
Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

Principles of Astrophysics 
and Cosmology

George Gamow
March 4, 1904 – August 19, 1968

Welcome Back 
to PHYS 3368



Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

Announcements
- Reading Assignments:  Chapter 3.10 - 3.12 and 4.1.

- Problem Set 6 is due Wednesday, March 4th, 2015.

- Next lab is Monday, March 16th.  Be sure to report to 
FOSC 032 that day.

- Midterm Exam 1 is in class on Wednesday, March 
18th.  It will be open book, open note and cover 
chapters 1 - 3.

- Dark Sky viewing has been postponed due to 
weather.  Check your email for details on 
rescheduling possibilities.
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Last Time:
We discussed different contributions to opacity.
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Figure 3.7 Left: A free electron accelerating in the Coulomb potential of an ion emits
Bremsstrahlung, or “free-free” radiation. Right: In the inverse process of free-
free absorption, a photon is absorbed by a free electron. The process is possible
only if a neighboring ion, which can share some of the photon’s momentum, is
present.

When averaged over all wavelengths, the “mean opacity” due to both bound-free
absorption and free-free absorption behave approximately as

κ̄bf,ff ∼
ρ

T 3.5
, (3.79)

which is called a Kramers opacity law. This behavior holds only over limited ranges
in temperature and density. For example, free-free absorption actually increases
with temperature at low temperature and density, with the increase in free electron
density. Similarly, bound-free opacity cuts off at high temperatures at which the
atoms are fully ionized. Additional sources of opacity, significant especially in
low-mass stars, are molecules and H− ions.6

3.8 SCALING RELATIONS ON THE MAIN SEQUENCE

From the equations we have derived so far, we can already deduce and understand
the observed functional forms of the mass-luminosity relation, L ∼ Mα, and the
effective-temperature-luminosity relation, L ∼ T 8

E , that are observed for main se-
quence stars. Let us assume, for simplicity, that the functions P (r), M(r), ρ(r),
and T (r) are roughly power laws, i.e., P (r) ∼ rβ , M(r) ∼ rγ , etc. If so, we can
immediately write the first three differential equations (Eqns. 3.56, 3.57, and 3.58)
as scaling relations,

P ∼ Mρ

r
, (3.80)

M ∼ r3ρ, (3.81)
and

L ∼ T 4r

κρ
(3.82)

(just as, instead of solving a differential equation, say, df/dx = x4, we can write
directly f ∼ x5). For moderately massive stars, the pressure will be dominated by

6The negative H− ion forms when a second electron attaches (with a quite weak bond) to a hydrogen
atom.

Kramer’s Law: Electron Scattering:

es =
ne�T

⇢

We derived several scaling relationships for Main Sequence stars.

We discussed the p-p chain for fusion in the sun and we discussed 
the conditions that make fusion possible in the sun.

The probability for 2 nuclear particles to overcome the Coulomb 
barrier is given by the function
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(The second independent solution of the equation, with an amplitude that rises with
decreasing radius, is unphysical.) The wave function amplitude, squared, is propor-
tional to the probability density for a particle to be at a given location. Multiplying
the ratio of the probability densities by the ratio of the volume elements, 4πr2

0dr
and 4πr2

1dr, thus gives the probability that a nucleus will tunnel from r1 to within
r0 � r1 of the other nucleus:

|Ψ(r0)|2 r2
0

|Ψ(r1)|2 r2
1

=
e2βr

0

e2βr
1

≈ e−2βr
1 = exp

µ
−2
√

µE

h̄

ZAZBe2

E

∂
(3.115)

= exp
µ
−

2√µ

h̄
ZAZBe2 1√

E

∂
.

A full solution of the Schrödinger equation gives the same answer, but with an
additional factor π/

√
2 in the exponential. If we recall the definition of the fine-

structure constant,

α =
e2

h̄c
≈ 1

137
, (3.116)

and define an energy
EG = (παZAZB)22µc2, (3.117)

then the probability of penetrating the Coulomb barrier simplifies to the function

g(E) = e−
√

EG/E . (3.118)
EG is called the Gamow energy and g(E) is called the Gamow factor. For two
protons,

EG =
µ

π
1

137
× 1× 1

∂2

2
1
2
mpc

2 ≈ 500 keV. (3.119)

(It is convenient to remember that the rest energy of a proton,mpc
2, is 0.94 GeV).

Thus, for the typical kinetic energy of particles in the Sun’s core, E ∼ 1 keV, we
find g(E) ∼ e−22 ∼ 10−10. While this probability, for a given pair or protons,
is still small, it is considerably larger than the classical probability we found in
Eq. 3.107.

3.10 NUCLEAR REACTION RATES

Even if tunneling occurs, and two nuclei are within the strong force’s interaction
range, the probability of a nuclear reaction will still depend on a nuclear cross
section, which will generally depend inversely on the kinetic energy. Thus, the
total cross section for a nuclear reaction involving ingredient nuclei A and B is

σAB(E) =
S0

E
e−
√

EG/E , (3.120)

where S0 is a constant, or a weak function of energy, with units of [area]×[energy].
S0 for a given nuclear reaction is generally derived from accelerator experiments,
or is calculated theoretically.

where EG is the Gamow Energy and g(E) is the Gamow Factor.
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is still small, it is considerably larger than the classical probability we found in
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Goals for Today’s Class

- Calculate how long it will take to deplete the 
Sun’s core of hydrogen.

- Are there other nuclear reactions we should be 
concerned with?

- What’s up with the neutrino solar flux?  In 1968, 
Ray Davis and colleagues had an experiment that 
measured only ~30% of the predicted solar 
neutrino flux.
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Nuclear Reaction Rates
For a nuclear reaction to occur, the two nuclei must be within the 
strong force’s interaction range.  

The probability of a nuclear reaction to occur will still depend upon 
a nuclear cross section.  
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A full solution of the Schrödinger equation gives the same answer, but with an
additional factor π/

√
2 in the exponential. If we recall the definition of the fine-

structure constant,
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(It is convenient to remember that the rest energy of a proton,mpc
2, is 0.94 GeV).

Thus, for the typical kinetic energy of particles in the Sun’s core, E ∼ 1 keV, we
find g(E) ∼ e−22 ∼ 10−10. While this probability, for a given pair or protons,
is still small, it is considerably larger than the classical probability we found in
Eq. 3.107.

3.10 NUCLEAR REACTION RATES

Even if tunneling occurs, and two nuclei are within the strong force’s interaction
range, the probability of a nuclear reaction will still depend on a nuclear cross
section, which will generally depend inversely on the kinetic energy. Thus, the
total cross section for a nuclear reaction involving ingredient nuclei A and B is

σAB(E) =
S0

E
e−
√

EG/E , (3.120)

where S0 is a constant, or a weak function of energy, with units of [area]×[energy].
S0 for a given nuclear reaction is generally derived from accelerator experiments,
or is calculated theoretically.S0 = a constant units of [area] x [energy]

EG = Gamow Energy
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Recall:
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Figure 3.2 A volume element in a field of targets as viewed in perspective (left). The target
number density is n, and each target presents a cross section σ. From the base of
the cylindrical volume, ndx targets per unit area are seen in projection (right). A
straight line along the length of the volume will therefore intercept, on average,
nσdx targets.

3.3 RADIATIVE ENERGY TRANSPORT

The radial gradient in P (r) that supports a star is produced by a gradient in ρ(r)
and T (r). In much of the volume of most stars, T (r) is determined by the rate at
which radiative energy flows in and out through every radius, i.e., the luminosity
L(r). To find the equation that determines T (r), we will need to study some of the
basics of “radiative transfer”, the passage of radiation through matter. In some of
the volume of some stars, the energy transport mechanism that dominates is con-
vection, rather than radiative transport. We will discuss convection is Section 3.12.
Energy transport by means of conduction plays a role only in dense stellar remnants
– white dwarfs and neutron stars – which are discussed in Chapter 4.
Photons in stars can be absorbed or scattered out of a beam via interactions with

molecules, with atoms (either neutral or ions), and with electrons. If a photon
traverses a path dx filled with “targets” with a number density n (i.e., the number of
targets per unit volume), then the projected number of targets per unit area lying in
the path of the photon is ndx (see Fig. 3.2). If each target poses an effective “cross
section”2 σ for absorption or scattering, then the fraction of the area covered by
targets is σndx. Thus, the number of targets that will typically be intersected by a
straight line traversing the path dx, or in other words, the number of interactions
the photon undergoes, will be

# of interactions = nσdx. (3.36)
Equation 3.36 defines the concept of cross section. (Cross section can be defined
equivalently as the ratio between the interaction rate per target particle and the
incoming flux of projectiles.) Setting the left-hand side equal to 1, the typical
distance a photon will travel between interactions is called the “mean free path”:

l =
1

nσ
. (3.37)

2The cross section of a particle, which has units of area, quantifies the degree to which the particle is
liable to take part in a particular interaction (e.g., a collision or a reaction) with some other particle.
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The number of reactions per nucleus
A as it traverses distance dx in a field
of nB targets is
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The number of reactions per nucleus A as it traverses a distance dx in a field
with a density nB of “target” nuclei B is

dNA = nBσABdx. (3.121)

Dividing both sides by dt, the number of reactions per nucleus A per unit time is
dNA

dt
= nBσABvAB , (3.122)

where vAB is the relative velocity between the nuclei.
From Eq. 3.122, we can proceed to find the power density function �(ρ, T, X, Y, Z),

needed to solve the equations of stellar structure. Multiplying by the density nA of
nuclei A will give the number of reactions per unit time and per unit volume, i.e.,
the reaction rate per unit volume,

RAB = nAnBσABvAB . (3.123)

If every reaction releases an energy Q, multiplying by Q gives the power per unit
volume. Dividing by ρ then gives the power per unit mass, rather than per unit
volume:

� = nAnBσABvABQ/ρ. (3.124)

Recalling that

nA =
ρXA

AAmH
, nB =

ρXB

ABmH
, (3.125)

with XA and XB symbolizing the mass abundances, and AA and AB the atomic
mass numbers of the two nucleus types, � can be expressed as

� =
ρXAXB

m2
HAAAB

σABvABQ. (3.126)

In reality, the nuclei in a gas will have a distribution of velocities, so every ve-
locity has some probability of occurring. Hence, � can be obtained by averag-
ing vABσAB over all velocities, with each velocity weighted by its probability,
P (vAB):

� =
ρXAXB

m2
HAAAB

�σABvAB�Q, (3.127)

with

�σABvAB� =
Z ∞

0

σABvABP (vAB)dvAB . (3.128)

A classical non-relativistic gas will have a distribution of velocities described by
the Maxwell-Boltzmann distribution. The relative velocities of nuclei A and B
will also follow a Maxwell-Boltzmann distribution,

P (v)dv = 4π
≥ µ

2πkT

¥3/2

v2exp
µ
− µv2

2kT

∂
dv, (3.129)

but with a mass represented by the reduced mass of the particles, µ. For brevity, we
have omitted here the subscript AB from the velocities.

“Divide” both sides by dt.

dNA

dt

= nB�AB
dx

dt

basicastro4 October 26, 2006

54 CHAPTER 3
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but with a mass represented by the reduced mass of the particles, µ. For brevity, we
have omitted here the subscript AB from the velocities.

Our goal is to find the power density function ε(ρ, T, X, Y, Z).  So, 
we multiply by density nA to get reactions per unit time per unit 
volume.
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but with a mass represented by the reduced mass of the particles, µ. For brevity, we
have omitted here the subscript AB from the velocities.

Each reaction releases energy Q.

Q x R = Power per unit volume

Divide by density (ρ = M/V) gives the power per unit mass.
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The number of reactions per nucleus A as it traverses a distance dx in a field
with a density nB of “target” nuclei B is

dNA = nBσABdx. (3.121)

Dividing both sides by dt, the number of reactions per nucleus A per unit time is
dNA

dt
= nBσABvAB , (3.122)

where vAB is the relative velocity between the nuclei.
From Eq. 3.122, we can proceed to find the power density function �(ρ, T, X, Y, Z),

needed to solve the equations of stellar structure. Multiplying by the density nA of
nuclei A will give the number of reactions per unit time and per unit volume, i.e.,
the reaction rate per unit volume,

RAB = nAnBσABvAB . (3.123)

If every reaction releases an energy Q, multiplying by Q gives the power per unit
volume. Dividing by ρ then gives the power per unit mass, rather than per unit
volume:

� = nAnBσABvABQ/ρ. (3.124)

Recalling that

nA =
ρXA

AAmH
, nB =

ρXB

ABmH
, (3.125)

with XA and XB symbolizing the mass abundances, and AA and AB the atomic
mass numbers of the two nucleus types, � can be expressed as

� =
ρXAXB

m2
HAAAB

σABvABQ. (3.126)

In reality, the nuclei in a gas will have a distribution of velocities, so every ve-
locity has some probability of occurring. Hence, � can be obtained by averag-
ing vABσAB over all velocities, with each velocity weighted by its probability,
P (vAB):

� =
ρXAXB

m2
HAAAB

�σABvAB�Q, (3.127)

with

�σABvAB� =
Z ∞

0

σABvABP (vAB)dvAB . (3.128)

A classical non-relativistic gas will have a distribution of velocities described by
the Maxwell-Boltzmann distribution. The relative velocities of nuclei A and B
will also follow a Maxwell-Boltzmann distribution,

P (v)dv = 4π
≥ µ

2πkT

¥3/2

v2exp
µ
− µv2

2kT

∂
dv, (3.129)

but with a mass represented by the reduced mass of the particles, µ. For brevity, we
have omitted here the subscript AB from the velocities.

Now we can use our knowledge of mass abundance to write
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The number of reactions per nucleus A as it traverses a distance dx in a field
with a density nB of “target” nuclei B is

dNA = nBσABdx. (3.121)

Dividing both sides by dt, the number of reactions per nucleus A per unit time is
dNA

dt
= nBσABvAB , (3.122)

where vAB is the relative velocity between the nuclei.
From Eq. 3.122, we can proceed to find the power density function �(ρ, T, X, Y, Z),

needed to solve the equations of stellar structure. Multiplying by the density nA of
nuclei A will give the number of reactions per unit time and per unit volume, i.e.,
the reaction rate per unit volume,

RAB = nAnBσABvAB . (3.123)

If every reaction releases an energy Q, multiplying by Q gives the power per unit
volume. Dividing by ρ then gives the power per unit mass, rather than per unit
volume:

� = nAnBσABvABQ/ρ. (3.124)

Recalling that

nA =
ρXA

AAmH
, nB =

ρXB

ABmH
, (3.125)

with XA and XB symbolizing the mass abundances, and AA and AB the atomic
mass numbers of the two nucleus types, � can be expressed as

� =
ρXAXB

m2
HAAAB

σABvABQ. (3.126)

In reality, the nuclei in a gas will have a distribution of velocities, so every ve-
locity has some probability of occurring. Hence, � can be obtained by averag-
ing vABσAB over all velocities, with each velocity weighted by its probability,
P (vAB):

� =
ρXAXB

m2
HAAAB

�σABvAB�Q, (3.127)

with

�σABvAB� =
Z ∞

0

σABvABP (vAB)dvAB . (3.128)

A classical non-relativistic gas will have a distribution of velocities described by
the Maxwell-Boltzmann distribution. The relative velocities of nuclei A and B
will also follow a Maxwell-Boltzmann distribution,

P (v)dv = 4π
≥ µ

2πkT

¥3/2

v2exp
µ
− µv2

2kT

∂
dv, (3.129)

but with a mass represented by the reduced mass of the particles, µ. For brevity, we
have omitted here the subscript AB from the velocities.
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The number of reactions per nucleus A as it traverses a distance dx in a field
with a density nB of “target” nuclei B is

dNA = nBσABdx. (3.121)

Dividing both sides by dt, the number of reactions per nucleus A per unit time is
dNA

dt
= nBσABvAB , (3.122)

where vAB is the relative velocity between the nuclei.
From Eq. 3.122, we can proceed to find the power density function �(ρ, T, X, Y, Z),

needed to solve the equations of stellar structure. Multiplying by the density nA of
nuclei A will give the number of reactions per unit time and per unit volume, i.e.,
the reaction rate per unit volume,

RAB = nAnBσABvAB . (3.123)

If every reaction releases an energy Q, multiplying by Q gives the power per unit
volume. Dividing by ρ then gives the power per unit mass, rather than per unit
volume:

� = nAnBσABvABQ/ρ. (3.124)

Recalling that

nA =
ρXA

AAmH
, nB =

ρXB

ABmH
, (3.125)

with XA and XB symbolizing the mass abundances, and AA and AB the atomic
mass numbers of the two nucleus types, � can be expressed as

� =
ρXAXB

m2
HAAAB

σABvABQ. (3.126)

In reality, the nuclei in a gas will have a distribution of velocities, so every ve-
locity has some probability of occurring. Hence, � can be obtained by averag-
ing vABσAB over all velocities, with each velocity weighted by its probability,
P (vAB):

� =
ρXAXB

m2
HAAAB

�σABvAB�Q, (3.127)

with

�σABvAB� =
Z ∞

0

σABvABP (vAB)dvAB . (3.128)

A classical non-relativistic gas will have a distribution of velocities described by
the Maxwell-Boltzmann distribution. The relative velocities of nuclei A and B
will also follow a Maxwell-Boltzmann distribution,

P (v)dv = 4π
≥ µ

2πkT

¥3/2

v2exp
µ
− µv2

2kT

∂
dv, (3.129)

but with a mass represented by the reduced mass of the particles, µ. For brevity, we
have omitted here the subscript AB from the velocities.

Substituting into our equation for power density:
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The number of reactions per nucleus A as it traverses a distance dx in a field
with a density nB of “target” nuclei B is

dNA = nBσABdx. (3.121)

Dividing both sides by dt, the number of reactions per nucleus A per unit time is
dNA

dt
= nBσABvAB , (3.122)

where vAB is the relative velocity between the nuclei.
From Eq. 3.122, we can proceed to find the power density function �(ρ, T, X, Y, Z),

needed to solve the equations of stellar structure. Multiplying by the density nA of
nuclei A will give the number of reactions per unit time and per unit volume, i.e.,
the reaction rate per unit volume,

RAB = nAnBσABvAB . (3.123)

If every reaction releases an energy Q, multiplying by Q gives the power per unit
volume. Dividing by ρ then gives the power per unit mass, rather than per unit
volume:

� = nAnBσABvABQ/ρ. (3.124)

Recalling that

nA =
ρXA

AAmH
, nB =

ρXB

ABmH
, (3.125)

with XA and XB symbolizing the mass abundances, and AA and AB the atomic
mass numbers of the two nucleus types, � can be expressed as

� =
ρXAXB

m2
HAAAB

σABvABQ. (3.126)

In reality, the nuclei in a gas will have a distribution of velocities, so every ve-
locity has some probability of occurring. Hence, � can be obtained by averag-
ing vABσAB over all velocities, with each velocity weighted by its probability,
P (vAB):

� =
ρXAXB

m2
HAAAB

�σABvAB�Q, (3.127)

with

�σABvAB� =
Z ∞

0

σABvABP (vAB)dvAB . (3.128)

A classical non-relativistic gas will have a distribution of velocities described by
the Maxwell-Boltzmann distribution. The relative velocities of nuclei A and B
will also follow a Maxwell-Boltzmann distribution,

P (v)dv = 4π
≥ µ

2πkT

¥3/2

v2exp
µ
− µv2

2kT

∂
dv, (3.129)

but with a mass represented by the reduced mass of the particles, µ. For brevity, we
have omitted here the subscript AB from the velocities.
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The number of reactions per nucleus A as it traverses a distance dx in a field
with a density nB of “target” nuclei B is

dNA = nBσABdx. (3.121)

Dividing both sides by dt, the number of reactions per nucleus A per unit time is
dNA

dt
= nBσABvAB , (3.122)

where vAB is the relative velocity between the nuclei.
From Eq. 3.122, we can proceed to find the power density function �(ρ, T, X, Y, Z),

needed to solve the equations of stellar structure. Multiplying by the density nA of
nuclei A will give the number of reactions per unit time and per unit volume, i.e.,
the reaction rate per unit volume,

RAB = nAnBσABvAB . (3.123)

If every reaction releases an energy Q, multiplying by Q gives the power per unit
volume. Dividing by ρ then gives the power per unit mass, rather than per unit
volume:

� = nAnBσABvABQ/ρ. (3.124)

Recalling that

nA =
ρXA

AAmH
, nB =

ρXB

ABmH
, (3.125)

with XA and XB symbolizing the mass abundances, and AA and AB the atomic
mass numbers of the two nucleus types, � can be expressed as

� =
ρXAXB

m2
HAAAB

σABvABQ. (3.126)

In reality, the nuclei in a gas will have a distribution of velocities, so every ve-
locity has some probability of occurring. Hence, � can be obtained by averag-
ing vABσAB over all velocities, with each velocity weighted by its probability,
P (vAB):

� =
ρXAXB

m2
HAAAB

�σABvAB�Q, (3.127)

with

�σABvAB� =
Z ∞

0

σABvABP (vAB)dvAB . (3.128)

A classical non-relativistic gas will have a distribution of velocities described by
the Maxwell-Boltzmann distribution. The relative velocities of nuclei A and B
will also follow a Maxwell-Boltzmann distribution,

P (v)dv = 4π
≥ µ

2πkT

¥3/2

v2exp
µ
− µv2

2kT

∂
dv, (3.129)

but with a mass represented by the reduced mass of the particles, µ. For brevity, we
have omitted here the subscript AB from the velocities.

We need to modify this equation.  Can anyone 
guess how?

We need to account for the fact that there is a distribution of 
velocities.  We need to average over all velocities and weight the 
distribution appropriately.
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The number of reactions per nucleus A as it traverses a distance dx in a field
with a density nB of “target” nuclei B is

dNA = nBσABdx. (3.121)

Dividing both sides by dt, the number of reactions per nucleus A per unit time is
dNA

dt
= nBσABvAB , (3.122)

where vAB is the relative velocity between the nuclei.
From Eq. 3.122, we can proceed to find the power density function �(ρ, T, X, Y, Z),

needed to solve the equations of stellar structure. Multiplying by the density nA of
nuclei A will give the number of reactions per unit time and per unit volume, i.e.,
the reaction rate per unit volume,

RAB = nAnBσABvAB . (3.123)

If every reaction releases an energy Q, multiplying by Q gives the power per unit
volume. Dividing by ρ then gives the power per unit mass, rather than per unit
volume:

� = nAnBσABvABQ/ρ. (3.124)

Recalling that

nA =
ρXA

AAmH
, nB =

ρXB

ABmH
, (3.125)

with XA and XB symbolizing the mass abundances, and AA and AB the atomic
mass numbers of the two nucleus types, � can be expressed as

� =
ρXAXB

m2
HAAAB

σABvABQ. (3.126)

In reality, the nuclei in a gas will have a distribution of velocities, so every ve-
locity has some probability of occurring. Hence, � can be obtained by averag-
ing vABσAB over all velocities, with each velocity weighted by its probability,
P (vAB):

� =
ρXAXB

m2
HAAAB

�σABvAB�Q, (3.127)

with

�σABvAB� =
Z ∞

0

σABvABP (vAB)dvAB . (3.128)

A classical non-relativistic gas will have a distribution of velocities described by
the Maxwell-Boltzmann distribution. The relative velocities of nuclei A and B
will also follow a Maxwell-Boltzmann distribution,

P (v)dv = 4π
≥ µ

2πkT

¥3/2

v2exp
µ
− µv2

2kT

∂
dv, (3.129)

but with a mass represented by the reduced mass of the particles, µ. For brevity, we
have omitted here the subscript AB from the velocities.
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The number of reactions per nucleus A as it traverses a distance dx in a field
with a density nB of “target” nuclei B is

dNA = nBσABdx. (3.121)

Dividing both sides by dt, the number of reactions per nucleus A per unit time is
dNA

dt
= nBσABvAB , (3.122)

where vAB is the relative velocity between the nuclei.
From Eq. 3.122, we can proceed to find the power density function �(ρ, T, X, Y, Z),

needed to solve the equations of stellar structure. Multiplying by the density nA of
nuclei A will give the number of reactions per unit time and per unit volume, i.e.,
the reaction rate per unit volume,

RAB = nAnBσABvAB . (3.123)

If every reaction releases an energy Q, multiplying by Q gives the power per unit
volume. Dividing by ρ then gives the power per unit mass, rather than per unit
volume:

� = nAnBσABvABQ/ρ. (3.124)

Recalling that

nA =
ρXA

AAmH
, nB =

ρXB

ABmH
, (3.125)

with XA and XB symbolizing the mass abundances, and AA and AB the atomic
mass numbers of the two nucleus types, � can be expressed as

� =
ρXAXB

m2
HAAAB

σABvABQ. (3.126)

In reality, the nuclei in a gas will have a distribution of velocities, so every ve-
locity has some probability of occurring. Hence, � can be obtained by averag-
ing vABσAB over all velocities, with each velocity weighted by its probability,
P (vAB):

� =
ρXAXB

m2
HAAAB

�σABvAB�Q, (3.127)

with

�σABvAB� =
Z ∞

0

σABvABP (vAB)dvAB . (3.128)

A classical non-relativistic gas will have a distribution of velocities described by
the Maxwell-Boltzmann distribution. The relative velocities of nuclei A and B
will also follow a Maxwell-Boltzmann distribution,

P (v)dv = 4π
≥ µ

2πkT

¥3/2

v2exp
µ
− µv2

2kT

∂
dv, (3.129)

but with a mass represented by the reduced mass of the particles, µ. For brevity, we
have omitted here the subscript AB from the velocities.

with

Since the gas is classical and non-relativistic, the relative velocities 
(vA, vB)  will follow a Maxwell-Boltzman distribution.

notation change:
vAB = v
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The number of reactions per nucleus A as it traverses a distance dx in a field
with a density nB of “target” nuclei B is

dNA = nBσABdx. (3.121)

Dividing both sides by dt, the number of reactions per nucleus A per unit time is
dNA

dt
= nBσABvAB , (3.122)

where vAB is the relative velocity between the nuclei.
From Eq. 3.122, we can proceed to find the power density function �(ρ, T, X, Y, Z),

needed to solve the equations of stellar structure. Multiplying by the density nA of
nuclei A will give the number of reactions per unit time and per unit volume, i.e.,
the reaction rate per unit volume,

RAB = nAnBσABvAB . (3.123)

If every reaction releases an energy Q, multiplying by Q gives the power per unit
volume. Dividing by ρ then gives the power per unit mass, rather than per unit
volume:

� = nAnBσABvABQ/ρ. (3.124)

Recalling that

nA =
ρXA

AAmH
, nB =

ρXB

ABmH
, (3.125)

with XA and XB symbolizing the mass abundances, and AA and AB the atomic
mass numbers of the two nucleus types, � can be expressed as

� =
ρXAXB

m2
HAAAB

σABvABQ. (3.126)

In reality, the nuclei in a gas will have a distribution of velocities, so every ve-
locity has some probability of occurring. Hence, � can be obtained by averag-
ing vABσAB over all velocities, with each velocity weighted by its probability,
P (vAB):

� =
ρXAXB

m2
HAAAB

�σABvAB�Q, (3.127)

with

�σABvAB� =
Z ∞

0

σABvABP (vAB)dvAB . (3.128)

A classical non-relativistic gas will have a distribution of velocities described by
the Maxwell-Boltzmann distribution. The relative velocities of nuclei A and B
will also follow a Maxwell-Boltzmann distribution,

P (v)dv = 4π
≥ µ

2πkT

¥3/2

v2exp
µ
− µv2

2kT

∂
dv, (3.129)

but with a mass represented by the reduced mass of the particles, µ. For brevity, we
have omitted here the subscript AB from the velocities.
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(The second independent solution of the equation, with an amplitude that rises with
decreasing radius, is unphysical.) The wave function amplitude, squared, is propor-
tional to the probability density for a particle to be at a given location. Multiplying
the ratio of the probability densities by the ratio of the volume elements, 4πr2

0dr
and 4πr2

1dr, thus gives the probability that a nucleus will tunnel from r1 to within
r0 � r1 of the other nucleus:

|Ψ(r0)|2 r2
0

|Ψ(r1)|2 r2
1

=
e2βr

0

e2βr
1

≈ e−2βr
1 = exp

µ
−2
√

µE

h̄

ZAZBe2

E

∂
(3.115)

= exp
µ
−

2√µ

h̄
ZAZBe2 1√

E

∂
.

A full solution of the Schrödinger equation gives the same answer, but with an
additional factor π/

√
2 in the exponential. If we recall the definition of the fine-

structure constant,

α =
e2

h̄c
≈ 1

137
, (3.116)

and define an energy
EG = (παZAZB)22µc2, (3.117)

then the probability of penetrating the Coulomb barrier simplifies to the function

g(E) = e−
√

EG/E . (3.118)
EG is called the Gamow energy and g(E) is called the Gamow factor. For two
protons,

EG =
µ

π
1

137
× 1× 1

∂2

2
1
2
mpc

2 ≈ 500 keV. (3.119)

(It is convenient to remember that the rest energy of a proton,mpc
2, is 0.94 GeV).

Thus, for the typical kinetic energy of particles in the Sun’s core, E ∼ 1 keV, we
find g(E) ∼ e−22 ∼ 10−10. While this probability, for a given pair or protons,
is still small, it is considerably larger than the classical probability we found in
Eq. 3.107.

3.10 NUCLEAR REACTION RATES

Even if tunneling occurs, and two nuclei are within the strong force’s interaction
range, the probability of a nuclear reaction will still depend on a nuclear cross
section, which will generally depend inversely on the kinetic energy. Thus, the
total cross section for a nuclear reaction involving ingredient nuclei A and B is

σAB(E) =
S0

E
e−
√

EG/E , (3.120)

where S0 is a constant, or a weak function of energy, with units of [area]×[energy].
S0 for a given nuclear reaction is generally derived from accelerator experiments,
or is calculated theoretically.
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The number of reactions per nucleus A as it traverses a distance dx in a field
with a density nB of “target” nuclei B is

dNA = nBσABdx. (3.121)

Dividing both sides by dt, the number of reactions per nucleus A per unit time is
dNA

dt
= nBσABvAB , (3.122)

where vAB is the relative velocity between the nuclei.
From Eq. 3.122, we can proceed to find the power density function �(ρ, T, X, Y, Z),

needed to solve the equations of stellar structure. Multiplying by the density nA of
nuclei A will give the number of reactions per unit time and per unit volume, i.e.,
the reaction rate per unit volume,

RAB = nAnBσABvAB . (3.123)

If every reaction releases an energy Q, multiplying by Q gives the power per unit
volume. Dividing by ρ then gives the power per unit mass, rather than per unit
volume:

� = nAnBσABvABQ/ρ. (3.124)

Recalling that

nA =
ρXA

AAmH
, nB =

ρXB

ABmH
, (3.125)

with XA and XB symbolizing the mass abundances, and AA and AB the atomic
mass numbers of the two nucleus types, � can be expressed as

� =
ρXAXB

m2
HAAAB

σABvABQ. (3.126)

In reality, the nuclei in a gas will have a distribution of velocities, so every ve-
locity has some probability of occurring. Hence, � can be obtained by averag-
ing vABσAB over all velocities, with each velocity weighted by its probability,
P (vAB):

� =
ρXAXB

m2
HAAAB

�σABvAB�Q, (3.127)

with

�σABvAB� =
Z ∞

0

σABvABP (vAB)dvAB . (3.128)

A classical non-relativistic gas will have a distribution of velocities described by
the Maxwell-Boltzmann distribution. The relative velocities of nuclei A and B
will also follow a Maxwell-Boltzmann distribution,

P (v)dv = 4π
≥ µ

2πkT

¥3/2

v2exp
µ
− µv2

2kT

∂
dv, (3.129)

but with a mass represented by the reduced mass of the particles, µ. For brevity, we
have omitted here the subscript AB from the velocities.

We have the following 2 equations:
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The number of reactions per nucleus A as it traverses a distance dx in a field
with a density nB of “target” nuclei B is

dNA = nBσABdx. (3.121)

Dividing both sides by dt, the number of reactions per nucleus A per unit time is
dNA

dt
= nBσABvAB , (3.122)

where vAB is the relative velocity between the nuclei.
From Eq. 3.122, we can proceed to find the power density function �(ρ, T, X, Y, Z),

needed to solve the equations of stellar structure. Multiplying by the density nA of
nuclei A will give the number of reactions per unit time and per unit volume, i.e.,
the reaction rate per unit volume,

RAB = nAnBσABvAB . (3.123)

If every reaction releases an energy Q, multiplying by Q gives the power per unit
volume. Dividing by ρ then gives the power per unit mass, rather than per unit
volume:

� = nAnBσABvABQ/ρ. (3.124)

Recalling that

nA =
ρXA

AAmH
, nB =

ρXB

ABmH
, (3.125)

with XA and XB symbolizing the mass abundances, and AA and AB the atomic
mass numbers of the two nucleus types, � can be expressed as

� =
ρXAXB

m2
HAAAB

σABvABQ. (3.126)

In reality, the nuclei in a gas will have a distribution of velocities, so every ve-
locity has some probability of occurring. Hence, � can be obtained by averag-
ing vABσAB over all velocities, with each velocity weighted by its probability,
P (vAB):

� =
ρXAXB

m2
HAAAB

�σABvAB�Q, (3.127)

with

�σABvAB� =
Z ∞

0

σABvABP (vAB)dvAB . (3.128)

A classical non-relativistic gas will have a distribution of velocities described by
the Maxwell-Boltzmann distribution. The relative velocities of nuclei A and B
will also follow a Maxwell-Boltzmann distribution,

P (v)dv = 4π
≥ µ

2πkT

¥3/2

v2exp
µ
− µv2

2kT

∂
dv, (3.129)

but with a mass represented by the reduced mass of the particles, µ. For brevity, we
have omitted here the subscript AB from the velocities.

which need to be substituted into

which gives —

< �ABvAB >=

Z 1

0

S0

E
e�

p
EG/E v4⇡(

µ

2⇡kT
)

3
2 v2e�

µv2

2kT dv



Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

U - Substitution:

E =
1

2
µv2

dE

dv
= µv dE = µvdv
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Figure 3.9 The Boltzmann probability distribution, P (E), the Gamow factor, g(E), and
their product, f(E). P (E) is shown for kT = 1 keV, g(E) is for the case of
two protons, with EG = 500 keV, and both g(E) and f(E) have been scaled
up by large factors for display purposes. The rarity of protons with large kinetic
energies, as described by P (E), combined with the Coulomb barrier, embodied
by g(E), limit the protons taking part in nuclear reactions to those with energies
near E

0

, where f(E) peaks. f(E) can be approximated as a Gaussian centered
at E

0

(E
0

≈ 5 keV for the case shown), with width parameter ∆.

Inserting 3.120 and 3.129 into 3.128, and changing the integration variable from
velocity to kinetic energy using E = 1

2µv2, dE = µvdv, we obtain

�σv� =
µ

8
πµ

∂1/2
S0

(kT )3/2

Z ∞

0

e−E/kT e−
√

EG/EdE. (3.130)

The integrand in this expression,

f(E) = e−E/kT e−
√

EG/E , (3.131)

is composed of the product of two exponential functions, one (from the Boltz-
mann distribution) falling with energy, and the other (due to the Gamow factor
embodying the Coulomb repulsion) rising with energy. Obviously, f(E) will have
a narrow maximum at some energy E0, at which most of the reactions take place
(see Fig. 3.10). The maximum of f(E) is easily found by taking its derivative and
equating to zero. It is at

E0 =
µ

kT

2

∂2/3

E
1/3
G . (3.132)

from Boltzman distribution
falls with energy

from coulomb repulsion
rises with energy

< �ABvAB >=

Z 1

0

S0

E
e�

p
EG/E v4⇡(

µ

2⇡kT
)

3
2 v2e�

µv2

2kT dv

Simplify:

< �ABvAB >=
S0

(kT )3/2
4⇡

(2⇡)3/2

Z 1

0

µ
1
2 v2

E
e�

p
E0/Ee�

µv2

2kT µvdv
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Figure 3.9 The Boltzmann probability distribution, P (E), the Gamow factor, g(E), and
their product, f(E). P (E) is shown for kT = 1 keV, g(E) is for the case of
two protons, with EG = 500 keV, and both g(E) and f(E) have been scaled
up by large factors for display purposes. The rarity of protons with large kinetic
energies, as described by P (E), combined with the Coulomb barrier, embodied
by g(E), limit the protons taking part in nuclear reactions to those with energies
near E

0

, where f(E) peaks. f(E) can be approximated as a Gaussian centered
at E

0

(E
0

≈ 5 keV for the case shown), with width parameter ∆.

Inserting 3.120 and 3.129 into 3.128, and changing the integration variable from
velocity to kinetic energy using E = 1

2µv2, dE = µvdv, we obtain

�σv� =
µ

8
πµ

∂1/2
S0

(kT )3/2

Z ∞

0

e−E/kT e−
√

EG/EdE. (3.130)

The integrand in this expression,

f(E) = e−E/kT e−
√

EG/E , (3.131)

is composed of the product of two exponential functions, one (from the Boltz-
mann distribution) falling with energy, and the other (due to the Gamow factor
embodying the Coulomb repulsion) rising with energy. Obviously, f(E) will have
a narrow maximum at some energy E0, at which most of the reactions take place
(see Fig. 3.10). The maximum of f(E) is easily found by taking its derivative and
equating to zero. It is at
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Figure 3.9 The Boltzmann probability distribution, P (E), the Gamow factor, g(E), and
their product, f(E). P (E) is shown for kT = 1 keV, g(E) is for the case of
two protons, with EG = 500 keV, and both g(E) and f(E) have been scaled
up by large factors for display purposes. The rarity of protons with large kinetic
energies, as described by P (E), combined with the Coulomb barrier, embodied
by g(E), limit the protons taking part in nuclear reactions to those with energies
near E

0
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The integrand in this expression,

f(E) = e−E/kT e−
√

EG/E , (3.131)

is composed of the product of two exponential functions, one (from the Boltz-
mann distribution) falling with energy, and the other (due to the Gamow factor
embodying the Coulomb repulsion) rising with energy. Obviously, f(E) will have
a narrow maximum at some energy E0, at which most of the reactions take place
(see Fig. 3.10). The maximum of f(E) is easily found by taking its derivative and
equating to zero. It is at

E0 =
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To find the maximum of the integrand we do what?
Take derivative and set it equal to zero.  Solve for E.

df(E)

dE
=

d

dE
(e�E/kT e�

p
EGE) = 0
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Notice that f(E) can 
be approximated by 
a Gaussian centered 
at E0 with width 
(standard 
deviation) of ∆.
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A Taylor expansion of f(E) around E0 shows f(E) can be approximated by a
Gaussian with a width parameter (i.e., the “σ”, or standard deviation, of the Gaus-
sian e−x2/2σ2) of

∆ =
21/6

31/2
E

1/6
G (kT )5/6. (3.133)

The value of the integral can therefore be approximated well with the area of the
Gaussian,

√
2πf(E0)∆ (see Problem 7). Replacing in 3.127, we obtain the final

expression for the power density due to a given nuclear reaction,

� =
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exp
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Equation 3.134 can tell us, for example, the luminosity produced by the p-p
chain in the Sun. For a rough estimate, let us take for the mass density in the core
of the Sun the central density, ρ = 150 g cm−3. As already noted in Section 3.6,
in the central regions of the Sun, some of the hydrogen has already been converted
into helium by nuclear reactions. Let us assume a typical hydrogen abundance
of X = 0.5, which we can use for XA and XB . The first step in the p-p chain,
the p + p → d + e+ + νe reaction, is by far the slowest of the three steps in
the chain, and it is therefore the “bottleneck” that sets the rate of the entire p-
p process. The constant S0 for this reaction is calculated theoretically to be ≈
4×10−46 cm2 keV, which is characteristic of weak interactions. ForQ, let us take
the entire thermal energy release of each p-p chain completion, since once the first
step occurs, on a timescale of 1010 yr, the following two reactions, with timescales
of order 1 s and 300,000 yr, respectively, are essentially instantaneous. We saw that
every completion of the chain produces 26.73 MeV of energy and two neutrinos.
Subtracting the 0.52 MeV carried off, on average, by the two neutrinos, the thermal
energy released per p-p chain completion is Q = 26.2 MeV. As already noted,
EG = 500 keV for two protons, and the typical core temperature is kT = 1 keV.
The atomic mass numbers are, of course, AA = AB = 1, and the reduced mass is
µ = mp/2. Finally, since we are considering a reaction between identical particles
(i.e., protons on protons) we need to divide the collision rate by 2, to avoid double
counting. With these numbers, Eq. 3.134 gives a power density of

� = 10 erg s−1g−1. (3.135)
Multiplying this by the mass of the core of the Sun, say, 0.2M⊙ = 4 × 1032 g,
gives a luminosity of ∼ 4 × 1033 erg s−1, in good agreement with the observed
Solar luminosity of 3.8× 1033 erg s−1.
Reviewing the derivation of Eqns. 3.122-3.134, we see that we can also re-

cover the reaction rate per nucleus, dNA/dt, by dividing back from � a factor
(XAQ)/(mHAA). For the p + p reaction, this gives a rate of 1.6× 10−18 s−1 per
proton. The reciprocal of this rate is the typical time a proton has to wait until it
reacts with another proton, and indeed equals

τpp ∼ 6× 1017 s ∼ 2× 1010 yr, (3.136)
as asserted above. Thus, we have shown that hydrogen fusion provides an energy
source that can power the observed luminosity of the Sun over the known age of

Power Density
(in full glory)
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Use the power density to estimate the luminosity of the sun.
⇢ = 150 g cm3 (mass density in core of Sun)

XA = XB = 0.5 (hydrogen abundance in core)

Q = 26.74MeV � 0.52MeV = 26.2MeV (energy of chain - ν energy)
p+ p �! d+ e+ + ⌫e

S0 = 4⇥ 10�46 cm2 keV (theoretical calculation)

EG = 500 keV (value for 2 protons)

kT = 1 keV (typical core temperature)
AA = AB = 1 (atomic number of hydrogen)

µ =
mp

2
(reduced mass)

Final note: Since the reaction is between identical particles, 
divide collision rate by 2.
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A Taylor expansion of f(E) around E0 shows f(E) can be approximated by a
Gaussian with a width parameter (i.e., the “σ”, or standard deviation, of the Gaus-
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Equation 3.134 can tell us, for example, the luminosity produced by the p-p
chain in the Sun. For a rough estimate, let us take for the mass density in the core
of the Sun the central density, ρ = 150 g cm−3. As already noted in Section 3.6,
in the central regions of the Sun, some of the hydrogen has already been converted
into helium by nuclear reactions. Let us assume a typical hydrogen abundance
of X = 0.5, which we can use for XA and XB . The first step in the p-p chain,
the p + p → d + e+ + νe reaction, is by far the slowest of the three steps in
the chain, and it is therefore the “bottleneck” that sets the rate of the entire p-
p process. The constant S0 for this reaction is calculated theoretically to be ≈
4×10−46 cm2 keV, which is characteristic of weak interactions. ForQ, let us take
the entire thermal energy release of each p-p chain completion, since once the first
step occurs, on a timescale of 1010 yr, the following two reactions, with timescales
of order 1 s and 300,000 yr, respectively, are essentially instantaneous. We saw that
every completion of the chain produces 26.73 MeV of energy and two neutrinos.
Subtracting the 0.52 MeV carried off, on average, by the two neutrinos, the thermal
energy released per p-p chain completion is Q = 26.2 MeV. As already noted,
EG = 500 keV for two protons, and the typical core temperature is kT = 1 keV.
The atomic mass numbers are, of course, AA = AB = 1, and the reduced mass is
µ = mp/2. Finally, since we are considering a reaction between identical particles
(i.e., protons on protons) we need to divide the collision rate by 2, to avoid double
counting. With these numbers, Eq. 3.134 gives a power density of

� = 10 erg s−1g−1. (3.135)
Multiplying this by the mass of the core of the Sun, say, 0.2M⊙ = 4 × 1032 g,
gives a luminosity of ∼ 4 × 1033 erg s−1, in good agreement with the observed
Solar luminosity of 3.8× 1033 erg s−1.
Reviewing the derivation of Eqns. 3.122-3.134, we see that we can also re-

cover the reaction rate per nucleus, dNA/dt, by dividing back from � a factor
(XAQ)/(mHAA). For the p + p reaction, this gives a rate of 1.6× 10−18 s−1 per
proton. The reciprocal of this rate is the typical time a proton has to wait until it
reacts with another proton, and indeed equals

τpp ∼ 6× 1017 s ∼ 2× 1010 yr, (3.136)
as asserted above. Thus, we have shown that hydrogen fusion provides an energy
source that can power the observed luminosity of the Sun over the known age of
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These numbers yield a power density of 
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A Taylor expansion of f(E) around E0 shows f(E) can be approximated by a
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sian e−x2/2σ2) of

∆ =
21/6

31/2
E

1/6
G (kT )5/6. (3.133)

The value of the integral can therefore be approximated well with the area of the
Gaussian,

√
2πf(E0)∆ (see Problem 7). Replacing in 3.127, we obtain the final

expression for the power density due to a given nuclear reaction,

� =
25/3

√
2√

3
ρXAXB

m2
HAAAB

√
µ

QS0
E

1/6
G

(kT )2/3
exp

"
−3

µ
EG

4kT

∂1/3
#

. (3.134)

Equation 3.134 can tell us, for example, the luminosity produced by the p-p
chain in the Sun. For a rough estimate, let us take for the mass density in the core
of the Sun the central density, ρ = 150 g cm−3. As already noted in Section 3.6,
in the central regions of the Sun, some of the hydrogen has already been converted
into helium by nuclear reactions. Let us assume a typical hydrogen abundance
of X = 0.5, which we can use for XA and XB . The first step in the p-p chain,
the p + p → d + e+ + νe reaction, is by far the slowest of the three steps in
the chain, and it is therefore the “bottleneck” that sets the rate of the entire p-
p process. The constant S0 for this reaction is calculated theoretically to be ≈
4×10−46 cm2 keV, which is characteristic of weak interactions. ForQ, let us take
the entire thermal energy release of each p-p chain completion, since once the first
step occurs, on a timescale of 1010 yr, the following two reactions, with timescales
of order 1 s and 300,000 yr, respectively, are essentially instantaneous. We saw that
every completion of the chain produces 26.73 MeV of energy and two neutrinos.
Subtracting the 0.52 MeV carried off, on average, by the two neutrinos, the thermal
energy released per p-p chain completion is Q = 26.2 MeV. As already noted,
EG = 500 keV for two protons, and the typical core temperature is kT = 1 keV.
The atomic mass numbers are, of course, AA = AB = 1, and the reduced mass is
µ = mp/2. Finally, since we are considering a reaction between identical particles
(i.e., protons on protons) we need to divide the collision rate by 2, to avoid double
counting. With these numbers, Eq. 3.134 gives a power density of

� = 10 erg s−1g−1. (3.135)
Multiplying this by the mass of the core of the Sun, say, 0.2M⊙ = 4 × 1032 g,
gives a luminosity of ∼ 4 × 1033 erg s−1, in good agreement with the observed
Solar luminosity of 3.8× 1033 erg s−1.
Reviewing the derivation of Eqns. 3.122-3.134, we see that we can also re-

cover the reaction rate per nucleus, dNA/dt, by dividing back from � a factor
(XAQ)/(mHAA). For the p + p reaction, this gives a rate of 1.6× 10−18 s−1 per
proton. The reciprocal of this rate is the typical time a proton has to wait until it
reacts with another proton, and indeed equals

τpp ∼ 6× 1017 s ∼ 2× 1010 yr, (3.136)
as asserted above. Thus, we have shown that hydrogen fusion provides an energy
source that can power the observed luminosity of the Sun over the known age of

Multiply by the mass of the core of the sun (0.2 Msun).3

L ⇠ 4⇥ 1033 erg s�1

Compare to actual value:

L ⇠ 3.8⇥ 1033 erg s�1
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Notice this:
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The number of reactions per nucleus A as it traverses a distance dx in a field
with a density nB of “target” nuclei B is

dNA = nBσABdx. (3.121)

Dividing both sides by dt, the number of reactions per nucleus A per unit time is
dNA

dt
= nBσABvAB , (3.122)

where vAB is the relative velocity between the nuclei.
From Eq. 3.122, we can proceed to find the power density function �(ρ, T, X, Y, Z),

needed to solve the equations of stellar structure. Multiplying by the density nA of
nuclei A will give the number of reactions per unit time and per unit volume, i.e.,
the reaction rate per unit volume,

RAB = nAnBσABvAB . (3.123)

If every reaction releases an energy Q, multiplying by Q gives the power per unit
volume. Dividing by ρ then gives the power per unit mass, rather than per unit
volume:

� = nAnBσABvABQ/ρ. (3.124)

Recalling that

nA =
ρXA

AAmH
, nB =

ρXB

ABmH
, (3.125)

with XA and XB symbolizing the mass abundances, and AA and AB the atomic
mass numbers of the two nucleus types, � can be expressed as

� =
ρXAXB

m2
HAAAB

σABvABQ. (3.126)

In reality, the nuclei in a gas will have a distribution of velocities, so every ve-
locity has some probability of occurring. Hence, � can be obtained by averag-
ing vABσAB over all velocities, with each velocity weighted by its probability,
P (vAB):

� =
ρXAXB

m2
HAAAB

�σABvAB�Q, (3.127)

with

�σABvAB� =
Z ∞

0

σABvABP (vAB)dvAB . (3.128)

A classical non-relativistic gas will have a distribution of velocities described by
the Maxwell-Boltzmann distribution. The relative velocities of nuclei A and B
will also follow a Maxwell-Boltzmann distribution,

P (v)dv = 4π
≥ µ

2πkT

¥3/2

v2exp
µ
− µv2

2kT

∂
dv, (3.129)

but with a mass represented by the reduced mass of the particles, µ. For brevity, we
have omitted here the subscript AB from the velocities.
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Multiply power density by a clever factor:

✏⇥ mHAA

XAQ
=

⇢XAXB

m2
HAAAB�ABvABQ

⇥ mHAA

XAQ

= nB�ABvAB =
dNA

dt
number of reactions per 
nucleus A per unit time

For the p + p reaction, this gives a rate of 1.6 x 10-18 s-1 per proton.  The 
inverse of this number is the time a proton waits until it reacts with 
another proton.
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A Taylor expansion of f(E) around E0 shows f(E) can be approximated by a
Gaussian with a width parameter (i.e., the “σ”, or standard deviation, of the Gaus-
sian e−x2/2σ2) of
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The value of the integral can therefore be approximated well with the area of the
Gaussian,
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Equation 3.134 can tell us, for example, the luminosity produced by the p-p
chain in the Sun. For a rough estimate, let us take for the mass density in the core
of the Sun the central density, ρ = 150 g cm−3. As already noted in Section 3.6,
in the central regions of the Sun, some of the hydrogen has already been converted
into helium by nuclear reactions. Let us assume a typical hydrogen abundance
of X = 0.5, which we can use for XA and XB . The first step in the p-p chain,
the p + p → d + e+ + νe reaction, is by far the slowest of the three steps in
the chain, and it is therefore the “bottleneck” that sets the rate of the entire p-
p process. The constant S0 for this reaction is calculated theoretically to be ≈
4×10−46 cm2 keV, which is characteristic of weak interactions. ForQ, let us take
the entire thermal energy release of each p-p chain completion, since once the first
step occurs, on a timescale of 1010 yr, the following two reactions, with timescales
of order 1 s and 300,000 yr, respectively, are essentially instantaneous. We saw that
every completion of the chain produces 26.73 MeV of energy and two neutrinos.
Subtracting the 0.52 MeV carried off, on average, by the two neutrinos, the thermal
energy released per p-p chain completion is Q = 26.2 MeV. As already noted,
EG = 500 keV for two protons, and the typical core temperature is kT = 1 keV.
The atomic mass numbers are, of course, AA = AB = 1, and the reduced mass is
µ = mp/2. Finally, since we are considering a reaction between identical particles
(i.e., protons on protons) we need to divide the collision rate by 2, to avoid double
counting. With these numbers, Eq. 3.134 gives a power density of

� = 10 erg s−1g−1. (3.135)
Multiplying this by the mass of the core of the Sun, say, 0.2M⊙ = 4 × 1032 g,
gives a luminosity of ∼ 4 × 1033 erg s−1, in good agreement with the observed
Solar luminosity of 3.8× 1033 erg s−1.
Reviewing the derivation of Eqns. 3.122-3.134, we see that we can also re-

cover the reaction rate per nucleus, dNA/dt, by dividing back from � a factor
(XAQ)/(mHAA). For the p + p reaction, this gives a rate of 1.6× 10−18 s−1 per
proton. The reciprocal of this rate is the typical time a proton has to wait until it
reacts with another proton, and indeed equals

τpp ∼ 6× 1017 s ∼ 2× 1010 yr, (3.136)
as asserted above. Thus, we have shown that hydrogen fusion provides an energy
source that can power the observed luminosity of the Sun over the known age of

Sun’s age ~ 5 billion 
years
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A Taylor expansion of f(E) around E0 shows f(E) can be approximated by a
Gaussian with a width parameter (i.e., the “σ”, or standard deviation, of the Gaus-
sian e−x2/2σ2) of

∆ =
21/6

31/2
E

1/6
G (kT )5/6. (3.133)

The value of the integral can therefore be approximated well with the area of the
Gaussian,

√
2πf(E0)∆ (see Problem 7). Replacing in 3.127, we obtain the final

expression for the power density due to a given nuclear reaction,
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Equation 3.134 can tell us, for example, the luminosity produced by the p-p
chain in the Sun. For a rough estimate, let us take for the mass density in the core
of the Sun the central density, ρ = 150 g cm−3. As already noted in Section 3.6,
in the central regions of the Sun, some of the hydrogen has already been converted
into helium by nuclear reactions. Let us assume a typical hydrogen abundance
of X = 0.5, which we can use for XA and XB . The first step in the p-p chain,
the p + p → d + e+ + νe reaction, is by far the slowest of the three steps in
the chain, and it is therefore the “bottleneck” that sets the rate of the entire p-
p process. The constant S0 for this reaction is calculated theoretically to be ≈
4×10−46 cm2 keV, which is characteristic of weak interactions. ForQ, let us take
the entire thermal energy release of each p-p chain completion, since once the first
step occurs, on a timescale of 1010 yr, the following two reactions, with timescales
of order 1 s and 300,000 yr, respectively, are essentially instantaneous. We saw that
every completion of the chain produces 26.73 MeV of energy and two neutrinos.
Subtracting the 0.52 MeV carried off, on average, by the two neutrinos, the thermal
energy released per p-p chain completion is Q = 26.2 MeV. As already noted,
EG = 500 keV for two protons, and the typical core temperature is kT = 1 keV.
The atomic mass numbers are, of course, AA = AB = 1, and the reduced mass is
µ = mp/2. Finally, since we are considering a reaction between identical particles
(i.e., protons on protons) we need to divide the collision rate by 2, to avoid double
counting. With these numbers, Eq. 3.134 gives a power density of

� = 10 erg s−1g−1. (3.135)
Multiplying this by the mass of the core of the Sun, say, 0.2M⊙ = 4 × 1032 g,
gives a luminosity of ∼ 4 × 1033 erg s−1, in good agreement with the observed
Solar luminosity of 3.8× 1033 erg s−1.
Reviewing the derivation of Eqns. 3.122-3.134, we see that we can also re-

cover the reaction rate per nucleus, dNA/dt, by dividing back from � a factor
(XAQ)/(mHAA). For the p + p reaction, this gives a rate of 1.6× 10−18 s−1 per
proton. The reciprocal of this rate is the typical time a proton has to wait until it
reacts with another proton, and indeed equals

τpp ∼ 6× 1017 s ∼ 2× 1010 yr, (3.136)
as asserted above. Thus, we have shown that hydrogen fusion provides an energy
source that can power the observed luminosity of the Sun over the known age of

The total power density at a point in a star is the sum of power 
densities due to all nuclear reactions.  Each reaction will be 
described by the power density equation.

What does the exponential factor in the power density equation 
tell us about which type of species will be most favorable?

Species with a small EG (and hence low atomic number) 
will be preferred.
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the Solar System, about 5 billion years, not only in terms of energy budget (Eq.
3.102) but also in terms of the energy generation rate. Furthermore, we see that the
timescale to deplete the hydrogen fuel in the Solar core is of order 10 billion years.
The total power density at a point in a star with a given temperature, density, and

abundance will be the sum of the power densities due to all the possible nuclear
reactions, each described by 3.134. Because of the exponential term in 3.134, there
will be a strong preference for reactions between species with low atomic number,
and hence small EG. For example, compare the reactions

p + d→ 3He + γ, (EG = 0.66MeV) (3.137)

and

p +12C→13 N + γ, (EG = 35.5MeV), (3.138)

which have comparable nuclear cross sections S0 (both reactions follow the same
process of adding a proton to a nucleus and emitting a photon). At a typical kinetic
energy of 1 keV, if the abundances of deuterium and carbon nuclei were compara-
ble, the ratio between the rates would be

R(p12C)
R(pd)

∼ exp
∑
−3

35.51/3 − 0.661/3

(4× 0.001)1/3

∏
∼ e−46 ∼ 10−20. (3.139)

Furthermore, the higher the Gamow energy, the more strongly will the reac-
tion rate depend on temperature. For example, a first-order Taylor expansion of
Eq. 3.134 around T = 1.5× 107 K, the central temperature of the Sun, shows that
the p + p→ d + e+ + νe rate depends on temperature approximately as T 4, while
the p +12 C →13 N + γ rate goes like T 18 (see Problem 8). The steep positive
temperature dependence of nuclear reactions, combined with the virial theorem,
means that nuclear reactions serve as a natural “thermostat” that keeps stars stable.
Suppose, for example, that the temperature inside a star rises. This will increase the
rate of nuclear reactions, leading to an increase in luminosity. Due to opacity, this
additional energy will not directly escape from the star, resulting in a temporary
increase in total energy. Since

Etot =
1
2
Egr = −Eth, (3.140)

the gravitational energy Egr will grow (i.e., become less negative), meaning the
star will expand, and Eth will become smaller, meaning the temperature will be
reduced again. This explains why main sequence stars of very different masses
have comparable core temperatures.
The thermostatic behavior controls also the longterm evolution of stars. Even-

tually, when the dominant nuclear fuel runs out, the power density � will drop.
The star will then contract, Eth will increase, and T will rise until a new nuclear
reaction, involving nuclei of higher atomic number, can become effective.
A key prediction of the picture we have outlined, in which the energy of the

Sun derives from the p-p chain, is that there will be a constant flux of neutrinos
coming out of the Sun. As opposed to the photons, the weak interaction of the
neutrinos with matter guarantees that they can escape the core of the Sun almost
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the Solar System, about 5 billion years, not only in terms of energy budget (Eq.
3.102) but also in terms of the energy generation rate. Furthermore, we see that the
timescale to deplete the hydrogen fuel in the Solar core is of order 10 billion years.
The total power density at a point in a star with a given temperature, density, and

abundance will be the sum of the power densities due to all the possible nuclear
reactions, each described by 3.134. Because of the exponential term in 3.134, there
will be a strong preference for reactions between species with low atomic number,
and hence small EG. For example, compare the reactions

p + d→ 3He + γ, (EG = 0.66MeV) (3.137)

and

p +12C→13 N + γ, (EG = 35.5MeV), (3.138)

which have comparable nuclear cross sections S0 (both reactions follow the same
process of adding a proton to a nucleus and emitting a photon). At a typical kinetic
energy of 1 keV, if the abundances of deuterium and carbon nuclei were compara-
ble, the ratio between the rates would be

R(p12C)
R(pd)

∼ exp
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(4× 0.001)1/3

∏
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Furthermore, the higher the Gamow energy, the more strongly will the reac-
tion rate depend on temperature. For example, a first-order Taylor expansion of
Eq. 3.134 around T = 1.5× 107 K, the central temperature of the Sun, shows that
the p + p→ d + e+ + νe rate depends on temperature approximately as T 4, while
the p +12 C →13 N + γ rate goes like T 18 (see Problem 8). The steep positive
temperature dependence of nuclear reactions, combined with the virial theorem,
means that nuclear reactions serve as a natural “thermostat” that keeps stars stable.
Suppose, for example, that the temperature inside a star rises. This will increase the
rate of nuclear reactions, leading to an increase in luminosity. Due to opacity, this
additional energy will not directly escape from the star, resulting in a temporary
increase in total energy. Since

Etot =
1
2
Egr = −Eth, (3.140)

the gravitational energy Egr will grow (i.e., become less negative), meaning the
star will expand, and Eth will become smaller, meaning the temperature will be
reduced again. This explains why main sequence stars of very different masses
have comparable core temperatures.
The thermostatic behavior controls also the longterm evolution of stars. Even-

tually, when the dominant nuclear fuel runs out, the power density � will drop.
The star will then contract, Eth will increase, and T will rise until a new nuclear
reaction, involving nuclei of higher atomic number, can become effective.
A key prediction of the picture we have outlined, in which the energy of the

Sun derives from the p-p chain, is that there will be a constant flux of neutrinos
coming out of the Sun. As opposed to the photons, the weak interaction of the
neutrinos with matter guarantees that they can escape the core of the Sun almost

These reactions have comparable nuclear cross sections S0.

Example:
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Assume:  Comparable abundances of d and 12C and take the typical 
kinetic energy of 1 keV.
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A Taylor expansion of f(E) around E0 shows f(E) can be approximated by a
Gaussian with a width parameter (i.e., the “σ”, or standard deviation, of the Gaus-
sian e−x2/2σ2) of

∆ =
21/6

31/2
E

1/6
G (kT )5/6. (3.133)

The value of the integral can therefore be approximated well with the area of the
Gaussian,

√
2πf(E0)∆ (see Problem 7). Replacing in 3.127, we obtain the final

expression for the power density due to a given nuclear reaction,
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Equation 3.134 can tell us, for example, the luminosity produced by the p-p
chain in the Sun. For a rough estimate, let us take for the mass density in the core
of the Sun the central density, ρ = 150 g cm−3. As already noted in Section 3.6,
in the central regions of the Sun, some of the hydrogen has already been converted
into helium by nuclear reactions. Let us assume a typical hydrogen abundance
of X = 0.5, which we can use for XA and XB . The first step in the p-p chain,
the p + p → d + e+ + νe reaction, is by far the slowest of the three steps in
the chain, and it is therefore the “bottleneck” that sets the rate of the entire p-
p process. The constant S0 for this reaction is calculated theoretically to be ≈
4×10−46 cm2 keV, which is characteristic of weak interactions. ForQ, let us take
the entire thermal energy release of each p-p chain completion, since once the first
step occurs, on a timescale of 1010 yr, the following two reactions, with timescales
of order 1 s and 300,000 yr, respectively, are essentially instantaneous. We saw that
every completion of the chain produces 26.73 MeV of energy and two neutrinos.
Subtracting the 0.52 MeV carried off, on average, by the two neutrinos, the thermal
energy released per p-p chain completion is Q = 26.2 MeV. As already noted,
EG = 500 keV for two protons, and the typical core temperature is kT = 1 keV.
The atomic mass numbers are, of course, AA = AB = 1, and the reduced mass is
µ = mp/2. Finally, since we are considering a reaction between identical particles
(i.e., protons on protons) we need to divide the collision rate by 2, to avoid double
counting. With these numbers, Eq. 3.134 gives a power density of

� = 10 erg s−1g−1. (3.135)
Multiplying this by the mass of the core of the Sun, say, 0.2M⊙ = 4 × 1032 g,
gives a luminosity of ∼ 4 × 1033 erg s−1, in good agreement with the observed
Solar luminosity of 3.8× 1033 erg s−1.
Reviewing the derivation of Eqns. 3.122-3.134, we see that we can also re-

cover the reaction rate per nucleus, dNA/dt, by dividing back from � a factor
(XAQ)/(mHAA). For the p + p reaction, this gives a rate of 1.6× 10−18 s−1 per
proton. The reciprocal of this rate is the typical time a proton has to wait until it
reacts with another proton, and indeed equals

τpp ∼ 6× 1017 s ∼ 2× 1010 yr, (3.136)
as asserted above. Thus, we have shown that hydrogen fusion provides an energy
source that can power the observed luminosity of the Sun over the known age of

Recall:  The reaction rates are related to the power density by

R = ✏
⇢

Q
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the Solar System, about 5 billion years, not only in terms of energy budget (Eq.
3.102) but also in terms of the energy generation rate. Furthermore, we see that the
timescale to deplete the hydrogen fuel in the Solar core is of order 10 billion years.
The total power density at a point in a star with a given temperature, density, and

abundance will be the sum of the power densities due to all the possible nuclear
reactions, each described by 3.134. Because of the exponential term in 3.134, there
will be a strong preference for reactions between species with low atomic number,
and hence small EG. For example, compare the reactions

p + d→ 3He + γ, (EG = 0.66MeV) (3.137)

and

p +12C→13 N + γ, (EG = 35.5MeV), (3.138)

which have comparable nuclear cross sections S0 (both reactions follow the same
process of adding a proton to a nucleus and emitting a photon). At a typical kinetic
energy of 1 keV, if the abundances of deuterium and carbon nuclei were compara-
ble, the ratio between the rates would be

R(p12C)
R(pd)

∼ exp
∑
−3

35.51/3 − 0.661/3

(4× 0.001)1/3

∏
∼ e−46 ∼ 10−20. (3.139)

Furthermore, the higher the Gamow energy, the more strongly will the reac-
tion rate depend on temperature. For example, a first-order Taylor expansion of
Eq. 3.134 around T = 1.5× 107 K, the central temperature of the Sun, shows that
the p + p→ d + e+ + νe rate depends on temperature approximately as T 4, while
the p +12 C →13 N + γ rate goes like T 18 (see Problem 8). The steep positive
temperature dependence of nuclear reactions, combined with the virial theorem,
means that nuclear reactions serve as a natural “thermostat” that keeps stars stable.
Suppose, for example, that the temperature inside a star rises. This will increase the
rate of nuclear reactions, leading to an increase in luminosity. Due to opacity, this
additional energy will not directly escape from the star, resulting in a temporary
increase in total energy. Since

Etot =
1
2
Egr = −Eth, (3.140)

the gravitational energy Egr will grow (i.e., become less negative), meaning the
star will expand, and Eth will become smaller, meaning the temperature will be
reduced again. This explains why main sequence stars of very different masses
have comparable core temperatures.
The thermostatic behavior controls also the longterm evolution of stars. Even-

tually, when the dominant nuclear fuel runs out, the power density � will drop.
The star will then contract, Eth will increase, and T will rise until a new nuclear
reaction, involving nuclei of higher atomic number, can become effective.
A key prediction of the picture we have outlined, in which the energy of the

Sun derives from the p-p chain, is that there will be a constant flux of neutrinos
coming out of the Sun. As opposed to the photons, the weak interaction of the
neutrinos with matter guarantees that they can escape the core of the Sun almost

Taking the ratio of 12C to d, we find

So, we see that the species with the lower atomic number
indeed has a higher reaction rate.
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A Taylor expansion of f(E) around E0 shows f(E) can be approximated by a
Gaussian with a width parameter (i.e., the “σ”, or standard deviation, of the Gaus-
sian e−x2/2σ2) of

∆ =
21/6

31/2
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G (kT )5/6. (3.133)

The value of the integral can therefore be approximated well with the area of the
Gaussian,

√
2πf(E0)∆ (see Problem 7). Replacing in 3.127, we obtain the final

expression for the power density due to a given nuclear reaction,
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Equation 3.134 can tell us, for example, the luminosity produced by the p-p
chain in the Sun. For a rough estimate, let us take for the mass density in the core
of the Sun the central density, ρ = 150 g cm−3. As already noted in Section 3.6,
in the central regions of the Sun, some of the hydrogen has already been converted
into helium by nuclear reactions. Let us assume a typical hydrogen abundance
of X = 0.5, which we can use for XA and XB . The first step in the p-p chain,
the p + p → d + e+ + νe reaction, is by far the slowest of the three steps in
the chain, and it is therefore the “bottleneck” that sets the rate of the entire p-
p process. The constant S0 for this reaction is calculated theoretically to be ≈
4×10−46 cm2 keV, which is characteristic of weak interactions. ForQ, let us take
the entire thermal energy release of each p-p chain completion, since once the first
step occurs, on a timescale of 1010 yr, the following two reactions, with timescales
of order 1 s and 300,000 yr, respectively, are essentially instantaneous. We saw that
every completion of the chain produces 26.73 MeV of energy and two neutrinos.
Subtracting the 0.52 MeV carried off, on average, by the two neutrinos, the thermal
energy released per p-p chain completion is Q = 26.2 MeV. As already noted,
EG = 500 keV for two protons, and the typical core temperature is kT = 1 keV.
The atomic mass numbers are, of course, AA = AB = 1, and the reduced mass is
µ = mp/2. Finally, since we are considering a reaction between identical particles
(i.e., protons on protons) we need to divide the collision rate by 2, to avoid double
counting. With these numbers, Eq. 3.134 gives a power density of

� = 10 erg s−1g−1. (3.135)
Multiplying this by the mass of the core of the Sun, say, 0.2M⊙ = 4 × 1032 g,
gives a luminosity of ∼ 4 × 1033 erg s−1, in good agreement with the observed
Solar luminosity of 3.8× 1033 erg s−1.
Reviewing the derivation of Eqns. 3.122-3.134, we see that we can also re-

cover the reaction rate per nucleus, dNA/dt, by dividing back from � a factor
(XAQ)/(mHAA). For the p + p reaction, this gives a rate of 1.6× 10−18 s−1 per
proton. The reciprocal of this rate is the typical time a proton has to wait until it
reacts with another proton, and indeed equals

τpp ∼ 6× 1017 s ∼ 2× 1010 yr, (3.136)
as asserted above. Thus, we have shown that hydrogen fusion provides an energy
source that can power the observed luminosity of the Sun over the known age of

The higher the Gamow energy, the more strongly the reaction 
depends on temperature.
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the Solar System, about 5 billion years, not only in terms of energy budget (Eq.
3.102) but also in terms of the energy generation rate. Furthermore, we see that the
timescale to deplete the hydrogen fuel in the Solar core is of order 10 billion years.
The total power density at a point in a star with a given temperature, density, and

abundance will be the sum of the power densities due to all the possible nuclear
reactions, each described by 3.134. Because of the exponential term in 3.134, there
will be a strong preference for reactions between species with low atomic number,
and hence small EG. For example, compare the reactions

p + d→ 3He + γ, (EG = 0.66MeV) (3.137)

and

p +12C→13 N + γ, (EG = 35.5MeV), (3.138)

which have comparable nuclear cross sections S0 (both reactions follow the same
process of adding a proton to a nucleus and emitting a photon). At a typical kinetic
energy of 1 keV, if the abundances of deuterium and carbon nuclei were compara-
ble, the ratio between the rates would be

R(p12C)
R(pd)

∼ exp
∑
−3

35.51/3 − 0.661/3

(4× 0.001)1/3

∏
∼ e−46 ∼ 10−20. (3.139)

Furthermore, the higher the Gamow energy, the more strongly will the reac-
tion rate depend on temperature. For example, a first-order Taylor expansion of
Eq. 3.134 around T = 1.5× 107 K, the central temperature of the Sun, shows that
the p + p→ d + e+ + νe rate depends on temperature approximately as T 4, while
the p +12 C →13 N + γ rate goes like T 18 (see Problem 8). The steep positive
temperature dependence of nuclear reactions, combined with the virial theorem,
means that nuclear reactions serve as a natural “thermostat” that keeps stars stable.
Suppose, for example, that the temperature inside a star rises. This will increase the
rate of nuclear reactions, leading to an increase in luminosity. Due to opacity, this
additional energy will not directly escape from the star, resulting in a temporary
increase in total energy. Since

Etot =
1
2
Egr = −Eth, (3.140)

the gravitational energy Egr will grow (i.e., become less negative), meaning the
star will expand, and Eth will become smaller, meaning the temperature will be
reduced again. This explains why main sequence stars of very different masses
have comparable core temperatures.
The thermostatic behavior controls also the longterm evolution of stars. Even-

tually, when the dominant nuclear fuel runs out, the power density � will drop.
The star will then contract, Eth will increase, and T will rise until a new nuclear
reaction, involving nuclei of higher atomic number, can become effective.
A key prediction of the picture we have outlined, in which the energy of the

Sun derives from the p-p chain, is that there will be a constant flux of neutrinos
coming out of the Sun. As opposed to the photons, the weak interaction of the
neutrinos with matter guarantees that they can escape the core of the Sun almost
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the Solar System, about 5 billion years, not only in terms of energy budget (Eq.
3.102) but also in terms of the energy generation rate. Furthermore, we see that the
timescale to deplete the hydrogen fuel in the Solar core is of order 10 billion years.
The total power density at a point in a star with a given temperature, density, and

abundance will be the sum of the power densities due to all the possible nuclear
reactions, each described by 3.134. Because of the exponential term in 3.134, there
will be a strong preference for reactions between species with low atomic number,
and hence small EG. For example, compare the reactions

p + d→ 3He + γ, (EG = 0.66MeV) (3.137)

and

p +12C→13 N + γ, (EG = 35.5MeV), (3.138)

which have comparable nuclear cross sections S0 (both reactions follow the same
process of adding a proton to a nucleus and emitting a photon). At a typical kinetic
energy of 1 keV, if the abundances of deuterium and carbon nuclei were compara-
ble, the ratio between the rates would be
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∼ exp
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∏
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Furthermore, the higher the Gamow energy, the more strongly will the reac-
tion rate depend on temperature. For example, a first-order Taylor expansion of
Eq. 3.134 around T = 1.5× 107 K, the central temperature of the Sun, shows that
the p + p→ d + e+ + νe rate depends on temperature approximately as T 4, while
the p +12 C →13 N + γ rate goes like T 18 (see Problem 8). The steep positive
temperature dependence of nuclear reactions, combined with the virial theorem,
means that nuclear reactions serve as a natural “thermostat” that keeps stars stable.
Suppose, for example, that the temperature inside a star rises. This will increase the
rate of nuclear reactions, leading to an increase in luminosity. Due to opacity, this
additional energy will not directly escape from the star, resulting in a temporary
increase in total energy. Since

Etot =
1
2
Egr = −Eth, (3.140)

the gravitational energy Egr will grow (i.e., become less negative), meaning the
star will expand, and Eth will become smaller, meaning the temperature will be
reduced again. This explains why main sequence stars of very different masses
have comparable core temperatures.
The thermostatic behavior controls also the longterm evolution of stars. Even-

tually, when the dominant nuclear fuel runs out, the power density � will drop.
The star will then contract, Eth will increase, and T will rise until a new nuclear
reaction, involving nuclei of higher atomic number, can become effective.
A key prediction of the picture we have outlined, in which the energy of the

Sun derives from the p-p chain, is that there will be a constant flux of neutrinos
coming out of the Sun. As opposed to the photons, the weak interaction of the
neutrinos with matter guarantees that they can escape the core of the Sun almost

(T4)

(T18)

This temperature dependency combined with viral theorem keeps 
stars stable.

Temperature of 
star increases

increase in 
nuclear reactions

increase in 
luminosity

increase 
in ET.

Eg will grow
star will expand
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the Solar System, about 5 billion years, not only in terms of energy budget (Eq.
3.102) but also in terms of the energy generation rate. Furthermore, we see that the
timescale to deplete the hydrogen fuel in the Solar core is of order 10 billion years.
The total power density at a point in a star with a given temperature, density, and

abundance will be the sum of the power densities due to all the possible nuclear
reactions, each described by 3.134. Because of the exponential term in 3.134, there
will be a strong preference for reactions between species with low atomic number,
and hence small EG. For example, compare the reactions

p + d→ 3He + γ, (EG = 0.66MeV) (3.137)

and

p +12C→13 N + γ, (EG = 35.5MeV), (3.138)

which have comparable nuclear cross sections S0 (both reactions follow the same
process of adding a proton to a nucleus and emitting a photon). At a typical kinetic
energy of 1 keV, if the abundances of deuterium and carbon nuclei were compara-
ble, the ratio between the rates would be

R(p12C)
R(pd)

∼ exp
∑
−3

35.51/3 − 0.661/3

(4× 0.001)1/3

∏
∼ e−46 ∼ 10−20. (3.139)

Furthermore, the higher the Gamow energy, the more strongly will the reac-
tion rate depend on temperature. For example, a first-order Taylor expansion of
Eq. 3.134 around T = 1.5× 107 K, the central temperature of the Sun, shows that
the p + p→ d + e+ + νe rate depends on temperature approximately as T 4, while
the p +12 C →13 N + γ rate goes like T 18 (see Problem 8). The steep positive
temperature dependence of nuclear reactions, combined with the virial theorem,
means that nuclear reactions serve as a natural “thermostat” that keeps stars stable.
Suppose, for example, that the temperature inside a star rises. This will increase the
rate of nuclear reactions, leading to an increase in luminosity. Due to opacity, this
additional energy will not directly escape from the star, resulting in a temporary
increase in total energy. Since

Etot =
1
2
Egr = −Eth, (3.140)

the gravitational energy Egr will grow (i.e., become less negative), meaning the
star will expand, and Eth will become smaller, meaning the temperature will be
reduced again. This explains why main sequence stars of very different masses
have comparable core temperatures.
The thermostatic behavior controls also the longterm evolution of stars. Even-

tually, when the dominant nuclear fuel runs out, the power density � will drop.
The star will then contract, Eth will increase, and T will rise until a new nuclear
reaction, involving nuclei of higher atomic number, can become effective.
A key prediction of the picture we have outlined, in which the energy of the

Sun derives from the p-p chain, is that there will be a constant flux of neutrinos
coming out of the Sun. As opposed to the photons, the weak interaction of the
neutrinos with matter guarantees that they can escape the core of the Sun almost

Recall:
Eth will decrease
T will decrease 
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A key prediction of this picture is that there is a constant flux of 
neutrinos coming out of the Sun. 

Since neutrinos interact by the weak interaction, it guarantees 
that they escape the Sun’s core almost unobstructed. (unlike 
photons).

The flux of neutrinos seen on Earth is given by:

basicastro4 October 26, 2006

58 CHAPTER 3

unobstructed.7 As calculated above, the thermal energy released per p-p chain
completion is 26.2 MeV. The neutrino number flux on Earth should therefore be
twice the Solar energy flux divided by 26.2 MeV:

fneutrino =
2f⊙

26.2 MeV
=

2× 1.4× 106 erg s−1 cm−2

26.2× 1.6× 10−6 erg
= 6.7× 1010 s−1 cm−2.

(3.141)
This huge particle flux goes mostly unhindered through our bodies and through
the entire Earth, and is extremely difficult to detect. Experiments to measure the
Solar neutrino flux began in the 1960’s, and have consistently indicated a deficit
in the flux of electron neutrinos arriving from the Sun. It now appears most likely
that the total neutrino flux from the Sun is actually very close to the predictions
of Solar models. The observed deficit is the result of previously unknown “flavor
oscillations”, in which some of the original electron neutrinos turn into other types
of neutrinos enroute from the Sun to the Earth.
We note, for completeness, that apart from the particular p-p chain described

in Eqns. 3.97-3.99, which is the main nuclear reaction sequence in the Sun, other
nuclear reactions occur, and produce neutrinos that are detectable on Earth (see
Problem 9). In stars more massive than the Sun, hydrogen is converted to helium
also via a different sequence of reactions, called the CNO cycle. In the CNO cycle,
the trace amounts of carbon, nitrogen, and oxygen in the gas serve as “catalysts”
in the hydrogen-to-helium burning, without any additional C,N, or O being synthe-
sized. The main branch of the CNO cycle actually begins with reaction 3.138,

p +12C→13 N + γ. (3.142)
This is followed by

13N→13 C + e+ + νe, (3.143)

p +13C→14 N + γ, (3.144)

p +14N→15 O + γ. (3.145)
15O→15 N + e+ + νe, (3.146)

and finally
p +15N→12 C +4He. (3.147)

Although we noted that reaction 3.142 is slower by 20 orders of magnitude than the
p-p chain’s p+d→3 He+γ, the p+d reaction can take place only after overcoming
the p + p bottleneck, which has a timescale 18 orders of magnitude longer than
p+d. The lack of such a bottleneck for the p+12C reaction is further compensated
by this reaction’s strong dependence on temperature. Although core temperature
varies only weakly with stellar mass, the slightly higher core temperatures in more
massive stars are enough to make the CNO cycle the dominant hydrogen-burning
mechanism in main-sequence stars of mass 1.2M⊙ and higher.

7Typical cross sections for scattering of neutrinos on matter are of order 10−43 cm2, 1018 times
smaller than the Thomson cross section for photons. Scaling from Eq. 3.41, the mean free path for
neutrinos in the Sun is ∼ 1018 cm, 107 times greater than the Solar radius.
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This solar flux was first measured in the 1960’s in experiments at 
the Homestake Mine in South Dakota.
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Ray Davis Solar Neutrino Experiment
ht

tp
:/

/w
w

w
.b

nl
.g

ov
/b

nl
w

eb
/r

ay
da

vi
s/

pi
ct

ur
es

.h
tm

http://www.bnl.gov/bnlweb/raydavis/pictures.htm
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http://www.bnl.gov/bnlweb/raydavis/pictures.htm

The Homestake mine tank
- 20 ft diameter x 48 ft 

long
- 100,000 gallons of 

perchloroethylene 
- located 4,900 ft below 

ground
- Homestake Mine, SD

Experiment detected a deficit 
of solar neutrinos (~30% of 
what was expected).

http://www.bnl.gov/bnlweb/raydavis/pictures.htm
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Super Kamiokande 

- 3,300 ft underground in Kamioka, Japan in the Mozumi Mine.
- 50,000 tons of ultra-pure water.
- Over 11,000 PMTs 
- 111 ft diameter x 119 ft height
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The emitted electron from a νe 
interaction generates an EM 
shower which produces an 
image with a fuzzy Cherenkov 
ring.

The emitted muon from a  νμ 
interaction generates an image 
with a crisp Cherenkov ring.
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Stay Tuned!

Next up - CNO Cycle, Convection and Stellar Evolution!


