.8 SCALING RELATIONS ON THE MAIN SEQUENCE

From the equations we have derived so far, we can already deduce and understand
the observed functional forms of the mass-luminosity relation, L ∼ Mα, and the
effective-temperature-luminosity relation, L ∼ T 8

E , that are observed for main se-
quence stars. Let us assume, for simplicity, that the functions P (r), M(r), ρ(r),
and T (r) are roughly power laws, i.e., P (r) ∼ rβ , M(r) ∼ rγ , etc. If so, we can
immediately write the first three differential equations (Eqns. 3.56, 3.57, and 3.58)
as scaling relations,

P ∼ Mρ

r
, (3.80)

M ∼ r3ρ, (3.81)
and

L ∼ T 4r

κρ
(3.82)

(just as, instead of solving a differential equation, say, df/dx = x4, we can write
directly f ∼ x5). For moderately massive stars, the pressure will be dominated by

6The negative H− ion forms when a second electron attaches (with a quite weak bond) to a hydrogen
atom.
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a flattening of the mass-luminosity relationship that is, in fact, observed for the
most massive stars.
Finally, we can also reproduce the functional dependence of the main sequence

in the H-R diagram. We saw that L ∼ M5 for low-mass stars and L ∼ M3 for
moderately massive stars. Let us then take an intermediate slope, L ∼ M4, as
representative. Since r ∼M , then

σT 4
E =

L

4πr2
∗
∼ M4

M2
∼ M2 ∼ L1/2, (3.92)

so

L ∼ T 8
E , (3.93)

as observed.
We have thus seen that the mass vs. luminosity relation and the surface-temperature

vs. luminosity relation of main-sequence stars are simply consequences of the dif-
ferent sources of pressure and opacity in stars of different masses, and of the fact
that the onset of nuclear hydrogen burning keeps the core temperatures of all main-
sequence stars in a narrow range. The latter fact will be elucidated below.

3.9 NUCLEAR ENERGY PRODUCTION

The last function we still need to describe is the power density �(ρ, T, X, Y, Z). To
see that the energy source behind � must be nuclear burning, we will consider the
alternatives. Suppose that the source of the Sun’s energy were gravitational, i.e.,
that the Sun had radiated until now the potential energy liberated by contracting
from infinity to its present radius. From the virial theorem, we saw that the thermal
energy resulting from such a contraction is minus one-half the gravitational energy,

Egr = −2Eth. (3.94)

Therefore, the thermal energy that results from the contraction, and which the Sun
can radiate is

Eth ∼
1
2

GM2
⊙

r⊙
. (3.95)

To see how long the Sun could shine at its present luminosity with this energy
source, we divide this energy by the Solar luminosity. This gives the so-called
Kelvin-Helmholtz timescale,

τkh ∼
1
2

GM2
⊙

r⊙

1
L⊙

=
6.7× 10−8 cgs× (2× 1033 g)2

2× 7× 1010 cm× 3.8× 1033 erg s−1

= 5× 1014 s = 1.6× 107 yr. (3.96)

The geological record shows that the Earth andMoon have existed for over 4 billion
years, and that the Sun has been shining with about the same luminosity during all
of this period. A similar calculation shows that chemical reactions (e.g., if the Sun
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a flattening of the mass-luminosity relationship that is, in fact, observed for the
most massive stars.
Finally, we can also reproduce the functional dependence of the main sequence

in the H-R diagram. We saw that L ∼ M5 for low-mass stars and L ∼ M3 for
moderately massive stars. Let us then take an intermediate slope, L ∼ M4, as
representative. Since r ∼M , then

σT 4
E =

L

4πr2
∗
∼ M4

M2
∼ M2 ∼ L1/2, (3.92)

so

L ∼ T 8
E , (3.93)

as observed.
We have thus seen that the mass vs. luminosity relation and the surface-temperature

vs. luminosity relation of main-sequence stars are simply consequences of the dif-
ferent sources of pressure and opacity in stars of different masses, and of the fact
that the onset of nuclear hydrogen burning keeps the core temperatures of all main-
sequence stars in a narrow range. The latter fact will be elucidated below.

3.9 NUCLEAR ENERGY PRODUCTION

The last function we still need to describe is the power density �(ρ, T, X, Y, Z). To
see that the energy source behind � must be nuclear burning, we will consider the
alternatives. Suppose that the source of the Sun’s energy were gravitational, i.e.,
that the Sun had radiated until now the potential energy liberated by contracting
from infinity to its present radius. From the virial theorem, we saw that the thermal
energy resulting from such a contraction is minus one-half the gravitational energy,

Egr = −2Eth. (3.94)

Therefore, the thermal energy that results from the contraction, and which the Sun
can radiate is

Eth ∼
1
2

GM2
⊙

r⊙
. (3.95)

To see how long the Sun could shine at its present luminosity with this energy
source, we divide this energy by the Solar luminosity. This gives the so-called
Kelvin-Helmholtz timescale,

τkh ∼
1
2

GM2
⊙

r⊙

1
L⊙

=
6.7× 10−8 cgs× (2× 1033 g)2

2× 7× 1010 cm× 3.8× 1033 erg s−1

= 5× 1014 s = 1.6× 107 yr. (3.96)

The geological record shows that the Earth andMoon have existed for over 4 billion
years, and that the Sun has been shining with about the same luminosity during all
of this period. A similar calculation shows that chemical reactions (e.g., if the Sun
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a flattening of the mass-luminosity relationship that is, in fact, observed for the
most massive stars.
Finally, we can also reproduce the functional dependence of the main sequence

in the H-R diagram. We saw that L ∼ M5 for low-mass stars and L ∼ M3 for
moderately massive stars. Let us then take an intermediate slope, L ∼ M4, as
representative. Since r ∼M , then

σT 4
E =

L

4πr2
∗
∼ M4

M2
∼ M2 ∼ L1/2, (3.92)

so

L ∼ T 8
E , (3.93)

as observed.
We have thus seen that the mass vs. luminosity relation and the surface-temperature

vs. luminosity relation of main-sequence stars are simply consequences of the dif-
ferent sources of pressure and opacity in stars of different masses, and of the fact
that the onset of nuclear hydrogen burning keeps the core temperatures of all main-
sequence stars in a narrow range. The latter fact will be elucidated below.

3.9 NUCLEAR ENERGY PRODUCTION

The last function we still need to describe is the power density �(ρ, T, X, Y, Z). To
see that the energy source behind � must be nuclear burning, we will consider the
alternatives. Suppose that the source of the Sun’s energy were gravitational, i.e.,
that the Sun had radiated until now the potential energy liberated by contracting
from infinity to its present radius. From the virial theorem, we saw that the thermal
energy resulting from such a contraction is minus one-half the gravitational energy,

Egr = −2Eth. (3.94)

Therefore, the thermal energy that results from the contraction, and which the Sun
can radiate is

Eth ∼
1
2

GM2
⊙

r⊙
. (3.95)

To see how long the Sun could shine at its present luminosity with this energy
source, we divide this energy by the Solar luminosity. This gives the so-called
Kelvin-Helmholtz timescale,

τkh ∼
1
2

GM2
⊙

r⊙

1
L⊙

=
6.7× 10−8 cgs× (2× 1033 g)2

2× 7× 1010 cm× 3.8× 1033 erg s−1

= 5× 1014 s = 1.6× 107 yr. (3.96)

The geological record shows that the Earth andMoon have existed for over 4 billion
years, and that the Sun has been shining with about the same luminosity during all
of this period. A similar calculation shows that chemical reactions (e.g., if the Sun
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a flattening of the mass-luminosity relationship that is, in fact, observed for the
most massive stars.
Finally, we can also reproduce the functional dependence of the main sequence

in the H-R diagram. We saw that L ∼ M5 for low-mass stars and L ∼ M3 for
moderately massive stars. Let us then take an intermediate slope, L ∼ M4, as
representative. Since r ∼M , then

σT 4
E =
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4πr2
∗
∼ M4

M2
∼ M2 ∼ L1/2, (3.92)

so

L ∼ T 8
E , (3.93)

as observed.
We have thus seen that the mass vs. luminosity relation and the surface-temperature

vs. luminosity relation of main-sequence stars are simply consequences of the dif-
ferent sources of pressure and opacity in stars of different masses, and of the fact
that the onset of nuclear hydrogen burning keeps the core temperatures of all main-
sequence stars in a narrow range. The latter fact will be elucidated below.

3.9 NUCLEAR ENERGY PRODUCTION

The last function we still need to describe is the power density �(ρ, T, X, Y, Z). To
see that the energy source behind � must be nuclear burning, we will consider the
alternatives. Suppose that the source of the Sun’s energy were gravitational, i.e.,
that the Sun had radiated until now the potential energy liberated by contracting
from infinity to its present radius. From the virial theorem, we saw that the thermal
energy resulting from such a contraction is minus one-half the gravitational energy,

Egr = −2Eth. (3.94)

Therefore, the thermal energy that results from the contraction, and which the Sun
can radiate is

Eth ∼
1
2

GM2
⊙

r⊙
. (3.95)

To see how long the Sun could shine at its present luminosity with this energy
source, we divide this energy by the Solar luminosity. This gives the so-called
Kelvin-Helmholtz timescale,
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1
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=
6.7× 10−8 cgs× (2× 1033 g)2

2× 7× 1010 cm× 3.8× 1033 erg s−1

= 5× 1014 s = 1.6× 107 yr. (3.96)

The geological record shows that the Earth andMoon have existed for over 4 billion
years, and that the Sun has been shining with about the same luminosity during all
of this period. A similar calculation shows that chemical reactions (e.g., if the Sun

basicastro4 October 26, 2006

STELLAR PHYSICS 49

a flattening of the mass-luminosity relationship that is, in fact, observed for the
most massive stars.
Finally, we can also reproduce the functional dependence of the main sequence

in the H-R diagram. We saw that L ∼ M5 for low-mass stars and L ∼ M3 for
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representative. Since r ∼M , then
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so

L ∼ T 8
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as observed.
We have thus seen that the mass vs. luminosity relation and the surface-temperature

vs. luminosity relation of main-sequence stars are simply consequences of the dif-
ferent sources of pressure and opacity in stars of different masses, and of the fact
that the onset of nuclear hydrogen burning keeps the core temperatures of all main-
sequence stars in a narrow range. The latter fact will be elucidated below.

3.9 NUCLEAR ENERGY PRODUCTION

The last function we still need to describe is the power density �(ρ, T, X, Y, Z). To
see that the energy source behind � must be nuclear burning, we will consider the
alternatives. Suppose that the source of the Sun’s energy were gravitational, i.e.,
that the Sun had radiated until now the potential energy liberated by contracting
from infinity to its present radius. From the virial theorem, we saw that the thermal
energy resulting from such a contraction is minus one-half the gravitational energy,

Egr = −2Eth. (3.94)

Therefore, the thermal energy that results from the contraction, and which the Sun
can radiate is

Eth ∼
1
2

GM2
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. (3.95)

To see how long the Sun could shine at its present luminosity with this energy
source, we divide this energy by the Solar luminosity. This gives the so-called
Kelvin-Helmholtz timescale,
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1
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=
6.7× 10−8 cgs× (2× 1033 g)2

2× 7× 1010 cm× 3.8× 1033 erg s−1

= 5× 1014 s = 1.6× 107 yr. (3.96)

The geological record shows that the Earth andMoon have existed for over 4 billion
years, and that the Sun has been shining with about the same luminosity during all
of this period. A similar calculation shows that chemical reactions (e.g., if the Sun
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a flattening of the mass-luminosity relationship that is, in fact, observed for the
most massive stars.
Finally, we can also reproduce the functional dependence of the main sequence
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so
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as observed.
We have thus seen that the mass vs. luminosity relation and the surface-temperature

vs. luminosity relation of main-sequence stars are simply consequences of the dif-
ferent sources of pressure and opacity in stars of different masses, and of the fact
that the onset of nuclear hydrogen burning keeps the core temperatures of all main-
sequence stars in a narrow range. The latter fact will be elucidated below.
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The last function we still need to describe is the power density �(ρ, T, X, Y, Z). To
see that the energy source behind � must be nuclear burning, we will consider the
alternatives. Suppose that the source of the Sun’s energy were gravitational, i.e.,
that the Sun had radiated until now the potential energy liberated by contracting
from infinity to its present radius. From the virial theorem, we saw that the thermal
energy resulting from such a contraction is minus one-half the gravitational energy,

Egr = −2Eth. (3.94)

Therefore, the thermal energy that results from the contraction, and which the Sun
can radiate is
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To see how long the Sun could shine at its present luminosity with this energy
source, we divide this energy by the Solar luminosity. This gives the so-called
Kelvin-Helmholtz timescale,
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=
6.7× 10−8 cgs× (2× 1033 g)2
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= 5× 1014 s = 1.6× 107 yr. (3.96)

The geological record shows that the Earth andMoon have existed for over 4 billion
years, and that the Sun has been shining with about the same luminosity during all
of this period. A similar calculation shows that chemical reactions (e.g., if the Sun
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Nuclear Energy Production
The last equation of stellar structure is energy production.  In 
the homework, you considered how long the sun could shine at 
its current luminosity via the release of gravitational energy 
alone.

Kelvin-Helmholtz timescale:

⌧kh = 9.6⇥ 106 years

Geological records indicate that the Earth has existed for over 
4 billion years and that the sun has been shining with similar 
luminosity over that time.

Where is the energy coming from?
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p-p chain
This reaction produces 99% of the energy 
in the sun.

Step 1:
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were producing energy by combining hydrogen and oxygen into water) are also not
viable for producing the Solar luminosity for so long.
A viable energy source for the Sun and other main sequence stars is nuclear

fusion of hydrogen into helium. Most of the nuclear energy of the Sun comes from
a chain of reactions called the “p-p chain”. The first step is the reaction

p + p→ d + e+ + νe, (3.97)

where d designates a deuteron, composed of a proton and a neutron. As we will
see in Section 3.10, the timescale for this process inside the Sun is 1010 yr. The
timescale is so long mainly because the reaction proceeds via the weak interaction
(as is evidenced by the emission of a neutrino). The positron, the deuteron, and
the neutrino share an energy of 0.425 MeV. Once the reaction occurs, the positron
quickly annihilates with an electron, producing two 0.511 MeV gamma-ray pho-
tons. The neutrino, having a weak interaction with matter, escapes the Sun and car-
ries off its energy, which has a mean of 0.26MeV. The remaining kinetic energy and
photons quickly thermalize by means of frequent matter-matter and matter-photon
collisions. Typically within 1 s, the deuteron will merge with another proton to
form 3He:

p + d→3 He + γ, (3.98)

with a total energy release (kinetic + the γ-ray photon) of 5.49 MeV. Finally, on a
timescale of 300,000 years, we have

3He +3He→4 He + p + p, (3.99)

with a kinetic energy release of 12.86 MeV. Every time this three-step chain occurs
twice, four protons are converted into a 4He nucleus, two neutrinos, photons, and
kinetic energy. The total energy released per 4He nucleus is thus

(4× 0.511 + 2× 0.425 + 2× 5.49 + 12.86) MeV = 26.73 MeV. (3.100)

Deducting the 2 × 0.511 Mev from the annihilation of two pre-existing electrons,
this is just the rest-mass difference between four free protons and a 4He nucleus:

[m(4p)−m(4He)]c2 = 25.71 MeV = 0.7% m(4p)c2. (3.101)

Thus, the rest-mass-to-energy conversion efficiency of the p-p chain is 0.7%. The
time for the Sun to radiate away just 10% of the energy available from this source
is

τnuc =
0.1× 0.007×M⊙c2

L⊙
(3.102)

=
0.1× 0.007× 2× 1033 g × (3× 1010 cm s−1)2

3.8× 1033 erg s−1
= 3.3× 1017 s = 1010 yr.

In other words, in terms of energy budget, hydrogen fusion can easily produce the
Solar luminosity over the age of the Solar System.
Next, we need to see if the conditions in the Sun are suitable for these reactions

to actually take place. Consider two nuclei with atomic numbers (i.e., number of

- This is a weak interaction with a 
timescale of ~1010 years in sun’s core.

- Energy released = 0.425 MeV.

- The positron quickly annihilates with 
an ambient electron.

e+ + e� �! � + �

Each γ has ~0.511 MeV energy.
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Step 2:

- This is an electromagnetic  interaction 
with a timescale of ~1 s in sun’s core.

- Energy released = 5.49  MeV.
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fusion of hydrogen into helium. Most of the nuclear energy of the Sun comes from
a chain of reactions called the “p-p chain”. The first step is the reaction

p + p→ d + e+ + νe, (3.97)

where d designates a deuteron, composed of a proton and a neutron. As we will
see in Section 3.10, the timescale for this process inside the Sun is 1010 yr. The
timescale is so long mainly because the reaction proceeds via the weak interaction
(as is evidenced by the emission of a neutrino). The positron, the deuteron, and
the neutrino share an energy of 0.425 MeV. Once the reaction occurs, the positron
quickly annihilates with an electron, producing two 0.511 MeV gamma-ray pho-
tons. The neutrino, having a weak interaction with matter, escapes the Sun and car-
ries off its energy, which has a mean of 0.26MeV. The remaining kinetic energy and
photons quickly thermalize by means of frequent matter-matter and matter-photon
collisions. Typically within 1 s, the deuteron will merge with another proton to
form 3He:

p + d→3 He + γ, (3.98)

with a total energy release (kinetic + the γ-ray photon) of 5.49 MeV. Finally, on a
timescale of 300,000 years, we have

3He +3He→4 He + p + p, (3.99)

with a kinetic energy release of 12.86 MeV. Every time this three-step chain occurs
twice, four protons are converted into a 4He nucleus, two neutrinos, photons, and
kinetic energy. The total energy released per 4He nucleus is thus

(4× 0.511 + 2× 0.425 + 2× 5.49 + 12.86) MeV = 26.73 MeV. (3.100)

Deducting the 2 × 0.511 Mev from the annihilation of two pre-existing electrons,
this is just the rest-mass difference between four free protons and a 4He nucleus:

[m(4p)−m(4He)]c2 = 25.71 MeV = 0.7% m(4p)c2. (3.101)

Thus, the rest-mass-to-energy conversion efficiency of the p-p chain is 0.7%. The
time for the Sun to radiate away just 10% of the energy available from this source
is

τnuc =
0.1× 0.007×M⊙c2

L⊙
(3.102)

=
0.1× 0.007× 2× 1033 g × (3× 1010 cm s−1)2

3.8× 1033 erg s−1
= 3.3× 1017 s = 1010 yr.

In other words, in terms of energy budget, hydrogen fusion can easily produce the
Solar luminosity over the age of the Solar System.
Next, we need to see if the conditions in the Sun are suitable for these reactions

to actually take place. Consider two nuclei with atomic numbers (i.e., number of

Step 3:
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a chain of reactions called the “p-p chain”. The first step is the reaction

p + p→ d + e+ + νe, (3.97)

where d designates a deuteron, composed of a proton and a neutron. As we will
see in Section 3.10, the timescale for this process inside the Sun is 1010 yr. The
timescale is so long mainly because the reaction proceeds via the weak interaction
(as is evidenced by the emission of a neutrino). The positron, the deuteron, and
the neutrino share an energy of 0.425 MeV. Once the reaction occurs, the positron
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tons. The neutrino, having a weak interaction with matter, escapes the Sun and car-
ries off its energy, which has a mean of 0.26MeV. The remaining kinetic energy and
photons quickly thermalize by means of frequent matter-matter and matter-photon
collisions. Typically within 1 s, the deuteron will merge with another proton to
form 3He:

p + d→3 He + γ, (3.98)

with a total energy release (kinetic + the γ-ray photon) of 5.49 MeV. Finally, on a
timescale of 300,000 years, we have

3He +3He→4 He + p + p, (3.99)

with a kinetic energy release of 12.86 MeV. Every time this three-step chain occurs
twice, four protons are converted into a 4He nucleus, two neutrinos, photons, and
kinetic energy. The total energy released per 4He nucleus is thus

(4× 0.511 + 2× 0.425 + 2× 5.49 + 12.86) MeV = 26.73 MeV. (3.100)

Deducting the 2 × 0.511 Mev from the annihilation of two pre-existing electrons,
this is just the rest-mass difference between four free protons and a 4He nucleus:

[m(4p)−m(4He)]c2 = 25.71 MeV = 0.7% m(4p)c2. (3.101)

Thus, the rest-mass-to-energy conversion efficiency of the p-p chain is 0.7%. The
time for the Sun to radiate away just 10% of the energy available from this source
is

τnuc =
0.1× 0.007×M⊙c2

L⊙
(3.102)

=
0.1× 0.007× 2× 1033 g × (3× 1010 cm s−1)2

3.8× 1033 erg s−1
= 3.3× 1017 s = 1010 yr.

In other words, in terms of energy budget, hydrogen fusion can easily produce the
Solar luminosity over the age of the Solar System.
Next, we need to see if the conditions in the Sun are suitable for these reactions

to actually take place. Consider two nuclei with atomic numbers (i.e., number of

- This is a strong  interaction with a 
timescale of ~300,000 years in sun’s 
core.

- Energy released = 12.86  MeV.
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- Note that each time the process 
occurs, 4 protons are converted to one 
4He nucleus, two neutrinos, photons 
and kinetic energy.
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this is just the rest-mass difference between four free protons and a 4He nucleus:

[m(4p)−m(4He)]c2 = 25.71 MeV = 0.7% m(4p)c2. (3.101)

Thus, the rest-mass-to-energy conversion efficiency of the p-p chain is 0.7%. The
time for the Sun to radiate away just 10% of the energy available from this source
is
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0.1× 0.007×M⊙c2
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(3.102)

=
0.1× 0.007× 2× 1033 g × (3× 1010 cm s−1)2
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In other words, in terms of energy budget, hydrogen fusion can easily produce the
Solar luminosity over the age of the Solar System.
Next, we need to see if the conditions in the Sun are suitable for these reactions

to actually take place. Consider two nuclei with atomic numbers (i.e., number of

Net energy released  = 

step 1 step 2 step 3

- This equals the difference in rest mass 
energy between 4 protons and one 
4He nucleus.

- What is the rest mass of a proton?  
How does the net released energy 
compare to the rest mass energy of 4 
protons? mp = 938 MeV

This is 0.7% of the rest mass of 4 protons.
The efficiency of mass to energy 
conversion is 0.7%.
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Calculate the time it takes for the sun tor radiate away 10% of the 
energy available from the p-p chain.

⌧ =
E

L
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with a total energy release (kinetic + the γ-ray photon) of 5.49 MeV. Finally, on a
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Deducting the 2 × 0.511 Mev from the annihilation of two pre-existing electrons,
this is just the rest-mass difference between four free protons and a 4He nucleus:

[m(4p)−m(4He)]c2 = 25.71 MeV = 0.7% m(4p)c2. (3.101)

Thus, the rest-mass-to-energy conversion efficiency of the p-p chain is 0.7%. The
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=
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= 3.3× 1017 s = 1010 yr.

In other words, in terms of energy budget, hydrogen fusion can easily produce the
Solar luminosity over the age of the Solar System.
Next, we need to see if the conditions in the Sun are suitable for these reactions

to actually take place. Consider two nuclei with atomic numbers (i.e., number of

basicastro4 October 26, 2006

50 CHAPTER 3

were producing energy by combining hydrogen and oxygen into water) are also not
viable for producing the Solar luminosity for so long.
A viable energy source for the Sun and other main sequence stars is nuclear

fusion of hydrogen into helium. Most of the nuclear energy of the Sun comes from
a chain of reactions called the “p-p chain”. The first step is the reaction

p + p→ d + e+ + νe, (3.97)

where d designates a deuteron, composed of a proton and a neutron. As we will
see in Section 3.10, the timescale for this process inside the Sun is 1010 yr. The
timescale is so long mainly because the reaction proceeds via the weak interaction
(as is evidenced by the emission of a neutrino). The positron, the deuteron, and
the neutrino share an energy of 0.425 MeV. Once the reaction occurs, the positron
quickly annihilates with an electron, producing two 0.511 MeV gamma-ray pho-
tons. The neutrino, having a weak interaction with matter, escapes the Sun and car-
ries off its energy, which has a mean of 0.26MeV. The remaining kinetic energy and
photons quickly thermalize by means of frequent matter-matter and matter-photon
collisions. Typically within 1 s, the deuteron will merge with another proton to
form 3He:

p + d→3 He + γ, (3.98)

with a total energy release (kinetic + the γ-ray photon) of 5.49 MeV. Finally, on a
timescale of 300,000 years, we have

3He +3He→4 He + p + p, (3.99)

with a kinetic energy release of 12.86 MeV. Every time this three-step chain occurs
twice, four protons are converted into a 4He nucleus, two neutrinos, photons, and
kinetic energy. The total energy released per 4He nucleus is thus

(4× 0.511 + 2× 0.425 + 2× 5.49 + 12.86) MeV = 26.73 MeV. (3.100)

Deducting the 2 × 0.511 Mev from the annihilation of two pre-existing electrons,
this is just the rest-mass difference between four free protons and a 4He nucleus:

[m(4p)−m(4He)]c2 = 25.71 MeV = 0.7% m(4p)c2. (3.101)

Thus, the rest-mass-to-energy conversion efficiency of the p-p chain is 0.7%. The
time for the Sun to radiate away just 10% of the energy available from this source
is

τnuc =
0.1× 0.007×M⊙c2

L⊙
(3.102)

=
0.1× 0.007× 2× 1033 g × (3× 1010 cm s−1)2

3.8× 1033 erg s−1
= 3.3× 1017 s = 1010 yr.

In other words, in terms of energy budget, hydrogen fusion can easily produce the
Solar luminosity over the age of the Solar System.
Next, we need to see if the conditions in the Sun are suitable for these reactions

to actually take place. Consider two nuclei with atomic numbers (i.e., number of⌧ = 3.3⇥ 1017 s = 1010 yr

Hydrogen fusion can easily produce the solar luminosity 
over the age of the Solar System.
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Question:  Are the conditions in the Sun suitable for these type of 
reactions to take place? 
Consider the forces acting on the nuclei.

- The strong force is attractive, but only operates over 
short distances.
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Figure 3.8 Schematic illustration of the potential energy V (r) between two nuclei as a func-
tion of separation r. For two protons, the Coulomb repulsion reaches a maxi-
mum, with V (r) ∼ 1 Mev at r = r

0

, at which point the short-range nuclear
force sets in and binds the nuclei (negative potential energy). Two nuclei with
relative kinetic energy of ∼ 1 keV, typical for the temperatures in stellar inte-
riors, can classically approach each other only to within a separation r

1

, 1000
times greater than r

0

. The dashed rectangle is a “rectangular barrier” of height
�V (r)� ≈ 3E/2, which we use to approximate the Coulomb barrier in our cal-
culation of the probability for quantum tunneling through the potential.

protons per nucleus) ZA and ZB . The strong interaction produces a short-range
attractive force between the nuclei on scales smaller than

r0 ≈ 1.4× 10−13 cm. (3.103)

The strong interaction goes to zero at larger distances, and the Coulomb repulsion
between the nuclei takes over. The Coulomb energy barrier is

Ecoul =
ZAZBe2

r
, (3.104)

which at r0 is of order

Ecoul(r0) ≈ ZAZB MeV. (3.105)

Fig. 3.8 shows schematically the combined nuclear (strong) and electrostatic (Coulomb)
potential. In the reference frame of one of the nuclei, the other nucleus, with kinetic
energy E, can classically approach only to a distance

r1 =
ZAZBe2

E
, (3.106)
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protons per nucleus) ZA and ZB . The strong interaction produces a short-range
attractive force between the nuclei on scales smaller than

r0 ≈ 1.4× 10−13 cm. (3.103)

The strong interaction goes to zero at larger distances, and the Coulomb repulsion
between the nuclei takes over. The Coulomb energy barrier is

Ecoul =
ZAZBe2

r
, (3.104)

which at r0 is of order

Ecoul(r0) ≈ ZAZB MeV. (3.105)

Fig. 3.8 shows schematically the combined nuclear (strong) and electrostatic (Coulomb)
potential. In the reference frame of one of the nuclei, the other nucleus, with kinetic
energy E, can classically approach only to a distance

r1 =
ZAZBe2

E
, (3.106)

- The Coulomb force is repulsive, acts over large distances.

basicastro4 October 26, 2006

STELLAR PHYSICS 51

Figure 3.8 Schematic illustration of the potential energy V (r) between two nuclei as a func-
tion of separation r. For two protons, the Coulomb repulsion reaches a maxi-
mum, with V (r) ∼ 1 Mev at r = r

0

, at which point the short-range nuclear
force sets in and binds the nuclei (negative potential energy). Two nuclei with
relative kinetic energy of ∼ 1 keV, typical for the temperatures in stellar inte-
riors, can classically approach each other only to within a separation r

1

, 1000
times greater than r

0

. The dashed rectangle is a “rectangular barrier” of height
�V (r)� ≈ 3E/2, which we use to approximate the Coulomb barrier in our cal-
culation of the probability for quantum tunneling through the potential.

protons per nucleus) ZA and ZB . The strong interaction produces a short-range
attractive force between the nuclei on scales smaller than

r0 ≈ 1.4× 10−13 cm. (3.103)
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between the nuclei takes over. The Coulomb energy barrier is

Ecoul =
ZAZBe2

r
, (3.104)

which at r0 is of order

Ecoul(r0) ≈ ZAZB MeV. (3.105)

Fig. 3.8 shows schematically the combined nuclear (strong) and electrostatic (Coulomb)
potential. In the reference frame of one of the nuclei, the other nucleus, with kinetic
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- The closest approach is given by
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protons per nucleus) ZA and ZB . The strong interaction produces a short-range
attractive force between the nuclei on scales smaller than

r0 ≈ 1.4× 10−13 cm. (3.103)

The strong interaction goes to zero at larger distances, and the Coulomb repulsion
between the nuclei takes over. The Coulomb energy barrier is

Ecoul =
ZAZBe2

r
, (3.104)

which at r0 is of order

Ecoul(r0) ≈ ZAZB MeV. (3.105)

Fig. 3.8 shows schematically the combined nuclear (strong) and electrostatic (Coulomb)
potential. In the reference frame of one of the nuclei, the other nucleus, with kinetic
energy E, can classically approach only to a distance

r1 =
ZAZBe2

E
, (3.106)

This distance is ~ 10-10 cm  for 
Ekinetic ~1 keV (T~ 107 K).

- Need 1000 x average energy to get close 
enough for the strong force.
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Question:  Could particles the high energy tail of the Maxwell-
Boltzmann distribution overcome this potential?

  

p-p chain

● Need 1000× average energy to 
get close enough for strong force.

● Maxwell-Boltzmann distribution 
does have a tail extending to high 
energies, but probability of state 
of energy E being occupied at a 
temperature T is P ~ e-E/kT

– e-1000 ~ 10-434

● # protons in Sun ~ 1057

● Hence, there are zero protons in 
the Sun with sufficient energy to 
undergo fusion.

P ~ e-E/kT

Maxwell-Boltzmann distribution

- The Maxwell-Boltzman distribution has a tail extending to high 
energies. 

- The number of protons in the 
sun is 1057.  
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where it will be repelled away. At a typical internal stellar temperature of 107K, the
kinetic energy of a nucleus is 1.5kT ∼ 1 keV. The characteristic kinetic energy is
thus of order 10−3 of the energy required to overcome the Coulomb barrier. Typical
nuclei will approach each other only to a separation r1 ∼ 10−10 cm, 1000 times
larger than the distance at which the strong nuclear binding force operates. Perhaps
those nuclei that are in the high-energy tail of the Maxwell-Boltzmann distribution
can overcome the barrier? The fraction of nuclei with such energies is

e−E/kT ≈ e−1000 ≈ 10−434. (3.107)

The number of protons in the Sun is

Np ≈
M⊙
mH

=
2× 1033 g

1.7× 10−24 g
≈ 1057. (3.108)

Thus there is not a single nucleus in the Sun (or, for that matter, in all the stars in
the observable Universe) with the kinetic energy required classically to overcome
the Coulomb barrier and undergo nuclear fusion with another nucleus.
Fortunately, quantum tunneling through the barrier allows nuclear reactions to

take place after all. To see this, let us describe this two-body problem by means of
the time-independent Schrödinger equation, for a wave function Ψ in a spherically
symmetric potential V (r):

h̄2

2µ
∇2Ψ = [V (r)− E]Ψ, (3.109)

where the reduced mass of the two nuclei, of massesmA andmB , is

µ ≡ mAmB

mA + mB
. (3.110)

In our case, the potential is

V (r) =
ZAZBe2

r
, (3.111)

and E is the kinetic energy. Let us obtain an order-of-magnitude solution to the
Schrödinger equation. By our definition of r1, the radius of closest classical ap-
proach, we have V (r1) = E. We can then write V (r) = Er1/r, and the mean,
volume-averaged, height of the potential between r1 and r0 � r1 is

�V (r)� =

R r
1

r
0

4πr2V (r)dr
R r

1

r
0

4πr2dr
≈ 3

2
E. (3.112)

Approximating V (r) with a constant function of this height (a “rectangular bar-
rier”), the radial component of the Schrödinger equation becomes

h̄2

2µ

1
r

d2(rΨ)
dr2

≈ E

2
Ψ, (3.113)

which has a solution

Ψ = A
eβr

r
, β =

√
µE

h̄
. (3.114)

- The probability of state of 
energy E being occupied at 
temperature T is

P ⇡ e�
E
kT

- Hence, there is not a single nucleus in the sun with 
sufficient energy to undergo fusion.  

So, what gives?  How do we get fusion?
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Quantum Tunneling!
Quantum tunneling through the barrier allows nuclear reactions 
to take place in the sun.

Here we will have a notation change (U -> V), we consider the case 
of two nuclei, and we rearrange terms.
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kinetic energy of a nucleus is 1.5kT ∼ 1 keV. The characteristic kinetic energy is
thus of order 10−3 of the energy required to overcome the Coulomb barrier. Typical
nuclei will approach each other only to a separation r1 ∼ 10−10 cm, 1000 times
larger than the distance at which the strong nuclear binding force operates. Perhaps
those nuclei that are in the high-energy tail of the Maxwell-Boltzmann distribution
can overcome the barrier? The fraction of nuclei with such energies is

e−E/kT ≈ e−1000 ≈ 10−434. (3.107)

The number of protons in the Sun is

Np ≈
M⊙
mH

=
2× 1033 g

1.7× 10−24 g
≈ 1057. (3.108)

Thus there is not a single nucleus in the Sun (or, for that matter, in all the stars in
the observable Universe) with the kinetic energy required classically to overcome
the Coulomb barrier and undergo nuclear fusion with another nucleus.
Fortunately, quantum tunneling through the barrier allows nuclear reactions to

take place after all. To see this, let us describe this two-body problem by means of
the time-independent Schrödinger equation, for a wave function Ψ in a spherically
symmetric potential V (r):

h̄2

2µ
∇2Ψ = [V (r)− E]Ψ, (3.109)

where the reduced mass of the two nuclei, of massesmA andmB , is

µ ≡ mAmB

mA + mB
. (3.110)

In our case, the potential is

V (r) =
ZAZBe2

r
, (3.111)

and E is the kinetic energy. Let us obtain an order-of-magnitude solution to the
Schrödinger equation. By our definition of r1, the radius of closest classical ap-
proach, we have V (r1) = E. We can then write V (r) = Er1/r, and the mean,
volume-averaged, height of the potential between r1 and r0 � r1 is

�V (r)� =

R r
1

r
0

4πr2V (r)dr
R r

1

r
0

4πr2dr
≈ 3

2
E. (3.112)

Approximating V (r) with a constant function of this height (a “rectangular bar-
rier”), the radial component of the Schrödinger equation becomes

h̄2

2µ

1
r

d2(rΨ)
dr2

≈ E

2
Ψ, (3.113)

which has a solution

Ψ = A
eβr

r
, β =

√
µE

h̄
. (3.114)

where μ is the reduced mass and the potential is given by V(r).
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Approximating V (r) with a constant function of this height (a “rectangular bar-
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1
r

d2(rΨ)
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which has a solution

Ψ = A
eβr
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, β =

√
µE

h̄
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Recall the 3D Schrodinger equation for the hydrogen atom from 
PHYS 3305:

� ~2
2m

r2 + U = E 
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Crude Estimate of the Effect of Tunneling:

Recall that the wavelength of a massive particle:

� =
h

p

Rewrite the kinetic energy of the particle in terms of momentum

1

2
µv2 =

p2

2µ
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Schrödinger equation. By our definition of r1, the radius of closest classical ap-
proach, we have V (r1) = E. We can then write V (r) = Er1/r, and the mean,
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Approximating V (r) with a constant function of this height (a “rectangular bar-
rier”), the radial component of the Schrödinger equation becomes

h̄2

2µ

1
r

d2(rΨ)
dr2

≈ E

2
Ψ, (3.113)

which has a solution

Ψ = A
eβr

r
, β =

√
µE

h̄
. (3.114)

Set the distance of closest approach equal to one wavelength 
(where potential barrier height is equal to original kinetic energy)

ZAZBe2

�
=

p2

2µ
=

(h/�)2

2µ

Recall the relation between T and kinetic energy.  Substitute λ and solve.

Ekinetic =
ZAZBe2

r
=

3

2
kTclassical

(Solve for λ).

Tquantum ⇠ 107 K
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Final Points:

If we had solved the Schrodinger equation, we would have found 
the energy required to penetrate the Coulomb barrier to be ~500 keV.

The probability to penetrate the barrier is given by the function
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(The second independent solution of the equation, with an amplitude that rises with
decreasing radius, is unphysical.) The wave function amplitude, squared, is propor-
tional to the probability density for a particle to be at a given location. Multiplying
the ratio of the probability densities by the ratio of the volume elements, 4πr2

0dr
and 4πr2

1dr, thus gives the probability that a nucleus will tunnel from r1 to within
r0 � r1 of the other nucleus:

|Ψ(r0)|2 r2
0

|Ψ(r1)|2 r2
1

=
e2βr

0

e2βr
1

≈ e−2βr
1 = exp

µ
−2
√

µE

h̄

ZAZBe2

E

∂
(3.115)

= exp
µ
−

2√µ

h̄
ZAZBe2 1√

E

∂
.

A full solution of the Schrödinger equation gives the same answer, but with an
additional factor π/

√
2 in the exponential. If we recall the definition of the fine-

structure constant,

α =
e2

h̄c
≈ 1

137
, (3.116)

and define an energy
EG = (παZAZB)22µc2, (3.117)

then the probability of penetrating the Coulomb barrier simplifies to the function

g(E) = e−
√

EG/E . (3.118)
EG is called the Gamow energy and g(E) is called the Gamow factor. For two
protons,

EG =
µ

π
1

137
× 1× 1

∂2

2
1
2
mpc

2 ≈ 500 keV. (3.119)

(It is convenient to remember that the rest energy of a proton,mpc
2, is 0.94 GeV).

Thus, for the typical kinetic energy of particles in the Sun’s core, E ∼ 1 keV, we
find g(E) ∼ e−22 ∼ 10−10. While this probability, for a given pair or protons,
is still small, it is considerably larger than the classical probability we found in
Eq. 3.107.

3.10 NUCLEAR REACTION RATES

Even if tunneling occurs, and two nuclei are within the strong force’s interaction
range, the probability of a nuclear reaction will still depend on a nuclear cross
section, which will generally depend inversely on the kinetic energy. Thus, the
total cross section for a nuclear reaction involving ingredient nuclei A and B is

σAB(E) =
S0

E
e−
√

EG/E , (3.120)

where S0 is a constant, or a weak function of energy, with units of [area]×[energy].
S0 for a given nuclear reaction is generally derived from accelerator experiments,
or is calculated theoretically.

where EG is the Gamow Energy and g(E) is the Gamow Factor.

The Gamow factor for the sun is 
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(It is convenient to remember that the rest energy of a proton,mpc
2, is 0.94 GeV).

Thus, for the typical kinetic energy of particles in the Sun’s core, E ∼ 1 keV, we
find g(E) ∼ e−22 ∼ 10−10. While this probability, for a given pair or protons,
is still small, it is considerably larger than the classical probability we found in
Eq. 3.107.

3.10 NUCLEAR REACTION RATES

Even if tunneling occurs, and two nuclei are within the strong force’s interaction
range, the probability of a nuclear reaction will still depend on a nuclear cross
section, which will generally depend inversely on the kinetic energy. Thus, the
total cross section for a nuclear reaction involving ingredient nuclei A and B is

σAB(E) =
S0

E
e−
√

EG/E , (3.120)

where S0 is a constant, or a weak function of energy, with units of [area]×[energy].
S0 for a given nuclear reaction is generally derived from accelerator experiments,
or is calculated theoretically.

While this probability is still small, it is much greater than we found 
for the classical probability. 
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Next Up

- Nuclear reaction rates

- Convection

- and more awesome stuff ….
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Stay Tuned!


