
Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

Principles of Astrophysics 
and Cosmology

Anthony Hewish 
May 11, 1924 -

"S
us

an
 Jo

ce
ly

n 
B

el
l (

B
ur

ne
ll)

, 1
96

7"
 b

y 
R

og
er

 W
 H

aw
or

th
 - 

Fl
ic

kr
. L

ic
en

se
d 

un
de

r C
C

 B
Y-

SA
 2

.0
 v

ia
 W

ik
im

ed
ia

 C
om

m
on

s -
 

ht
tp

://
co

m
m

on
s.w

ik
im

ed
ia

.o
rg

/w
ik

i/F
ile

:S
us

an
_J

oc
el

yn
_B

el
l_

(B
ur

ne
ll)

,_
19

67
.jp

g#
/m

ed
ia

/
Fi

le
:S

us
an

_J
oc

el
yn

_B
el

l_
(B

ur
ne

ll)
,_

19
67

.jp
g

Welcome Back 
to PHYS 3368

Joceyln Bell 
July 15, 1943 -

Welcome Back 
to PHYS 3368

http://commons.wikimedia.org/wiki/File:Susan_Jocelyn_Bell_(Burnell),_1967.jpg#/media/File:Susan_Jocelyn_Bell_(Burnell),_1967.jpg


Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

Announcements
- Reading Assignments:  Chapter  4.4 - 4.6. 
- Problem Set 9 is due in class on Wednesday, April 8th. 
- No Classes Friday, April 3.  Thus, no office hours on Friday. 
- Monday, April 13th:  Special lecture about something awesome  by Matt 

Stein.  If you are participating in Honors Convocation, you are excused 
from class that day. 

- Wednesday, April 15th in class lab.  Be to report to FOSC 032 that day. 
- Wednesday, April 15th your final paper is due (hard copy and electronic 

pdf).  Be sure to review the paper guidelines. 
- Dr. Cooley will be out of town April 14th - April 17th. 
- The final exam in this course will be on Wednesday, May 6th from 6:30 - 

8:00 pm.  It will cover the second half of the course.
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Rough Lecture Outline

- April 6:  Accretion and evolution of binary systems (4.6) 
- April 8:  Friedman Equation (8.1 - 8.2) 
- April 20:  History of the Universe and Dark Energy (8.3, 8.5) 
- April 22:  Redshift and the CMB as tests (9.1 - 9.2) 
- April 27:  CMB Anisotropy (9.3) 
- April 29:  Nucleosynthesis & Quasars (9.4 - 9.5) 
- May 4:  Special Topic Lecture (TBD)
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Goals for Today’s Class

- What is up with the Crab? 
- Explore Black Holes (which will require a tiny bit of GR) 
- Are nuclear reactions the only way to power stars?
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The Crab Nebula

Optical image -  
scale 4 pc per side.

Zoom in of 
marked area in 
optical.

Zoom in of 
marked area in 
x-rays.
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What are possible mechanisms for producing the periodicity of  
the observed magnitude and regularity in these stars?

1. binaries 
2. stellar pulsations 
3. stellar rotation

Last Time:

1. The separation distance required between 2 binaries is 200 km.  
Normal stars and WD are too large, neutrons stars are okay.  
However, GR requires that stars in tight binary lose energy, 
spiral inward and orbital velocity increases.  Observations 
indicate that pulsars slow over time.

2. No known class of stars produces a pulsation period of ~0.8 s.  
Normal stars and WD pulsate at 100 - 1000 s.  Neutrons stars 
pulsate at 0.1 s.
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Stellar Rotation:
Assume anisotropic emission from a rotating star.  What is 
the fastest a star can spin?

Angular frequency at which centrifugal forces do not 
break it apart.
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:
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> mω2r, (4.92)
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M
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>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is

If the Crab is a spinning star and not flying apart, it’s mean 
density must be 5x WD, but consistent with neutron star.  
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Assume that the luminosity of the Crab nebula is powered by the pulsar’s 
rotational energy loss as it spins down.

What is the formula for rotational energy?
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is

How would I get the total luminosity due to rotational energy?
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is

basicastro4 October 26, 2006

STELLAR EVOLUTION AND STELLAR REMNANTS 91

shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is

What is the moment of inertia of a sphere?
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore
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3M
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3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since
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where I is the moment of inertia,
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= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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tot
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dt
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tot
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5
Mr2!

d!

dt

Substitute and solve for Mr2

Mr2 = �5

2

L
tot

! d!

dt

Compare this to a 1.4 Msun neutron star of radius 10 km.
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for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since
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1
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Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot
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For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
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2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since
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where I is the moment of inertia,
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For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2
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2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.
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A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm
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> mω2r, (4.92)

or
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>
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G
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and therefore
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4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is

How does this compare to our sun?
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is

(2⇥ 1033 g)⇥ (7⇥ 1010 cm)2 = 9.8⇥ 1054 g cm2
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How fast would the sun spin if it were to collapse to a neutron star 
of radius 10 km?  The rotation period of the sun is 25 days and the 
sun’s radius is 7 x 1010 cm.

Use conservation of momentum to solve.

Ii!i = If!f

2

5
MR2

i!i =
2

5
MR2

f!f

!f = !i(
Ri

Rf
)2 = 3⇥ 10�6 s�1 ⇥ (

7⇥ 1010 cm

10⇥ 105 cm
)2 = 1.5⇥ 104 s�1

Spin up rates on order of 109. 
Collapse of main sequence stars 
are expected to produce objects 
with a spin on the order of ms.
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Is the nail in the coffin?
- The spin rate of pulsars is that expected from the 

collapse of the cores of main sequence stars. 
- The mean densities are those of neutron stars 
- Their rotational energy accounts for the luminosity 

of supernova ejecta in which the stars are 
embedded. 

- Location of pulsars at the sites of historical SN is 
expected to accompany the formation of a neutron 
star.
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Magnetic Fields
If a solar type star collapses to form a neutron star, while conserving 
magnetic flux, we would expect

R2
sunBsun = R2

NSBNS

BNS

Bsun
= (

7⇥ 1010 cm

106 cm
)2 ⇠ 5⇥ 109

For the sun, B ~ 100 G, so we would expect a NS to have a 
field of magnitude ~1012 G.



Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

Consider a NS having a magnetic field axis  
misaligned w.r.t. the stars rotation axis by 
some angle θ.

  

Dipole Radiation

q L=
1

6 c
3
B2 r6 ω4 sin2θ ∝ ω4

Even if a plasma is absent, a spinning neutron star will radiate if the 
magnetic and rotation axes do not coincide:

Equate this to loss of rotational energy:

P=I ω4 d ω
dt

∝ ω4 →
d ω
dt

=Cω3

Separate variables and integrate:

t pulsar=∫dt= ω3

2 ω̇ ( 1

ω2
−

1

ωi

2 )
For Crab, get 1260 years 
from measured ω and dω/dt, 
assuming ω

i
 = ∞.

Matches age of 950 years.

Solving for B,  and substituting in observed 
values of the Crab gives B ~ 8 x 1012 Gauss.

A spinning magnetic dipole radiates an 
EM luminosity of
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25.4 days, or 2 × 106 s, which is typical of main-sequence stars. Collapse of a
stellar core to neutron-star proportions is thus expected to produce an object with a
spin period of order milliseconds, as observed in pulsars.
Thus, we see that if we identify pulsars as rapidly spinning stars, then: their spin

rate is that expected from the collapse of the cores of main sequence stars to neutron
star dimensions; their mean densities are those of neutron stars; and their loss or
rotational energy accounts for the luminosity of the supernova ejecta in which they
are embedded, if they have the moments of inertia of neutron stars. Finally, the
location of pulsars at the sites of some historical supernovae, an explosion that
is expected to accompany the formation of a neutron star (in terms of the energy
released, even if the details of the explosion are not yet fully understood), leaves
little doubt that pulsars are indeed neutron stars.

4.4.2 Pulsar Emission Mechanisms

The details of how pulsars produce their observed periodic emission are still a mat-
ter of active research. However, it is widely accepted that the basic phenomenon is
the rotation of a neutron star having a magnetic field axis that is misaligned with
respect to the star’s rotation axis by some angle θ. A spinning magnetic dipole
radiates an electromagnetic luminosity

L =
1

6c3
B2r6ω4 sin2 θ, (4.99)

where B is the magnetic field on the surface of the star, at a radius r, on the mag-
netic pole. Solving Eq. 4.99 for B, with the observed properties of the Crab, a
typical neutron-star radius, and sin θ ≈ 1,

B ∼ (6c3L)1/2

r3ω2 sin θ
∼ [6(3× 1010 cm s−1)3 × 5× 1038 erg s−1]1/2

(106 cm)3(190 s−1)2 × 1
∼ 8×1012 Gauss.

(4.100)
Magnetic fields of roughly such an order of magnitude are expected when the ion-
ized (and hence highly conductive) gas in a star is compressed during the collapse
of the iron core. The originally small magnetic field of the star (e.g., ∼ 1 Gauss in
the Sun) is “frozen” into the gas. When the gas is compressed, the flux in the mag-
netic field lines is amplified in proportion to r−2, corresponding to∼ 1010 between
the core of a main sequence star and a neutron star.
In a process that is not yet fully agreed upon, the complex interactions between

magnetic and electric fields, particles, and radiation in the neighborhood of the
neutron star power the nebula, and also lead to the emission of radiation in two
conical beams in the direction of the magnetic axis. As the star spins and the
magnetic axis precesses around the rotation axis, each beams traces an annulus of
angular radius θ on the sky, as seen from the neutron star (see Fig. 4.11). Distant
observers who happen to lie on the path of these “lighthouse beams” detect a pulse
once every rotation, when the beam sweeps past them. This implies, of course, that
we can detect only a fraction of all pulsars, namely those for which the Earth lies
in the path of one of the beams.
Evidence that magnetic dipole radiation is the basic emission mechanism can be

found from the age of the Crab pulsar. If such radiation is leading to the pulsar’s

/ !4

If the EM radiation is leading to the pulsar’s rotation energy, then
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Figure 4.11 Schematic model of a pulsar. Bi-conical beams of radiation emerge along the
magnetic axis of a neutron star. The magnetic axis is inclined by an angle θ to
the star’s spin axis. Observers in a direction, as viewed from the star, that is
within one of the two annular regions swept out by the beams as the star rotates
will detect periodic pulses.

loss of rotational energy, then, combining Eqns. 4.96 and 4.99,
dErot

dt
= Iω

dω

dt
∝ ω4, (4.101)

and
dω

dt
= Cω3. (4.102)

The constant C can be determined from the present values of dω/dt and ω,

C =
ω̇0

ω3
0

. (4.103)

Separating variables in Eq. 4.102 and integrating, we obtain for the age of the
pulsar

tpulsar =
ω3

0

2ω̇0

µ
1
ω2
− 1

ω2
i

∂
, (4.104)

where ωi is the initial angular frequency of the neutron star upon formation. Thus,
an upper limit on the current age of the Crab pulsar is obtained by taking ω = ω0

and ωi =∞,

tpulsar <
ω0

2ω̇0
=

190 s−1

2× 2.4× 10−9 s−2
= 4× 1010 s = 1260 yr. (4.105)

This limit is consistent with the historical age, 950 yr, of the supernova of the year
1054. The pulsar age will equal 950 yr if we set τi = 2π/ωi = 2.5 ms, close to the
expected spin rate of newly formed neutron stars.
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Figure 4.11 Schematic model of a pulsar. Bi-conical beams of radiation emerge along the
magnetic axis of a neutron star. The magnetic axis is inclined by an angle θ to
the star’s spin axis. Observers in a direction, as viewed from the star, that is
within one of the two annular regions swept out by the beams as the star rotates
will detect periodic pulses.

loss of rotational energy, then, combining Eqns. 4.96 and 4.99,
dErot

dt
= Iω

dω

dt
∝ ω4, (4.101)

and
dω

dt
= Cω3. (4.102)

The constant C can be determined from the present values of dω/dt and ω,

C =
ω̇0

ω3
0

. (4.103)

Separating variables in Eq. 4.102 and integrating, we obtain for the age of the
pulsar

tpulsar =
ω3

0

2ω̇0

µ
1
ω2
− 1

ω2
i

∂
, (4.104)

where ωi is the initial angular frequency of the neutron star upon formation. Thus,
an upper limit on the current age of the Crab pulsar is obtained by taking ω = ω0

and ωi =∞,

tpulsar <
ω0

2ω̇0
=

190 s−1

2× 2.4× 10−9 s−2
= 4× 1010 s = 1260 yr. (4.105)

This limit is consistent with the historical age, 950 yr, of the supernova of the year
1054. The pulsar age will equal 950 yr if we set τi = 2π/ωi = 2.5 ms, close to the
expected spin rate of newly formed neutron stars.

Separating variables and solving yields the age of a pulsar :
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magnetic axis of a neutron star. The magnetic axis is inclined by an angle θ to
the star’s spin axis. Observers in a direction, as viewed from the star, that is
within one of the two annular regions swept out by the beams as the star rotates
will detect periodic pulses.

loss of rotational energy, then, combining Eqns. 4.96 and 4.99,
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dt
∝ ω4, (4.101)

and
dω

dt
= Cω3. (4.102)

The constant C can be determined from the present values of dω/dt and ω,

C =
ω̇0

ω3
0

. (4.103)

Separating variables in Eq. 4.102 and integrating, we obtain for the age of the
pulsar

tpulsar =
ω3

0

2ω̇0

µ
1
ω2
− 1

ω2
i

∂
, (4.104)

where ωi is the initial angular frequency of the neutron star upon formation. Thus,
an upper limit on the current age of the Crab pulsar is obtained by taking ω = ω0

and ωi =∞,

tpulsar <
ω0

2ω̇0
=

190 s−1

2× 2.4× 10−9 s−2
= 4× 1010 s = 1260 yr. (4.105)

This limit is consistent with the historical age, 950 yr, of the supernova of the year
1054. The pulsar age will equal 950 yr if we set τi = 2π/ωi = 2.5 ms, close to the
expected spin rate of newly formed neutron stars.

For the Crab, pulsar = 1260 years.  This is 
consistent with the historical age of ~960 years.
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Neutron Star Cooling
- Only a small fraction of 

neutron stars are observable 
from Earth. 

- As NS slow down and lose 
rotational energy, they become 
undetectable as pulsars. 

- Detailed calculations of NS 
cooling are much less certain 
than those for WD. 

- Poorly constrained EOS for 
nuclear matter leads to 
uncertainty in the structure and 
composition of a neutron star.
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Black Holes
- In the case of a stellar remnant with mass > the allowed mass of a neutron 

star, no known mechanism can prevent complete gravitational collapse. 
- GR predicts that even if a new form of pressure kicks in at high densities, 

it will not be strong enough to overcome gravity. 
- The star will collapse to a black hole from where no radiation or matter 

can escape.

Let’s find the “radius” of a black hole.

U > Ek
GMm

r
= =

1

2
mv2e
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4.4.3 Neutron Star Cooling

As already noted, according to the above picture, we observe only a fraction of all
pulsars, those for which the Earth is in the rotating pulsar beam. More significantly,
pulsars slow down and lose their rotational energies, and as a result, at some point
in time, will become undetectable as pulsars. However, there should exist a large
population of old, spun-down, neutron stars – the remnants of all massive stars
that have undergone core-collapse to this state. In Section 4.2.3.3, we saw that the
small surface areas of white dwarfs result in very long cooling times. The surfaces
of neutron stars, smaller by five orders of magnitude compared to those of white
dwarfs, mean that old neutron stars will be “stuck” at temperatures of order 105K,
with thermal radiation peaking at photon energies of tens of eV (called the “extreme
UV” range).
Detailed calculations of neutron star cooling are considerably more uncertain

than those for white dwarfs, partly due to the poorly constrained equation of state
on nuclear matter, which leads to uncertainty in the structure and composition of a
neutron star. A cooling calculation also needs to take into account many different
physical processes, not all fully understood, that may play a role under the extreme
conditions of gravity, temperature, density, and magnetic field inside and near the
surface of a neutron star. Interstellar gas atoms falling onto a neutron-star surface
also have an effect, and are likely to heat it to X-ray temperatures. To date, only
several candidate isolated old neutron stars have been found in X-ray surveys. The
small surface areas of neutron stars mean that their optical luminosities are very
low, and hence such objects can be found only when they are near enough. X-ray
surveys do reveal a large population of accreting neutron stars in binary systems,
called “X-ray binaries”, which we will study in Section 4.6.

4.5 BLACK HOLES

In the case of a stellar remnant with a mass above the maximum allowed mass of a
neutron star, no mechanism is known which can prevent the complete gravitational
collapse of the object. In fact, General Relativity predicts that even if some new
form of pressure sets in at high densities, the gravitational field due to such pressure
will overcome any support the pressure gradient provides, and the collapse of the
star to a singularity, or “black hole” is unavoidable.
As its name implies, matter or radiation cannot escape from a black hole. An

incorrect derivation, giving the correct answer, of the degree to which a mass must
be compressed to become a black hole can be obtained by requiring that the escape
velocity, ve, from a spherical mass of radius r be greater than c (and hence nothing
can escape),

GM

r
>

1
2
v2
e =

1
2
c2, (4.106)

and therefore the Schwarzschild radius is

rs =
2GM

c2
= 3 km

M

M⊙
. (4.107)
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Rearranging terms
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This is the 
Schwarzschild radius
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Note that the equation on the previous page is incorrect for two reasons.

1. The KE of a photon is not mc2/2  
2. The gravitational PE is not described by Newton’s limit.

We will outline the correct derivation.
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Photons cannot escape from an object with a massM that is concentrated within a
radius smaller than rs. The above derivation is incorrect because the kinetic energy
of a photon is notmc2/2, nor is the gravitational potential accurately described by
the Newtonian limit, GM/r.
A correct derivation of rs, which we shall only outline schematically, begins with

the Einstein equations of General Relativity,

Gµν =
8πG

c4
Tµν . (4.108)

The Einstein equations relate the geometry and curvature of spacetime to the distri-
bution of mass-energy. Tµν is the energy-momentum tensor. It is represented by a
4×4matrix, and each of its indices runs over the four space-time coordinates. This
is the “source” term in the equations and includes mass-energy density and pres-
sure. Gµν is the “Einstein tensor” consisting of combinations of first and second
partial derivatives, with respect to the spacetime coordinates, of the metric, gµν .
(A more detailed description of Tµν and Gµν is given in Chapter 8). The metric
describes the geometry of spacetime via the “line element”

(ds)2 =
X

µ,ν

gµνdxµdxν , (4.109)

where ds is the interval between two close spacetime events. For example, the
metric (familiar from Special Relativity) which describes spacetime in a flat (“Eu-
clidean”) region of space, far from any mass concentration, is theMinkowski met-
ric, with a line element

(ds)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2. (4.110)

The nonzero terms of the 4× 4 matrix describing gµν in this case are

g00 = 1, g11 = −1, g22 = −1, g33 = −1. (4.111)

In spherical coordinates, the Minkowski metric has the form,

(ds)2 = (cdt)2 − (dr)2 − (rdθ)2 − (r sin θdφ)2, (4.112)

i.e.,

g00 = 1, g11 = −1, g22 = −r2, g33 = −r2 sin2 θ. (4.113)

Since Gµν and Tµν are symmetric 4× 4 tensors (e.g., Gµν = Gνµ), there are only
10, rather than 16, independent Einstein equations, and a zero-divergence condition
on Tµν (implying local energy conservation) further reduces this to six equations.
A solution of the Einstein equations for the geometry of spacetime in the vacuum

surrounding a static, spherically symmetric, mass distribution, as viewed by an
observer at infinity (i.e., very distant from the mass) is the Schwarzschild metric:

(ds)2 =
µ

1− 2GM

rc2

∂
(cdt)2 −

µ
1− 2GM

rc2

∂−1

(dr)2 − (rdθ)2 − (r sin θdφ)2,

(4.114)

Einstein’s tensor energy-momentum tensor
energy-momentum tensor:

Represented a 4x4 matrix, each of the indices runs over the 4 
space-time coordinates.  This term in the equations includes 
mass-energy density and pressure.

Einstein’s tensor:
Consists of combinations of 1st & 2nd PDEs wrt spacetime 
coordinates of the metric gµν.
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The metric tells us how to calculate the interval ds is the interval 
between two spacetime events.

In the absence of matter, spacetime is flat.  In that case, we can use 
the Minkowski metric.
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normally 1 time and  
3 space elements.

The 4 x 4 matrix describing gµν then look like

gµ⌫ =

0

BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCA
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What happens if dt = 0?

(ds)2 = �[(dx)2 + (dy)2 + (dz)2] = |ds|

This is just the distance between 2 points.

What happens if dx = dy = dz = 0?

(ds)2 = (cdt)2

ds/c = time between two points.  Proper time τ = ds/c is the 
time elapsed on a clock moved between two points.

Light travels along “null geodesics” for which ds = 0.
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What if we use spherical coordinates?
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The 4 x 4 matrix describing gµν then look like

gµ⌫ =

0

BB@

1 0 0 0
0 �1 0 0
0 0 �r2 0
0 0 0 �r2 sin2 ✓

1

CCA

In the case of spacetime in a vacuum surrounding a static, spherically 
symmetric, mass distribution we get the Schwarzchild metric:
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(ds)2 =

⇣
1� rs

r

⌘
(cdt)2 �

⇣
1� rs

r

⌘�1
(dr)2 � (rd✓)2 � (r sin ✓d�)2

where rs is the Schwarzschild radius

rs =
2GM

c2



Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

For a clock at rest, what is the proper time?
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where r, θ, and φ are spherical coordinates centered on the mass, and t is the time
measured by the distant observer. The time shown by any clock can be found from
the proper time τ , defined as

dτ ≡ ds

c
. (4.115)

For a clock at rest (i.e., dr = dθ = dφ = 0),

dτ =
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Consider now a stellar remnant that is compact enough that its radius is within
rs, and hence the Schwarzschild metric (which applies only in vacuum) describes
spacetime in the vicinity of rs. When a clock is placed at r → rs, dτ approaches
zero times dt. During a time interval of, say, dt = 1 s, measured by a distant
observer, the clock near rs advances by much less. In other words, clocks appear
(to a distant observer) to tick more and more slowly as they approach rs, and to
stop completely at rs. This is called gravitational time dilation.
The electric and magnetic fields of a light wave emitted by a source near rs

will also appear to oscillate more slowly due to the time dilation, and therefore the
frequency of light will decrease, and its wavelength λ will increase, relative to the
wavelength λ0 of light emitted by the same source far from the black hole. This
gravitational redshift is

λ
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1− rs
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. (4.117)

When the light source is at rs, the wavelength becomes infinite and the energy of
the photons, hc/λ, approaches zero.
In General Relativity, once we know the metric that describes spacetime, we can

find the trajectories of free-falling particles and of radiation. In particular, mass-
less particles and light move along null geodesics, defined as paths along which
ds = 0. Setting ds = 0 in Eq. 4.114, the “coordinate speed” of a light beam
moving in the radial direction (dθ = dφ = 0) is

dr

dt
= ±c

µ
1− 2GM

rc2

∂
= ±c

≥
1− rs

r

¥
. (4.118)

At r � rs, the speed is ±c, as expected. However, as light is emitted from closer
and closer to rs, its speed appears to decline (again, to a distant observer), going
to zero at rs. Gravity works effectively as an index of refraction, with n = ∞ at
rs. As a result, no information can emerge from a radius smaller than rs, which
constitutes an “event horizon” around the black hole. We have thus re-derived
(correctly, this time) the Schwarzschild radius and its main properties.
Because of gravitational time dilation, a star collapsing to a black hole, as viewed

by a distant observer, appears to shrink in progressively slower motion, and gradu-
ally appears to “freeze” as it approaches its Schwarzschild radius. In fact, it takes an
infinite time for the star to cross rs, and therefore, formally, black holes do not ex-
ist, in terms of distant static observers such as ourselves. (They certainly can exist,
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At r � rs, the speed is ±c, as expected. However, as light is emitted from closer
and closer to rs, its speed appears to decline (again, to a distant observer), going
to zero at rs. Gravity works effectively as an index of refraction, with n = ∞ at
rs. As a result, no information can emerge from a radius smaller than rs, which
constitutes an “event horizon” around the black hole. We have thus re-derived
(correctly, this time) the Schwarzschild radius and its main properties.
Because of gravitational time dilation, a star collapsing to a black hole, as viewed

by a distant observer, appears to shrink in progressively slower motion, and gradu-
ally appears to “freeze” as it approaches its Schwarzschild radius. In fact, it takes an
infinite time for the star to cross rs, and therefore, formally, black holes do not ex-
ist, in terms of distant static observers such as ourselves. (They certainly can exist,
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Photons cannot escape from an object with a massM that is concentrated within a
radius smaller than rs. The above derivation is incorrect because the kinetic energy
of a photon is notmc2/2, nor is the gravitational potential accurately described by
the Newtonian limit, GM/r.
A correct derivation of rs, which we shall only outline schematically, begins with

the Einstein equations of General Relativity,

Gµν =
8πG

c4
Tµν . (4.108)

The Einstein equations relate the geometry and curvature of spacetime to the distri-
bution of mass-energy. Tµν is the energy-momentum tensor. It is represented by a
4×4matrix, and each of its indices runs over the four space-time coordinates. This
is the “source” term in the equations and includes mass-energy density and pres-
sure. Gµν is the “Einstein tensor” consisting of combinations of first and second
partial derivatives, with respect to the spacetime coordinates, of the metric, gµν .
(A more detailed description of Tµν and Gµν is given in Chapter 8). The metric
describes the geometry of spacetime via the “line element”

(ds)2 =
X

µ,ν

gµνdxµdxν , (4.109)

where ds is the interval between two close spacetime events. For example, the
metric (familiar from Special Relativity) which describes spacetime in a flat (“Eu-
clidean”) region of space, far from any mass concentration, is theMinkowski met-
ric, with a line element

(ds)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2. (4.110)

The nonzero terms of the 4× 4 matrix describing gµν in this case are

g00 = 1, g11 = −1, g22 = −1, g33 = −1. (4.111)

In spherical coordinates, the Minkowski metric has the form,

(ds)2 = (cdt)2 − (dr)2 − (rdθ)2 − (r sin θdφ)2, (4.112)

i.e.,

g00 = 1, g11 = −1, g22 = −r2, g33 = −r2 sin2 θ. (4.113)

Since Gµν and Tµν are symmetric 4× 4 tensors (e.g., Gµν = Gνµ), there are only
10, rather than 16, independent Einstein equations, and a zero-divergence condition
on Tµν (implying local energy conservation) further reduces this to six equations.
A solution of the Einstein equations for the geometry of spacetime in the vacuum

surrounding a static, spherically symmetric, mass distribution, as viewed by an
observer at infinity (i.e., very distant from the mass) is the Schwarzschild metric:

(ds)2 =
µ

1− 2GM

rc2

∂
(cdt)2 −

µ
1− 2GM

rc2

∂−1

(dr)2 − (rdθ)2 − (r sin θdφ)2,

(4.114)
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where r, θ, and φ are spherical coordinates centered on the mass, and t is the time
measured by the distant observer. The time shown by any clock can be found from
the proper time τ , defined as
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Consider now a stellar remnant that is compact enough that its radius is within
rs, and hence the Schwarzschild metric (which applies only in vacuum) describes
spacetime in the vicinity of rs. When a clock is placed at r → rs, dτ approaches
zero times dt. During a time interval of, say, dt = 1 s, measured by a distant
observer, the clock near rs advances by much less. In other words, clocks appear
(to a distant observer) to tick more and more slowly as they approach rs, and to
stop completely at rs. This is called gravitational time dilation.
The electric and magnetic fields of a light wave emitted by a source near rs

will also appear to oscillate more slowly due to the time dilation, and therefore the
frequency of light will decrease, and its wavelength λ will increase, relative to the
wavelength λ0 of light emitted by the same source far from the black hole. This
gravitational redshift is
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When the light source is at rs, the wavelength becomes infinite and the energy of
the photons, hc/λ, approaches zero.
In General Relativity, once we know the metric that describes spacetime, we can

find the trajectories of free-falling particles and of radiation. In particular, mass-
less particles and light move along null geodesics, defined as paths along which
ds = 0. Setting ds = 0 in Eq. 4.114, the “coordinate speed” of a light beam
moving in the radial direction (dθ = dφ = 0) is

dr

dt
= ±c

µ
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rc2
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At r � rs, the speed is ±c, as expected. However, as light is emitted from closer
and closer to rs, its speed appears to decline (again, to a distant observer), going
to zero at rs. Gravity works effectively as an index of refraction, with n = ∞ at
rs. As a result, no information can emerge from a radius smaller than rs, which
constitutes an “event horizon” around the black hole. We have thus re-derived
(correctly, this time) the Schwarzschild radius and its main properties.
Because of gravitational time dilation, a star collapsing to a black hole, as viewed

by a distant observer, appears to shrink in progressively slower motion, and gradu-
ally appears to “freeze” as it approaches its Schwarzschild radius. In fact, it takes an
infinite time for the star to cross rs, and therefore, formally, black holes do not ex-
ist, in terms of distant static observers such as ourselves. (They certainly can exist,

rs =
2GM

c2

Consider a stellar remnant so compact that its radius fits within rs.

- As r → rs, dτ → 0.  Gravitational time dilation becomes infinite.
- EM and magnetic fields will appear to oscillate more slowly, 

leading to a gravitational redshift
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At r � rs, the speed is ±c, as expected. However, as light is emitted from closer
and closer to rs, its speed appears to decline (again, to a distant observer), going
to zero at rs. Gravity works effectively as an index of refraction, with n = ∞ at
rs. As a result, no information can emerge from a radius smaller than rs, which
constitutes an “event horizon” around the black hole. We have thus re-derived
(correctly, this time) the Schwarzschild radius and its main properties.
Because of gravitational time dilation, a star collapsing to a black hole, as viewed

by a distant observer, appears to shrink in progressively slower motion, and gradu-
ally appears to “freeze” as it approaches its Schwarzschild radius. In fact, it takes an
infinite time for the star to cross rs, and therefore, formally, black holes do not ex-
ist, in terms of distant static observers such as ourselves. (They certainly can exist,

where λ0 = emitted wavelength, λ = observed (at infinity).

Note, the redshift becomes infinite as r → rs.
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Event Horizon
Recall that light moves along null geodesics.  If we set ds = 0 the 
coordinate speed of a light beam moving radially becomes
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At r � rs, the speed is ±c, as expected. However, as light is emitted from closer
and closer to rs, its speed appears to decline (again, to a distant observer), going
to zero at rs. Gravity works effectively as an index of refraction, with n = ∞ at
rs. As a result, no information can emerge from a radius smaller than rs, which
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Because of gravitational time dilation, a star collapsing to a black hole, as viewed

by a distant observer, appears to shrink in progressively slower motion, and gradu-
ally appears to “freeze” as it approaches its Schwarzschild radius. In fact, it takes an
infinite time for the star to cross rs, and therefore, formally, black holes do not ex-
ist, in terms of distant static observers such as ourselves. (They certainly can exist,

- What happens if r >> rs?

The speed is c, as expected.

- What happens if rs >> r?

The speed appears to approach 0.

No information can emerge from a radius smaller than rs, 
which constitutes an event horizon around the black hole.

The collapse of matter to rs takes an infinite amount of time for an observer at infinity (but finite 
amount of time for someone falling in).  As such, the matter is “frozen” in time as it falls in.  However, 
there is no observable differences in frozen stars and truly collapsed black holes.  More details can be 
found on pages 97-98 of your textbook. 
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Interacting Binaries

- Many objects (including stars) are powered not by nuclear 
reactions, but by accretion of matter onto gravitational wells. 

- We will focus on stars in binaries which will exert forces on each 
other. 

- Force on center of mass maintains binary orbit. 
- Force is stronger for parts of the star facing towards companion 

and weaker for parts facing away from companion.  This is a 
result of tidal forces that stars exert at small distances.
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Tidal Forces:

Consider mass element m in star 1 at a distance Δr from the center.  
What is the force on m due to star 1?
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Theoretically, quantum mechanics allows an exception to this rule, and small
amounts of so-called “Hawking radiation” can escape a black hole, even causing it
to “evaporate” completely if it is small enough. However, it is unclear if black hole
evaporation has any astronomical relevance.
Observationally, there are many objects considered to be stellar-mass black hole

candidates, consisting of members of binary systems in which the minimum mass
of one of the members is significantly larger than 3M⊙, yet a main-sequence or
giant star of such mass is not seen. Presumably, black holes form from the core-
collapse of stars with an initial mass above some threshold (which is currently
thought to be about 25M⊙). In some of these binary systems, accretion of matter
onto the black hole is taking place. Such systems will be discussed in more detail
in Section 4.6. Finally, there is evidence for the existence of “supermassive” black
holes, with masses of∼ 106−109M⊙, in the centers of most large galaxies. These
will be discussed in Chapter 6.

4.6 INTERACTING BINARIES

Until now, stars were the only luminous objects we considered. However, there
exists an assortment of objects which are powered not by nuclear reactions, but
by the accretion of matter onto a gravitational potential well. Objects in this cat-
egory include pre-main-sequence stars, interacting binaries, active galactic nuclei
and quasars, and possibly some types of supernovae and gamma-ray bursts. While
all these objects are rare relative to normal stars, they are interesting and important
for many physical and observational applications. The physics of accretion is sim-
ilar in many of these objects. In this section, we will focus on interacting binaries,
which are the best-studied accretion powered objects.
As already noted, many stars are in binary systems.7 Pairs with an orbital period

of less than about 10 days are usually in orbits that are circular, “aligned” (i.e., the
spin axes of the two stars and the orbital plane axis are all parallel), and synchro-
nized (i.e., each star completes a single rotation about its axis once per orbit, and
thus each star always sees the same side of its companion star). This comes about
by the action of the strong tidal forces that the stars exert on each other at small
separations. The force per unit mass on a mass element at the surface of a star, at
distance ∆r from the center, due to the massM1 of the star itself is

Fgrav

m
=

GM1

(∆r)2
. (4.125)

The tidal force on this mass element, due to the influence of the second star of mass
M2 at a distance r (assuming ∆r � r) is

Ftide

m
= GM2

µ
1
r2
− 1

(r + ∆r)2

∂
≈ 2GM2∆r

r3
. (4.126)

7Current evidence is that the binary fraction among stars depends on stellar mass, with most of the
massive stars being in binaries, but most low-mass stars being single. About one-half of solar-mass stars
are in binaries.

What is the tidal force felt by m due to star 2 at distance r (assume Δr 
<< r)
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7Current evidence is that the binary fraction among stars depends on stellar mass, with most of the
massive stars being in binaries, but most low-mass stars being single. About one-half of solar-mass stars
are in binaries.
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7Current evidence is that the binary fraction among stars depends on stellar mass, with most of the
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Taking the ratio of forces yields:
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The ratio between the forces is
Ftide

Fgrav
=

2M2

M1

µ
∆r

r

∂3

. (4.127)

Thus, the larger ∆r/r, the more tidal distortion of the shapes of the stars occurs,
such that they become two ovals pointing at each other. As long as the stars are not
tidally locked (i.e., synchronized and circularized), energy is continuously lost to
friction while the different parts of each star are deformed during the orbit. Once
tidal locking is achieved, everything appears stationary in a reference frame rotating
at the binary frequency, and the system achieves its minimum energy.8
If we draw the surfaces of constant potential energy in the rotating frame of such

a binary, the isopotential surfaces close to each of the stars will be approximately
spherical, but at larger radii they are more and more oval shaped, due to the gravi-
tational pull of the companion (see Fig. 4.12). There is one particular isopotential
surface for which projections onto any plane passing through the line connecting
the stars traces a “figure 8”, i.e., the surface is pinched into two pointed “lobes”
that connect at a point between the two stars. These are called Roche lobes and the
point where they connect is the First Lagrange Point, L1. At L1, the gravitational
forces due to the two stars, and the centrifugal force in the rotating frame due to
rotation about the center of mass, all sum up to zero.9
In any star, surfaces of constant gas density and pressure will be parallel to sur-

faces of constant potential (which is why isolated stars are spherical). Thus, a
member of a close binary that evolves and grows in radius, e.g., into a red giant,
will have a shape that is increasingly teardrop shaped. If the star inflates enough
to fill its Roche lobe, stellar material at the L1 point is no longer bound to the star,
and can fall onto the companion. Three configurations are thus possible:
In a detached binary neither of the stars fills its Roche lobe; in a semi-detached
binary one of the stars fills its Roche lobe; and in a contact binary both stars fill
their Roche lobes. In the last case the binary system looks like a single, peanut-
shaped object with two stellar cores and a common envelope.
In the semi-detached case there is always transfer of matter from the Roche-lobe-

filling star to its companion. Different observational phenomena result, depending
on the nature of the receiving star. If it is a main-sequence star, an “Algol-type” bi-
nary system results. If the receiving star is a white dwarf, the resulting phenomena
are called cataclysmic variables, novae, and type-Ia supernovae. If the receiver

8The same kind of tidal deformation is applied by the Sun and the Moon to the Earth, especially to the
Earth’s liquid water surface layer. The deformation is maximal when the three bodies are approximately
aligned, during full Moon and new Moon. During one daily Earth rotation, a point on the Earth goes
through two “high tide” locations and two “low tide” locations. Due to the loss of energy to tidal friction,
the Earth-Moon system is by now largely circularized, but only partly synchronized. On the one hand,
the Moon’s orbital and rotation periods are exactly equal, and hence we always see the same (“near”)
side of the Moon. Although the Moon is solid, synchronization was achieved by means of the solid tidal
stresses and deformations imposed on it by the Earth. The Earth’s rotation, on the other hand, is not yet
synchronized with either the Sun’s or the Moon’s orbital periods. See Problem 8 for some quantitative
assessments of ocean tides.

9Note that L
1

is generally not at the center of mass. The center of mass is closer to the more massive
star in the binary system, while L

1

is closer to the less massive star. Only in equal-mass binaries do the
two points coincide.

Tidal forces are largest 
when Δr/r is biggest.

Forces that cause distortions of equipotential surfaces.

Δr r
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Once the stars achieve synchronized, circularized orbits tidal locking is achieved.  
Everything will appear stationary in a frame rotating at binary frequency.

Roche lobes are the deepest non-disjoint equipotential surface in the rotating 
frame.
Binary systems can be:  

- detached:  neither star fills its Roche lobe 
- semi-detached:  one star fills its Roche lobe 
- contact:  both stars fill their Roche lobes.

If a star fills its Roche lobe, matter transfers via the first Lagrangian point.  
Matter will have angular momentum and form an accretion disk around the 
other star.
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http://www.pbs.org/wgbh/aso/ontheedge/pulsar/index.html

Continue reading at:

Stay Tuned ….


