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Announcements
- Reading Assignments:  Chapter  4.4 - 4.6. 
- Next lab is Monday, March 30th.  You will have a take-home lab that day. 
- Problem Set 8 is due in class on Monday, April 1st. 
- Monday, April 13th:  Special lecture about something awesome  by Matt 

Stein 
- Wednesday, April 15th in class lab.  Be to report to FOSC 032 that day. 
- Wednesday, April 15th your final paper is due (hard copy and electronic 

pdf).  Be sure to review the paper guidelines. 
- Dr. Cooley will be out of town April 14th - April 17th. 
- The final exam in this course will be on Wednesday, May 6th from 6:30 - 

8:00 pm.  It will cover the second half of the course. 
- Dr. Cooley will be on the NPR show Science Friday this Friday, March 

27th from 2:20 - 2:50 pm.
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Goals for Today’s Class

- What is the fate of stars of ~8 solar masses or more? 
- What is a neutron star and how does it form? 
- How does a supernova form? 
- What particles do supernova eject and how do we detect 

them? 
- (time permitting) What are pulsars?
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What is a Brown Dwarf?
What is the difference between a star and a planet?

Planets shine by reflected light; stars shine by producing 
their own light.

Stars from from a cloud of contracting gas, temperature in 
the center rises to the point hydrogen begins to fuse;  
planets from from small particles of dust left over from star 
formation, particles collide and stick together. 

Brown dwarfs are objects that have the size of a giant planet 
(think Jupiter) and a small star.  The object can not sustain 
fusion of hydrogen.  Thus, they are dubbed “failed stars”.
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High core temperatures + 
high density = nuclear 
burning past CNO.
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4.3 SUPERNOVAE AND NEUTRON STARS

4.3.1 Core Collapse in Massive Stars

We now return to stars with initial masses (i.e., their masses when they begin their
lives on the main sequence) of about 8M⊙ or more. This corresponds to spectral
types O and “early” B. After exhausting most of the hydrogen in their cores, such
stars move to the giant branch. They then begin a sequence of steps, each con-
sisting of the contraction and heating of the inner regions, resulting in the ignition
of new nuclear reactions. As time advances, shells at various inner radii attain the
temperatures and the densities required for the reactions that produce progressively
heavier elements. Apart from the reactions already discussed for lower-mass stars,

4He +12C→16 O + γ (4.63)

and
4He +16O→20 Ne + γ, (4.64)

these massive stars can also burn carbon via the reactions
12C +12C→20 Ne +4He + γ, (4.65)

12C +12C→23 Na + p, (4.66)

and
12C +12C→23 Mg + n. (4.67)

Carbon burning is followed by neon, oxygen, and silicon burning. Each of these
stages takes less and less time. For example, for a 25M⊙ star, the duration of each
burning stage is:
H ∼ 5× 106 yr;
He ∼ 5× 105 yr;
C ∼ 500 yr;
Ne ∼ 1 yr;
Si ∼ 1 day.
Massive stars undergo all the stages of nuclear burning up to the production of

elements in the “iron group” with atomic mass number around A = 56, consisting
of isotopes of Cr, Mn, Fe, Co, and Ni. At this stage, the star’s outer envelope has
expanded to about 1000r⊙, and it has a dense core of radius ∼ 104 km with an
onion-like layered structure (see Fig. 4.6). The outer layers of this core are still
burning hydrogen. Looking inwards, the core consists of concentric shells com-
posed primarily of helium, carbon, oxygen, neon, silicon, and iron, respectively.
Figure 4.7 shows, for all the chemical elements, the binding energy per nucleon

(i.e., the binding energy of a nucleus divided by its mass numberA). Energy can be
gained by fusing or fissioning elements with low binding energy per nucleon into
elements with high binding energy per nucleon. The iron group elements are the
most tightly bound nuclei, and are therefore a “dead end” in nuclear energy pro-
duction. Synthesis of iron-group elements into heavier elements consumes, rather
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C burning, followed by Ne, 
O, and Si.  This burning is 
very fast at end stages.
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Core Collapse in Massive Stars

Burning leads to shell structure.
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Figure 4.7 Binding energy per nucleon as a function of atomic mass number. Several el-
ements are marked. The iron-group elements with A ≈ 56 have the highest
binding energy per nucleon, 8.8 MeV, and therefore nuclear fusion of these ele-
ments into heavier elements does not release thermal energy, but rather consumes
it.

The two processes lead, in principle, to an almost total loss of thermal pressure
support and to an unrestrained collapse of the core of a star on a free-fall timescale.
For the typical core densities prior to collapse, ρ ∼ 109 g cm−3 (calculated from
stellar evolution models), this timescale is (Eq. 3.15)

τff =
µ

3π

32Gρ̄

∂1/2

∼ 0.1 s. (4.73)

In practice, at these high densities, the mean free path for neutrino scattering be-
comes of order the core radius. This slows down the energy loss, and hence the
collapse time, to a few seconds.
As the collapse proceeds and the density and the temperature increase, the reac-

tion

e− + p→ n + νe, (4.74)

becomes common, and is infrequently offset by the inverse process of neutron de-
cay

n→ p + e− + ν̄e, (4.75)

leading to an equilibrium ratio of densities of

ne = np ≈
1

200
nn. (4.76)

Fusion stops with iron.  Why? 
Energy is gained by fusing or fissioning elements with low binding 
energy per nucleon to those with high binding energy per nucleon.  
Fe is tightly bound and thus are a dead end in nuclear energy 
production.  It consumes thermal energy rather than releasing it.
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Review
In the final stages, core can no longer produce energy via fusion.

Core electrons are degenerate and relativistic.

What happens next?



Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

Core Collapse
- Core can no longer support itself by nuclear burning. 
- Core collapses — new energy source is the gravitational contraction. 
- High temperature and density lead to two new processes.

Nuclear Photodisintegration:

Neutronization:
Protons and electrons are forced together to make neutrons.
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Figure 4.6 Simplified schematic view of the layered structure of a massive star and the dis-
tribution of the main elements that compose it, at the onset of core collapse and
the ensuing supernova explosion.

than releases, thermal energy. This fact is at the root of the “iron catastrophe” that
ensues.
When the central iron core continues to grow and approachesMch, two processes

begin:
1. Nuclear Photodisintegration: The temperature is high enough for energetic
photons to be abundant, and they get absorbed in the endothermic (i.e., energy-
consuming) nuclear reaction

γ +56Fe→ 134He + 4n, (4.68)

with an energy consumption of 124 MeV. The helium nuclei are further unbound
in the process

γ +4He→ 2p + 2n, (4.69)

consuming 28.3 MeV (the binding energy of a 4He nucleus). The total energy of
the star is thus reduced by (124 + 13× 28.3)/56 ≈ 8.8MeV= 1.4× 10−5 erg per
nucleon. With about 1057 protons in a Chandrasekhar mass, this corresponds to a
total energy loss of 1.4× 1052 erg, ∼ 10 times the energy radiated by the Sun over
1010 yr.
2. Neutronization: The large densities in the core lead to a large increase in the
rates of processes such as

e− + p→ n + νe, (4.70)

e− +56Fe→56 Mn + νe, (4.71)

e− +56Mn→56 Cr + νe. (4.72)

This neutronization depletes the core of electrons, and their supporting degeneracy
pressure, as well as of energy, which is carried off by the neutrinos.
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Photons become abundant at high energies and are 
absorbed in an endothermic nuclear reaction.
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energy consumption = 124 MeV

energy consumption = 28.3 MeV
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Implications
- Photodisintegration: 

- Energy loss of star ~ (124 + 13 x 28.6)/56 ~ 8.8 MeV/nucleon 
= 1.4 x 10-5 erg. 

- There are 1057 protons in a Chandrasekhar mass, releases 
~1052 erg  (sun luminosity ~ 1033 erg).

Fe He

- Neutronization: 
- Depletes core of electrons, degeneracy pressure and energy. 
- Energy is carried off by neutrinos.

- Combined: 
- Almost total loss of thermal pressure support 
- Unrestrained collapse of the core
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Core collapses on a free-fall time scale:

Core density at end of Si burning, ρ = 109 g/cm3.
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Figure 4.7 Binding energy per nucleon as a function of atomic mass number. Several el-
ements are marked. The iron-group elements with A ≈ 56 have the highest
binding energy per nucleon, 8.8 MeV, and therefore nuclear fusion of these ele-
ments into heavier elements does not release thermal energy, but rather consumes
it.

The two processes lead, in principle, to an almost total loss of thermal pressure
support and to an unrestrained collapse of the core of a star on a free-fall timescale.
For the typical core densities prior to collapse, ρ ∼ 109 g cm−3 (calculated from
stellar evolution models), this timescale is (Eq. 3.15)

τff =
µ

3π

32Gρ̄

∂1/2

∼ 0.1 s. (4.73)

In practice, at these high densities, the mean free path for neutrino scattering be-
comes of order the core radius. This slows down the energy loss, and hence the
collapse time, to a few seconds.
As the collapse proceeds and the density and the temperature increase, the reac-

tion

e− + p→ n + νe, (4.74)

becomes common, and is infrequently offset by the inverse process of neutron de-
cay

n→ p + e− + ν̄e, (4.75)

leading to an equilibrium ratio of densities of

ne = np ≈
1

200
nn. (4.76)

Timescale for collapse (from stellar evolution models).

Core is not transparent to neutrinos, density at core is very high
Collapse is slowed by outgoing neutrino flux to a few 
seconds.

Most nucleons are converted to neutrons.
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ements are marked. The iron-group elements with A ≈ 56 have the highest
binding energy per nucleon, 8.8 MeV, and therefore nuclear fusion of these ele-
ments into heavier elements does not release thermal energy, but rather consumes
it.

The two processes lead, in principle, to an almost total loss of thermal pressure
support and to an unrestrained collapse of the core of a star on a free-fall timescale.
For the typical core densities prior to collapse, ρ ∼ 109 g cm−3 (calculated from
stellar evolution models), this timescale is (Eq. 3.15)

τff =
µ

3π

32Gρ̄

∂1/2

∼ 0.1 s. (4.73)

In practice, at these high densities, the mean free path for neutrino scattering be-
comes of order the core radius. This slows down the energy loss, and hence the
collapse time, to a few seconds.
As the collapse proceeds and the density and the temperature increase, the reac-

tion

e− + p→ n + νe, (4.74)

becomes common, and is infrequently offset by the inverse process of neutron de-
cay

n→ p + e− + ν̄e, (4.75)

leading to an equilibrium ratio of densities of

ne = np ≈
1

200
nn. (4.76)

Density increases and temperature increases as core collapses.  
This leads to the reaction

Thus, a neutron star is formed.
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Neutron Stars
Similar to white dwarfs - basic physics is degenerate fermion gas.  
However, we have neutrons, not electrons.  Replace me with mp.
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Thus, most of the nucleons become neutrons, and a neutron star forms, in which
degenerate neutrons, rather than electrons, provide the pressure support against
gravity.

4.3.2 Properties of Neutron Stars

The properties of neutron stars can be estimated easily by replacingme withmn in
Eqns. 4.34-4.35, describing white dwarfs. Thus

rns ≈ 2.3× 109 cm
me

mn

µ
Z
A

∂5/3 µ
M

M⊙

∂−1/3

≈ 14 km
µ

M

1.4M⊙

∂−1/3

.

(4.77)
Here we have setZ/A = 1, since the number of particles contributing to the degen-
eracy pressure (i.e., the neutrons) is almost equal to the total number of nucleons.
Since the radius of a neutron star is about 500 times smaller than that of a white
dwarf, the mean density is about 108 times greater, i.e., ρ ∼ 1014 g cm−3. This is
similar to the density of nuclear matter. In fact, one can consider a neutron star to
be one huge nucleus of atomic mass number A ∼ 1057.
Our estimate of the radius is only approximate, since we have neglected two

effects which are important. First, at these inter-particle separations, the nuclear
interactions play an important role in the equation of state, apart from the neutron
degeneracy pressure. The equation of state of nuclear matter is poorly known, due
to our poor understanding of the details of the strong interaction. In fact, it is hoped
that actual measurements of the sizes of neutron stars will provide experimental
constraints on the nuclear equation of state, which would be important input to
nuclear physics. Second, the gravitational potential energy of a test particle of mass
m at the surface of a ∼ 1.4M⊙ neutron star, of radius r ∼ 10 km, is a significant
fraction of the particle’s rest-mass energy:

Egr

mc2
=

GM

rc2
≈ 6.7× 10−8 cgs× 1.4× 2× 1033 g

10× 105 cm (3× 1010 cm s−1)2
≈ 20%. (4.78)

This means that matter falling onto a neutron star loses 20% of its rest mass, and
the mass of the star (as measured, e.g., via Kepler’s law) is 20% smaller than the
total mass that composed it. Thus, a proper treatment of the physics of neutron stars
needs to be calculated within the strong-field regime of General Relativity. More
detailed calculations, including these two effects, give a radius of about 10 km for
a 1.4M⊙ neutron star.
The Chandrasekhar mass,

Mch = 0.2
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp, (4.79)

can be used to estimate a maximal mass for a neutron star, beyond which the density
is so high that even the degenerate neutron gas becomes ultra-relativistic and unable
to support the star against gravity. Again replacing the Z/A = 0.5, appropriate for
white dwarfs, with Z/A = 1, describing neutron stars, gives a factor of 4, or

Mns,max = 1.4M⊙ × 4 = 5.6M⊙. (4.80)
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This means that matter falling onto a neutron star loses 20% of its rest mass, and
the mass of the star (as measured, e.g., via Kepler’s law) is 20% smaller than the
total mass that composed it. Thus, a proper treatment of the physics of neutron stars
needs to be calculated within the strong-field regime of General Relativity. More
detailed calculations, including these two effects, give a radius of about 10 km for
a 1.4M⊙ neutron star.
The Chandrasekhar mass,
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can be used to estimate a maximal mass for a neutron star, beyond which the density
is so high that even the degenerate neutron gas becomes ultra-relativistic and unable
to support the star against gravity. Again replacing the Z/A = 0.5, appropriate for
white dwarfs, with Z/A = 1, describing neutron stars, gives a factor of 4, or

Mns,max = 1.4M⊙ × 4 = 5.6M⊙. (4.80)

Note:  the Z/A factor is one, since almost all nucleons are neutrons.

Important Effects (we neglected):

1. Nuclear interactions play an important role in the EOS.  The 
EOS is poorly known due to our poor understanding of details 
of the strong interaction. 

2. The star is so compact that the effects of GR must be taken into 
account.
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Compare gravitational and rest mass energies of a test particle of 
mass m.

Egr =
GMm

2r
E = mc2
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degenerate neutrons, rather than electrons, provide the pressure support against
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Since the radius of a neutron star is about 500 times smaller than that of a white
dwarf, the mean density is about 108 times greater, i.e., ρ ∼ 1014 g cm−3. This is
similar to the density of nuclear matter. In fact, one can consider a neutron star to
be one huge nucleus of atomic mass number A ∼ 1057.
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This means that matter falling onto a neutron star loses 20% of its rest mass, and
the mass of the star (as measured, e.g., via Kepler’s law) is 20% smaller than the
total mass that composed it. Thus, a proper treatment of the physics of neutron stars
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can be used to estimate a maximal mass for a neutron star, beyond which the density
is so high that even the degenerate neutron gas becomes ultra-relativistic and unable
to support the star against gravity. Again replacing the Z/A = 0.5, appropriate for
white dwarfs, with Z/A = 1, describing neutron stars, gives a factor of 4, or
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and 
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dwarf, the mean density is about 108 times greater, i.e., ρ ∼ 1014 g cm−3. This is
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This means that matter falling onto a neutron star loses 20% of its rest mass, and
the mass of the star (as measured, e.g., via Kepler’s law) is 20% smaller than the
total mass that composed it. Thus, a proper treatment of the physics of neutron stars
needs to be calculated within the strong-field regime of General Relativity. More
detailed calculations, including these two effects, give a radius of about 10 km for
a 1.4M⊙ neutron star.
The Chandrasekhar mass,
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mp, (4.79)

can be used to estimate a maximal mass for a neutron star, beyond which the density
is so high that even the degenerate neutron gas becomes ultra-relativistic and unable
to support the star against gravity. Again replacing the Z/A = 0.5, appropriate for
white dwarfs, with Z/A = 1, describing neutron stars, gives a factor of 4, or

Mns,max = 1.4M⊙ × 4 = 5.6M⊙. (4.80)

Matter falling onto a neutron star loses 20% of its rest mass and 
the mass of the star as measured via Kepler’s law is 20% smaller 
than the total mass that composed it!

Detailed calculations that take into account GR and nuclear 
interactions give a radius of 10 km for a neutron star of 1.4Msun.

Limiting mass of a neutron star is not accurately known.  The value 
is between 2Msun and 3.2Msun.  
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Supernova Explosions

SN1994D
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Properties
- The energy imparted by material flying out is about 3 x 1051 erg. 
- Luminous energy of ~ 3 x 1049 erg can be observed for ~ 1 

month after the explosion.  This is driven by the decay of 
radioactive elements synthesized just before, during collapse & 
during explosion. 

- The mean luminosity is 

LSN ⇠ 1043 erg s�1 = 3⇥ 109Lsun

- The bulk of the energy released in SN is carried away by neutrino-
antineutrino pairs.   

- The density is so high, that photons can not emerge from the star.  
(Too many photon-photon collisions).
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About 3× 1049 erg can be observed over a period of order one month as luminous
energy, driven primarily by the decay of radioactive elements synthesized during
the last fewmoments before collapse, during the collapse, and during the explosion.
Although the luminous energy is only 1% of the kinetic energy, it nevertheless
makes a supernova an impressive event; the mean luminosity is of order

LSN ∼
3× 1049 erg

30 d× 24 hr× 60 m× 60 s
∼ 1043 erg s−1 ∼ 3× 109L⊙, (4.81)

comparable to the luminosity of an entire galaxy of stars (see Chapter 6).
However, the total gravitational binding energy released in the collapse of the

core to a neutron star is

Egr ∼
GM2

rns
= 5× 1053

µ
M

1.4M⊙

∂2 ≥ rns

10 km

¥−1

erg. (4.82)

The kinetic and radiative energies are just small fractions, ∼ 10−2 and ∼ 10−4,
respectively, of this energy. The bulk of the energy released in the collapse is
carried away by neutrino-antineutrino pairs. The density is so high that photons
cannot emerge from the star, and they undergo frequent photon-photon collisions.
These produce electron-positron pairs, which form neutrino pairs:

γ + γ → e+ + e− → νe + ν̄e, νµ + ν̄µ, ντ + ν̄τ (4.83)
(the µ and τ neutrinos are neutrinos related to the muon and the tauon, which
are heavy relatives of the electron.) The neutrinos can pass through the star with
few scatterings (see Problem 3), and can therefore drain almost all of the thermal
energy.
A striking confirmation of this picture was obtained in 1987, with the explo-

sion of Supernova 1987A in the Large Magellanic Cloud, a satellite galaxy of our
Galaxy (the Milky Way; see Chapter 6), at a distance of 50 kpc from Earth. This
was the nearest supernova observed since the year 1604. A total of 20 antineutri-
nos (several of them with directional information pointing toward the supernova)
were detected simultaneously in the span of a few seconds by two different under-
ground experiments. Each experiment consisted of a detector composed of a large
tank filled with water and surrounded by photomultiplier tubes. These experiments
were initially designed to search for proton decay. The experiments discovered
the antineutrinos, and measured their approximate energies and directions via the
reaction

ν̄e + p→ n + e+, (4.84)
by detecting the Cerenkov radiation emitted by the positrons moving faster than
the speed of light in water. The typical energies of the ν̄e’s were 20 MeV. The de-
tection of 20 particles, divided by the efficiency of the experiments to antineutrino
detection (which was a function of antineutrino energy), implied that a “fluence”
(i.e., a time-integrated flux) of 2 × 109 cm−2 electron antineutrinos had reached
Earth. The electron antineutrinos, ν̄e’s, are just one out of six types of particles
(νe, ν̄e, νµ, ν̄µ, ντ , ν̄τ ) that are produced in similar numbers and carry off the col-
lapse energy. Thus, the total energy released in neutrinos was

Eneutrino ∼ 2× 109 cm−2 × 6× (20 MeV × 1.6× 10−6erg MeV−1) (4.85)
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Supernova 1987A
- 20 antineutrinos were discovered in a 

span of a few seconds by two different 
underground experiments 
(Kamiokande II and IMB). 

- First time neutrinos were detected.  
The neutrinos were detector prior to 
the emission of visible light.

16

SN 1987A in the Large Magellanic Cloud. 
Distance 50 kpc from Earth. 
Nearest SN since 1604.

- The experiments were originally 
designed to detect proton decay.   

- Neutrinos are detected via the process
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2002 Nobel Prize in Physics 
for the first real time 
observation of supernova 
neutrinos.  (This prize was 
shared with Ray Davis.)
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Neutrinos from SN1987A.  The 8 neutrinos by the IBM experiment have 
greater energy than the 12 detected by the Kamiokande experiment 
because the IBM detector was not sensitive to low energy neutrinos.
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Optical light curve of SN1987A.  Light faded at almost the same 
observed light at 66Co (77 days).
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Type II Supernova:  Summary
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Type Ia SN
- Mass transfer from companion 

onto WD happens until reach 
Mch. 

- At (or before) that stage, carbon 
core ignites.  Temp rises, 
pressure increases. Classically, 
star should expand. 

- Degenerate conditions prevent 
star from expanding, causes 
nuclear reaction rate to 
increase. 

- Ends in a thermonuclear 
runaway — star explodes.

21
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Supernova Summary

- Produced by the feeding of a white dwarf from a companion star. 

- Leaves behind no stellar remnant. 

- The kind of star the companion is unknown. 

- Merger of two WD?

22

- Produced by core collapse of a massive star. 

- Leaves behind a neutron star or black hole.

Type II SN

Type Ia SN

Material expelled by both types of SN is essentially the only 
source of heavy elements in the universe.  Lighter elements were 
formed in the early universe (more details later in the course).



Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

Gamma Ray Bursts
- Even more luminous than a SN explosion.   
- Release 1051 erg over just a few seconds. 
- Initially energy released at gamma frequencies, fading afterglows 

can be in x-rays (minutes), optical (days), and radio frequencies 
(weeks). 

- Occurrence:  Observe approximately 1 per day. 
- Half of the explosions are in star forming galaxies. 
- Nature and mechanism for GRBs is still widely debated. 

- Involved in formation of black holes? 
- Links to SN explosions? 
- Result from core collapse of massive stars?
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Pulsars and Supernova Remnants

-The first pulsar was discovered in 1967.  
It had a pulse period of 1.33 s. 

- It was named “LGM-1”.  Any ideas what 
this stands for?

-Today over 1000 pulsars are 
known.  Some have periods as 
short as 0.03 s.

Little Green Men
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The Crab Pulsar

- First observed in 1054 by Chinese, Japanese and Korean Astronomers. 
- Period τ = 33 ms 
- Ltot ~ 5 x 1038 erg s-1  

-
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Figure 4.9 Flux at 430 MHz vs. time from PSR J0546+2441, a typical radio pulsar, over
several periods. The pulse period is 2.84385038524 s (i.e., measured to 12 sig-
nificant digits). Note the variable strength, and occasional disappearance of the
pulses. The inset shows a zoom-in on the pulse profile, averaged over many pe-
riods. Data credit: D. Champion, see Mon. Not. Royal. Astron. Soc. (2005),
363, 929.

4.4 PULSARS AND SUPERNOVA REMNANTS

Many neutron stars have been identified as such in their manifestation as pulsars.
Pulsars were first discovered with radio telescopes in the 1960s as point sources of
periodic pulses of radio emission, with periods of the order of τ ∼ 10−3 to 1 s.
Today, over 1000 pulsars are known. The periods of most pulsars are observed to
grow slowly with time in a very regular manner. The predictability of the pulse
arrival times is comparable to that of the most accurate man-made clocks. Fig-
ure 4.9 shows a typical pulsar time series. One of the best studied pulsars, which
we shall use as an example, is the Crab pulsar, at the center of the Crab nebula (see
Fig. 4.10). The Crab nebula, an example of a supernova remnant, is an expanding
cloud of gaseous fragments at the same location in the sky where a bright supernova
explosion was observed and documented in the year 1054 by Chinese, Japanese,
and Korean astronomers. The Crab pulsar, from which pulsations are detected at
radio, optical, and X-ray wavelengths, has a pulsation period of τ = 33 ms, i.e., an
angular frequency

ω =
2π

τ
= 190 s−1. (4.86)

The period derivative is
dτ

dt
=

1 ms
75 yr

= 4.2× 10−13, (4.87)
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Pulsars as Neutron Stars

What are possible mechanisms for producing the periodicity of  
the observed magnitude and regularity in these stars?

1. binaries 
2. stellar pulsations 
3. stellar rotation
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Binaries:
Angular frequency, mass and separation are related by Kepler’s 
law.
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or
dω

dt
= −2π

τ2

dτ

dt
= −2.4× 10−9 s−2. (4.88)

The total luminosity of the Crab nebula, integrated over all wavelengths, is
Ltot ≈ 5× 1038erg s−1, (4.89)

and is mostly in the form of synchrotron radiation, i.e., radiation emitted by rela-
tivistic electrons as they spiral along magnetic field lines.

4.4.1 Identification of Pulsars as Neutron Stars

To see that the Crab pulsar (and other pulsars) are most plausibly identified with
spinning neutron stars, let us consider possible mechanisms for producing period-
icity of the observed magnitude and regularity. Three options that come to mind,
of astronomical phenomena associated with periodicity, are binaries, stellar pulsa-
tions, and stellar rotation. For binary orbits, the angular frequency, masses, and
separation are related by Kepler’s law,

ω2 =
G(M1 + M2)

a3
, (4.90)

or

a =
[G(M1 + M2)]1/3

ω2/3
(4.91)

=
[6.7× 10−8 cgs (4× 1033 g)]1/3

(190 s−1)2/3
= 2× 107 cm = 200 km,

where we have assumed two solar-mass objects and inserted the Crab pulsar’s fre-
quency. The separation a is much smaller than the radii of normal stars or of white
dwarfs. Only a pair of neutron stars could exist in a binary at this separation. How-
ever, General Relativity predicts that two such masses orbiting at so small a separa-
tion will lose gravitational binding energy via the emission of gravitational waves
(see Problems 5 and 6). This loss of energy will cause the separation between the
pair to shrink, and the orbital frequency to grow, contrary to the observation that the
pulsar frequencies decrease with time. Thus, orbital motion of stellar-mass objects
cannot be the explanation for pulsars.
A second option is stellar pulsations. Stars are, in fact, observed to pulsate

regularly in various modes, with the pulsation period dependent on density as6
τ ∝ ρ−1/2. Normal stars oscillate with periods between hours and months, and
white dwarfs oscillate with periods of 100 to 1000 s. Neutron stars, which are 108

times denser than white dwarfs, should therefore pulsate with periods 104 times

6It is easy to see from a dimensional argument that this must be the case for radial pulsations. Con-
sider a star that is “squeezed” radially, and then released. The restoring force due to the pressure has
dimensions of pressure times area, F ∼ PA ∼ (GMρ/r)r2, where we have used the equation
of hydrostatic equilibrium (Eq. 3.19) to express the dimensions of the pressure. Equating this to the
mass times the acceleration, Ma ∼ Mr/τ2, gives the required result. Note that the pulsation period,
τ ∼ (Gρ)−1/2, is essentially the same as the free-fall timescale, Eq. 3.15.

basicastro4 October 26, 2006

90 CHAPTER 4

or
dω

dt
= −2π

τ2

dτ

dt
= −2.4× 10−9 s−2. (4.88)

The total luminosity of the Crab nebula, integrated over all wavelengths, is
Ltot ≈ 5× 1038erg s−1, (4.89)

and is mostly in the form of synchrotron radiation, i.e., radiation emitted by rela-
tivistic electrons as they spiral along magnetic field lines.

4.4.1 Identification of Pulsars as Neutron Stars

To see that the Crab pulsar (and other pulsars) are most plausibly identified with
spinning neutron stars, let us consider possible mechanisms for producing period-
icity of the observed magnitude and regularity. Three options that come to mind,
of astronomical phenomena associated with periodicity, are binaries, stellar pulsa-
tions, and stellar rotation. For binary orbits, the angular frequency, masses, and
separation are related by Kepler’s law,

ω2 =
G(M1 + M2)

a3
, (4.90)

or

a =
[G(M1 + M2)]1/3

ω2/3
(4.91)

=
[6.7× 10−8 cgs (4× 1033 g)]1/3

(190 s−1)2/3
= 2× 107 cm = 200 km,

where we have assumed two solar-mass objects and inserted the Crab pulsar’s fre-
quency. The separation a is much smaller than the radii of normal stars or of white
dwarfs. Only a pair of neutron stars could exist in a binary at this separation. How-
ever, General Relativity predicts that two such masses orbiting at so small a separa-
tion will lose gravitational binding energy via the emission of gravitational waves
(see Problems 5 and 6). This loss of energy will cause the separation between the
pair to shrink, and the orbital frequency to grow, contrary to the observation that the
pulsar frequencies decrease with time. Thus, orbital motion of stellar-mass objects
cannot be the explanation for pulsars.
A second option is stellar pulsations. Stars are, in fact, observed to pulsate

regularly in various modes, with the pulsation period dependent on density as6
τ ∝ ρ−1/2. Normal stars oscillate with periods between hours and months, and
white dwarfs oscillate with periods of 100 to 1000 s. Neutron stars, which are 108

times denser than white dwarfs, should therefore pulsate with periods 104 times

6It is easy to see from a dimensional argument that this must be the case for radial pulsations. Con-
sider a star that is “squeezed” radially, and then released. The restoring force due to the pressure has
dimensions of pressure times area, F ∼ PA ∼ (GMρ/r)r2, where we have used the equation
of hydrostatic equilibrium (Eq. 3.19) to express the dimensions of the pressure. Equating this to the
mass times the acceleration, Ma ∼ Mr/τ2, gives the required result. Note that the pulsation period,
τ ∼ (Gρ)−1/2, is essentially the same as the free-fall timescale, Eq. 3.15.

basicastro4 October 26, 2006

90 CHAPTER 4

or
dω

dt
= −2π

τ2

dτ

dt
= −2.4× 10−9 s−2. (4.88)

The total luminosity of the Crab nebula, integrated over all wavelengths, is
Ltot ≈ 5× 1038erg s−1, (4.89)

and is mostly in the form of synchrotron radiation, i.e., radiation emitted by rela-
tivistic electrons as they spiral along magnetic field lines.

4.4.1 Identification of Pulsars as Neutron Stars

To see that the Crab pulsar (and other pulsars) are most plausibly identified with
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where we have assumed two solar-mass objects and inserted the Crab pulsar’s fre-
quency. The separation a is much smaller than the radii of normal stars or of white
dwarfs. Only a pair of neutron stars could exist in a binary at this separation. How-
ever, General Relativity predicts that two such masses orbiting at so small a separa-
tion will lose gravitational binding energy via the emission of gravitational waves
(see Problems 5 and 6). This loss of energy will cause the separation between the
pair to shrink, and the orbital frequency to grow, contrary to the observation that the
pulsar frequencies decrease with time. Thus, orbital motion of stellar-mass objects
cannot be the explanation for pulsars.
A second option is stellar pulsations. Stars are, in fact, observed to pulsate

regularly in various modes, with the pulsation period dependent on density as6
τ ∝ ρ−1/2. Normal stars oscillate with periods between hours and months, and
white dwarfs oscillate with periods of 100 to 1000 s. Neutron stars, which are 108

times denser than white dwarfs, should therefore pulsate with periods 104 times

6It is easy to see from a dimensional argument that this must be the case for radial pulsations. Con-
sider a star that is “squeezed” radially, and then released. The restoring force due to the pressure has
dimensions of pressure times area, F ∼ PA ∼ (GMρ/r)r2, where we have used the equation
of hydrostatic equilibrium (Eq. 3.19) to express the dimensions of the pressure. Equating this to the
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where a is the separation and we assume object are of solar mass.

How does the separation distance compare to the radius of a 
normal star?

It is much smaller than a normal star or even a white 
dwarf.  Only neutron stars could exist in such a binary.  

BUT GR predicts orbiting masses as such a separation 
will lose energy (via gravitational waves), separation 
will shrink and orbital frequency will grow. Observed 
pulsar frequencies decrease with time.
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Stellar Pulsations:

Stars are observed to pulsate regularly in various modes.
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Ltot ≈ 5× 1038erg s−1, (4.89)

and is mostly in the form of synchrotron radiation, i.e., radiation emitted by rela-
tivistic electrons as they spiral along magnetic field lines.

4.4.1 Identification of Pulsars as Neutron Stars

To see that the Crab pulsar (and other pulsars) are most plausibly identified with
spinning neutron stars, let us consider possible mechanisms for producing period-
icity of the observed magnitude and regularity. Three options that come to mind,
of astronomical phenomena associated with periodicity, are binaries, stellar pulsa-
tions, and stellar rotation. For binary orbits, the angular frequency, masses, and
separation are related by Kepler’s law,

ω2 =
G(M1 + M2)
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, (4.90)

or

a =
[G(M1 + M2)]1/3

ω2/3
(4.91)

=
[6.7× 10−8 cgs (4× 1033 g)]1/3

(190 s−1)2/3
= 2× 107 cm = 200 km,

where we have assumed two solar-mass objects and inserted the Crab pulsar’s fre-
quency. The separation a is much smaller than the radii of normal stars or of white
dwarfs. Only a pair of neutron stars could exist in a binary at this separation. How-
ever, General Relativity predicts that two such masses orbiting at so small a separa-
tion will lose gravitational binding energy via the emission of gravitational waves
(see Problems 5 and 6). This loss of energy will cause the separation between the
pair to shrink, and the orbital frequency to grow, contrary to the observation that the
pulsar frequencies decrease with time. Thus, orbital motion of stellar-mass objects
cannot be the explanation for pulsars.
A second option is stellar pulsations. Stars are, in fact, observed to pulsate

regularly in various modes, with the pulsation period dependent on density as6
τ ∝ ρ−1/2. Normal stars oscillate with periods between hours and months, and
white dwarfs oscillate with periods of 100 to 1000 s. Neutron stars, which are 108

times denser than white dwarfs, should therefore pulsate with periods 104 times

6It is easy to see from a dimensional argument that this must be the case for radial pulsations. Con-
sider a star that is “squeezed” radially, and then released. The restoring force due to the pressure has
dimensions of pressure times area, F ∼ PA ∼ (GMρ/r)r2, where we have used the equation
of hydrostatic equilibrium (Eq. 3.19) to express the dimensions of the pressure. Equating this to the
mass times the acceleration, Ma ∼ Mr/τ2, gives the required result. Note that the pulsation period,
τ ∼ (Gρ)−1/2, is essentially the same as the free-fall timescale, Eq. 3.15.

Normal stars oscillate with periods between hours and 
months.  WD oscillate with periods of 100 to 1000 s.

Neutron stars (108 x denser)  should, therefore, pulsate 
with periods of 0.1s.

Pulsars commonly have a period of ~0.8 s.  There is no 
class of stars that produce this pulsation period.
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Stellar Rotation:
Assume anisotropic emission from a rotating star.  What is 
the fastest a star can spin?

Angular frequency at which centrifugal forces do not 
break it apart.
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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is just the mean density we predicted for neutron stars.
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a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
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Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)
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A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm
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> mω2r, (4.92)
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>
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>
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4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot
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= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is

If the Crab is a spinning star and not flying apart, it’s mean 
density must be 5x WD, but consistent with neutron star.  
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Stay Tuned!


