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Announcements
- Reading Assignments:  Chapter   4.6, & 8.1 - 8.2. 
- Problem Set 9 is due in class on Wednesday, April 8th. 
- Monday, April 13th:  Special lecture about something awesome  

by Matt Stein.  If you are participating in Honors Convocation, 
you are excused from class that day. 

- Wednesday, April 15th in class lab.  Be to report to FOSC 032 that 
day. 

- Wednesday, April 15th your final paper is due (hard copy and 
electronic pdf).  Be sure to review the paper guidelines. 

- Dr. Cooley will be out of town April 14th - April 17th. 
- The final exam in this course will be on Wednesday, May 6th 

from 6:30 - 8:00 pm.  It will cover the second half of the course.
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Links to sign up!
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Goals for Today’s Class

- What are the properties of accretion 
disks? 

- How do accretion disks evolve? 
- What is a black-widow pulsar?
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Semi-detached Binary
In the case of a semi-detached binary, there is always mass transfer 
from the Roche-lobe-filling star to its companion.

Binary Type Receiving Star

Algol-type main sequence

cataclysmic variables white dwarf

type Ia supernova white dwarf

x-ray binary neutron star or black 
hole
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Accretion Disks
To model accretion disks we will assume: 

- particles move on an approximate circular orbit 
- they lose energy and angular momentum due to viscous 

interactions with particles on nearby orbits 
- frictional heat is radiated away with each disk annulus 

acting as a blackbody of a given temperature.

Note:  The nature of viscosity is still not well known

How does energy change when a mass dM in an accretion disk 
around a star of mass M change when it’s orbit goes from radius  
r+dr to radius r?

dEg = GMdM

✓
1

r
� 1

r + dr

◆
This is only the 
gravitational 
potential energy.

⇠ GMdMdr

r2
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Half of the total energy is the potential energy.  We must also 
consider the thermal energy. 

Recall that the viral theorem gives

E
total

= E
th

+ E
gr

=
E

gr

2

Thus, 
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gain in thermal energy of the mass element will thus be

dEth =
1
2

µ
GMdM

r
− GMdM

r + dr

∂
, (4.128)

where we neglect the gravitational self-binding energy of the disk itself. Assuming
the hot gas radiates its thermal energy as a black body at the same radius where the
gravitational energy is liberated, the luminosity from an annulus in the disk will be

dL =
dE

dt
=

1
2
GM

dM

dt

µ
1
r
− 1

r + dr

∂
=

1
2
GMṀ

dr

r2
= 2(2πr)drσT 4,

(4.129)
where Ṁ is the mass accretion rate through a particular annulus of the disk, σ is
the Stefan-Boltzmann constant, and the factor of 2 on the right hand side is because
the area of the annulus includes both the “top” and the “bottom”. Taking the two
right-hand terms and isolating T , we find for the temperature profile of an accretion
disk

T (r) =

√
GMṀ

8πσ

!1/4

r−3/4. (4.130)

In a steady state, Ṁ must be independent of r (otherwise material would pile up
in the disk, or there would be a shortage of material at small radii), and must equal
the accretion rate of mass reaching the stellar surface. Thus, T ∝ r−3/4, meaning
that the inner regions of the disk are the hottest ones, and it is from them that most
of the luminosity emerges. The total luminosity of an accretion disk with inner and
outer radii rin and rout is found by integrating over the luminosity from all annuli,

L =
Z r

out

r
in

2(2πr)σT 4(r)dr =
1
2
GMṀ

µ
1

rin
− 1

rout

∂
. (4.131)

This result could have, of course, been obtained directly from conservation of en-
ergy.11 If rout � rin, the result simplifies further to

L =
1
2

GMṀ

rin
. (4.132)

It is instructive to evaluate the radiative efficiency of accretion disks by dividing
the luminosity above by Ṁc2, the hypothetical power that would be obtained if all
the accreted rest mass were converted to energy:

η =
1
2

GM

c2rin
. (4.133)

If the accreting object is, e.g., a 1.4M⊙ neutron star with an accretion disk reach-
ing down to the stellar surface at a radius of 10 km, then rin is about 2.5 times the

gravitational equilibrium – in this case a system of one particle.
11Note that, in addition to energy conservation, a full treatment of accretion disk structure must also

conserve angular momentum. The angular momentum per unit mass of a disk particle at radius r, in
a circular Keplerian orbit with velocity vc, is J/m = rvc =

√
GMr. Thus, a particle descending

to an orbit at smaller r must get rid of angular momentum by transfering it to other particles in the
disk. Those particles gain angular momentum, and hence move to larger radii. Some of the gravitational
energy released by the inflow will power this outflow of matter, at the expense of the energy that can be
radiated by the disk.

What is the luminosity?
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In a steady state, Ṁ must be independent of r (otherwise material would pile up
in the disk, or there would be a shortage of material at small radii), and must equal
the accretion rate of mass reaching the stellar surface. Thus, T ∝ r−3/4, meaning
that the inner regions of the disk are the hottest ones, and it is from them that most
of the luminosity emerges. The total luminosity of an accretion disk with inner and
outer radii rin and rout is found by integrating over the luminosity from all annuli,

L =
Z r

out

r
in

2(2πr)σT 4(r)dr =
1
2
GMṀ
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This result could have, of course, been obtained directly from conservation of en-
ergy.11 If rout � rin, the result simplifies further to
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It is instructive to evaluate the radiative efficiency of accretion disks by dividing
the luminosity above by Ṁc2, the hypothetical power that would be obtained if all
the accreted rest mass were converted to energy:
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If the accreting object is, e.g., a 1.4M⊙ neutron star with an accretion disk reach-
ing down to the stellar surface at a radius of 10 km, then rin is about 2.5 times the

gravitational equilibrium – in this case a system of one particle.
11Note that, in addition to energy conservation, a full treatment of accretion disk structure must also

conserve angular momentum. The angular momentum per unit mass of a disk particle at radius r, in
a circular Keplerian orbit with velocity vc, is J/m = rvc =

√
GMr. Thus, a particle descending

to an orbit at smaller r must get rid of angular momentum by transfering it to other particles in the
disk. Those particles gain angular momentum, and hence move to larger radii. Some of the gravitational
energy released by the inflow will power this outflow of matter, at the expense of the energy that can be
radiated by the disk.

2(2⇡r)dr�T 4 =

Solve for T
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This result could have, of course, been obtained directly from conservation of en-
ergy.11 If rout � rin, the result simplifies further to
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It is instructive to evaluate the radiative efficiency of accretion disks by dividing
the luminosity above by Ṁc2, the hypothetical power that would be obtained if all
the accreted rest mass were converted to energy:
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If the accreting object is, e.g., a 1.4M⊙ neutron star with an accretion disk reach-
ing down to the stellar surface at a radius of 10 km, then rin is about 2.5 times the

gravitational equilibrium – in this case a system of one particle.
11Note that, in addition to energy conservation, a full treatment of accretion disk structure must also

conserve angular momentum. The angular momentum per unit mass of a disk particle at radius r, in
a circular Keplerian orbit with velocity vc, is J/m = rvc =

√
GMr. Thus, a particle descending

to an orbit at smaller r must get rid of angular momentum by transfering it to other particles in the
disk. Those particles gain angular momentum, and hence move to larger radii. Some of the gravitational
energy released by the inflow will power this outflow of matter, at the expense of the energy that can be
radiated by the disk.

Notice, T ∝ r-3/4.  This means that the inner regions of the disk are 
hottest and thus most luminous.

To find the total luminosity of the disk, we integrate over all 
annuli.
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to an orbit at smaller r must get rid of angular momentum by transfering it to other particles in the
disk. Those particles gain angular momentum, and hence move to larger radii. Some of the gravitational
energy released by the inflow will power this outflow of matter, at the expense of the energy that can be
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This result could have, of course, been obtained directly from conservation of en-
ergy.11 If rout � rin, the result simplifies further to
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It is instructive to evaluate the radiative efficiency of accretion disks by dividing
the luminosity above by Ṁc2, the hypothetical power that would be obtained if all
the accreted rest mass were converted to energy:
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If the accreting object is, e.g., a 1.4M⊙ neutron star with an accretion disk reach-
ing down to the stellar surface at a radius of 10 km, then rin is about 2.5 times the

gravitational equilibrium – in this case a system of one particle.
11Note that, in addition to energy conservation, a full treatment of accretion disk structure must also

conserve angular momentum. The angular momentum per unit mass of a disk particle at radius r, in
a circular Keplerian orbit with velocity vc, is J/m = rvc =

√
GMr. Thus, a particle descending

to an orbit at smaller r must get rid of angular momentum by transfering it to other particles in the
disk. Those particles gain angular momentum, and hence move to larger radii. Some of the gravitational
energy released by the inflow will power this outflow of matter, at the expense of the energy that can be
radiated by the disk.

In the case the rout >> rin
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the area of the annulus includes both the “top” and the “bottom”. Taking the two
right-hand terms and isolating T , we find for the temperature profile of an accretion
disk

T (r) =

√
GMṀ

8πσ

!1/4

r−3/4. (4.130)

In a steady state, Ṁ must be independent of r (otherwise material would pile up
in the disk, or there would be a shortage of material at small radii), and must equal
the accretion rate of mass reaching the stellar surface. Thus, T ∝ r−3/4, meaning
that the inner regions of the disk are the hottest ones, and it is from them that most
of the luminosity emerges. The total luminosity of an accretion disk with inner and
outer radii rin and rout is found by integrating over the luminosity from all annuli,
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∂
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This result could have, of course, been obtained directly from conservation of en-
ergy.11 If rout � rin, the result simplifies further to

L =
1
2

GMṀ

rin
. (4.132)

It is instructive to evaluate the radiative efficiency of accretion disks by dividing
the luminosity above by Ṁc2, the hypothetical power that would be obtained if all
the accreted rest mass were converted to energy:

η =
1
2

GM

c2rin
. (4.133)

If the accreting object is, e.g., a 1.4M⊙ neutron star with an accretion disk reach-
ing down to the stellar surface at a radius of 10 km, then rin is about 2.5 times the

gravitational equilibrium – in this case a system of one particle.
11Note that, in addition to energy conservation, a full treatment of accretion disk structure must also

conserve angular momentum. The angular momentum per unit mass of a disk particle at radius r, in
a circular Keplerian orbit with velocity vc, is J/m = rvc =

√
GMr. Thus, a particle descending

to an orbit at smaller r must get rid of angular momentum by transfering it to other particles in the
disk. Those particles gain angular momentum, and hence move to larger radii. Some of the gravitational
energy released by the inflow will power this outflow of matter, at the expense of the energy that can be
radiated by the disk.
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Radiative efficiency:
The fraction of rest mass energy of accreted material that is radiated.

⌘ =
L

Ṁc2
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µ
1

rin
− 1

rout

∂
. (4.131)

This result could have, of course, been obtained directly from conservation of en-
ergy.11 If rout � rin, the result simplifies further to

L =
1
2

GMṀ
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It is instructive to evaluate the radiative efficiency of accretion disks by dividing
the luminosity above by Ṁc2, the hypothetical power that would be obtained if all
the accreted rest mass were converted to energy:
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If the accreting object is, e.g., a 1.4M⊙ neutron star with an accretion disk reach-
ing down to the stellar surface at a radius of 10 km, then rin is about 2.5 times the

gravitational equilibrium – in this case a system of one particle.
11Note that, in addition to energy conservation, a full treatment of accretion disk structure must also

conserve angular momentum. The angular momentum per unit mass of a disk particle at radius r, in
a circular Keplerian orbit with velocity vc, is J/m = rvc =

√
GMr. Thus, a particle descending

to an orbit at smaller r must get rid of angular momentum by transfering it to other particles in the
disk. Those particles gain angular momentum, and hence move to larger radii. Some of the gravitational
energy released by the inflow will power this outflow of matter, at the expense of the energy that can be
radiated by the disk.

Accreting Object Inner Radius of 
Disk

Radiative Efficiency

neutron star 1.4 Msun 10 km 0.10

non-rotating black 
hole 

3rs 0.057

maximally rotating 
black hole

0.5rs 0.42

The radiative efficiency of nuclear burning is 0.007 or less in main 
sequence stars.
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Example:  White Dwarf
Calculate the typical luminosity of an accretion discs where the 
accretor is a white dwarf with a mass of Msun and radius 104 km.  
The typical accretion rate is 10-9 Msun yr-1.
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Schwarzschild radius, rs = 2GM/c2 (Eq. 4.107), that corresponds to such a mass
(recall that rs ≈ 3 km for 1M⊙). The rest-mass-to-radiative energy conversion effi-
ciency is then about 0.10. For black hole accretors, it turns out from solution of the
General Relativity equations of motion that gas particles have a “last stable orbit”
at which they can populate the accretion disk. At smaller radii, a particle quickly
spirals in and crosses the event horizon, carrying its remaining kinetic energy with
it. The last stable orbit for a non-rotating black hole12 is at 3rs. Accretion disks
around such black holes will therefore have an efficiency of 1/12 ≈ 0.08, some-
what lower than accretion disks around neutron stars. (A solution of the problem
using the correct General Relativistic, rather than Newtonian, potential, gives an
efficiency of 0.057). The point to note, however, is that, in either case, the effi-
ciency is an order of magnitude higher than the efficiency of the nuclear reactions
operating in stars, η = 0.007 or less. Furthermore, only a tiny fraction of a main-
sequence star’s mass is involved at any given time in nuclear reactions, whereas an
accretion disk can extract energy with high efficiency from all of the mass being
channeled through it. Under appropriate conditions, accretion disks can therefore
produce high luminosities.
Let us calculate the typical luminosities and temperatures of accretion disks in

various situations. In cataclysmic variables, the accretor is a white dwarf, with
a typical mass of 1M⊙ and a radius of 104 km. A typical accretion rate13 is
10−9M⊙ yr−1. This produces a luminosity of

L =
1
2

GMṀ

rin
=

6.7× 10−8 cgs× 2× 1033 g × 10−9 × 2× 1033 g
2× 3.15× 107 s× 109 cm

(4.134)

= 4× 1033 erg s−1 ≈ L⊙.

The luminosity from the accretion disk thus completely overpowers the luminosity
of the white dwarf. The disk luminosity can be much greater than that of the donor
star (for low-mass main-sequence donors, the most common case), comparable to
the donor star (for intermediate-mass main sequence stars) or much smaller than
the donor luminosity (for high-mass main sequence and red-giant donors). At the
inner radius (which dominates the luminosity from the disk) the temperature is (Eq.
4.130)

T (r) =

√
GMṀ

8πσ

!1/4

r−3/4 (4.135)

12A black hole is fully characterized by only three parameters – its mass, its spin angular momentum,
and its electric charge (the latter probably not being of astrophysical relevance, because astronomical
bodies are expected to be almost completely neutral). Spacetime around a rotating black hole is de-
scribed by a metric called the Kerr metric, rather than by the Schwarzschild metric. Black hole spin is
accompanied by the general relativistic phenomenon of “frame dragging”, in which spacetime outside
the event horizon rotates with the black hole. In a rotating black hole, the last stable orbit and the event
horizon are at smaller radii than in the non-rotating case.

13The accretion rate can be limited by the rate at which the donor star transfers mass through the
L

1

point, by the efficiency of the viscous process that causes material in the accretion disk to fall to
smaller radii, or by the radiation pressure of the luminosity resulting from the accretion process – see
Section 4.6.2
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The luminosity from the accretion disk thus completely overpowers the luminosity
of the white dwarf. The disk luminosity can be much greater than that of the donor
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the donor star (for intermediate-mass main sequence stars) or much smaller than
the donor luminosity (for high-mass main sequence and red-giant donors). At the
inner radius (which dominates the luminosity from the disk) the temperature is (Eq.
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bodies are expected to be almost completely neutral). Spacetime around a rotating black hole is de-
scribed by a metric called the Kerr metric, rather than by the Schwarzschild metric. Black hole spin is
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horizon are at smaller radii than in the non-rotating case.
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point, by the efficiency of the viscous process that causes material in the accretion disk to fall to
smaller radii, or by the radiation pressure of the luminosity resulting from the accretion process – see
Section 4.6.2
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inner radius (which dominates the luminosity from the disk) the temperature is (Eq.
4.130)

T (r) =

√
GMṀ
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point, by the efficiency of the viscous process that causes material in the accretion disk to fall to
smaller radii, or by the radiation pressure of the luminosity resulting from the accretion process – see
Section 4.6.2
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4.130)

T (r) =

√
GMṀ
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bodies are expected to be almost completely neutral). Spacetime around a rotating black hole is de-
scribed by a metric called the Kerr metric, rather than by the Schwarzschild metric. Black hole spin is
accompanied by the general relativistic phenomenon of “frame dragging”, in which spacetime outside
the event horizon rotates with the black hole. In a rotating black hole, the last stable orbit and the event
horizon are at smaller radii than in the non-rotating case.

13The accretion rate can be limited by the rate at which the donor star transfers mass through the
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point, by the efficiency of the viscous process that causes material in the accretion disk to fall to
smaller radii, or by the radiation pressure of the luminosity resulting from the accretion process – see
Section 4.6.2

Calculate the temperature at the inner radius (which dominates the 
disk).
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Schwarzschild radius, rs = 2GM/c2 (Eq. 4.107), that corresponds to such a mass
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using the correct General Relativistic, rather than Newtonian, potential, gives an
efficiency of 0.057). The point to note, however, is that, in either case, the effi-
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produce high luminosities.
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a typical mass of 1M⊙ and a radius of 104 km. A typical accretion rate13 is
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= 4× 1033 erg s−1 ≈ L⊙.

The luminosity from the accretion disk thus completely overpowers the luminosity
of the white dwarf. The disk luminosity can be much greater than that of the donor
star (for low-mass main-sequence donors, the most common case), comparable to
the donor star (for intermediate-mass main sequence stars) or much smaller than
the donor luminosity (for high-mass main sequence and red-giant donors). At the
inner radius (which dominates the luminosity from the disk) the temperature is (Eq.
4.130)
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GMṀ
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12A black hole is fully characterized by only three parameters – its mass, its spin angular momentum,
and its electric charge (the latter probably not being of astrophysical relevance, because astronomical
bodies are expected to be almost completely neutral). Spacetime around a rotating black hole is de-
scribed by a metric called the Kerr metric, rather than by the Schwarzschild metric. Black hole spin is
accompanied by the general relativistic phenomenon of “frame dragging”, in which spacetime outside
the event horizon rotates with the black hole. In a rotating black hole, the last stable orbit and the event
horizon are at smaller radii than in the non-rotating case.

13The accretion rate can be limited by the rate at which the donor star transfers mass through the
L

1

point, by the efficiency of the viscous process that causes material in the accretion disk to fall to
smaller radii, or by the radiation pressure of the luminosity resulting from the accretion process – see
Section 4.6.2
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=
µ

6.7× 10−8 cgs× 2× 1033 g × 10−9 × 2× 1033 g
3.15× 107 s× 8π × 5.7× 10−5 cgs

∂1/4

(109 cm)−3/4

= 5× 104K.

The thermal spectrum from the disk therefore peaks in the far UV part of the
spectrum, and is usually distinct from the spectrum of the main-sequence or red
giant donor star (which of course generally has a red spectrum). The integrated
spectrum of the system will therefore have at least two distinct components.
When the orbits of cataclysmic variables are sufficiently inclined to our line of

sight, monitoring the total light output over time, as the systems rotate, reveals
changes due to mutual eclipses by the various components: the donor star, the ac-
cretion disk, and sometimes a “hot spot” where the stream of matter from the donor
hits the disk. The changing projected area of the distorted donor star also affects
the light output. Analysis of such data allows reconstructing the configurations
and parameters of these systems. In addition to the periodic variability induced by
eclipses and changes in orientation, accreting systems reveal also aperiodic vari-
ability, i.e., variations with a “noise-like” character. These variations likely arise
from an unstable flow of the material overflowing the donor’s Roche lobe, causing
changes in Ṁ , as well as from instabilities and flares in the accretion disk itself.
In a class of cataclysmic variable called novae there are also outbursts of lu-

minosity during which the system brightens dramatically for about a month. The
outbursts occur once every 10 − 105 yr, as a result of rapid thermonuclear burn-
ing of the hydrogen-rich (and hence potentially explosive) accreted material that
has accumulated on the surface of the white dwarf. Assuming again an accretion
rate of 10−9M⊙ yr−1, over a period of 1000 yr, a mass of 10−6M⊙ will cover the
surface of the white dwarf. If completely ignited, it yields an energy

Enova = 0.007mc2 = 0.007×10−6×2×1033 g×(3×1010 cm s−1)2 ≈ 1046 erg.
(4.136)

When divided by a month (2.5 × 106 s), this gives a mean luminosity of 4 ×
1039 erg s−1 = 106L⊙, i.e., 106 times the normal luminosity of the accretion
disk. In reality, only partial processing of the accreted hydrogen takes place, and
the energy is also partly consumed in unbinding some material from the underlying
white dwarf. On the other hand, for longer recurrence times between outbursts, the
mass of accumulated hydrogen can be larger than assumed above. The gamma-ray
spectra of novae reveal emission from the radioactive decay of elements that are
synthesized in these explosions, providing direct evidence of the process at hand.
As discussed in Section 4.3.3, under certain conditions (likely involving the

reaching of the Chandrasekhar mass by the accreting white dwarf) an extreme,
runaway version of the nova eruption, called a type-Ia supernova, occurs. In such
an event, a large fraction of the white dwarf mass (i.e., of order 1M⊙ of carbon,
rather than the 10−6M⊙ of hydrogen in the nova case) is ignited and is explosively
synthesized into iron-group elements. The total energy is, correspondingly, 106

times larger than that of a nova, i.e., 1051−52 erg. As in the core-collapse supernova
explosions that end the life of massive stars, the ratio of kinetic to luminous energy
is about 100, and thus type-Ia supernovae, with a luminosity of about 1010L⊙, can
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Schwarzschild radius, rs = 2GM/c2 (Eq. 4.107), that corresponds to such a mass
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using the correct General Relativistic, rather than Newtonian, potential, gives an
efficiency of 0.057). The point to note, however, is that, in either case, the effi-
ciency is an order of magnitude higher than the efficiency of the nuclear reactions
operating in stars, η = 0.007 or less. Furthermore, only a tiny fraction of a main-
sequence star’s mass is involved at any given time in nuclear reactions, whereas an
accretion disk can extract energy with high efficiency from all of the mass being
channeled through it. Under appropriate conditions, accretion disks can therefore
produce high luminosities.
Let us calculate the typical luminosities and temperatures of accretion disks in

various situations. In cataclysmic variables, the accretor is a white dwarf, with
a typical mass of 1M⊙ and a radius of 104 km. A typical accretion rate13 is
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= 4× 1033 erg s−1 ≈ L⊙.

The luminosity from the accretion disk thus completely overpowers the luminosity
of the white dwarf. The disk luminosity can be much greater than that of the donor
star (for low-mass main-sequence donors, the most common case), comparable to
the donor star (for intermediate-mass main sequence stars) or much smaller than
the donor luminosity (for high-mass main sequence and red-giant donors). At the
inner radius (which dominates the luminosity from the disk) the temperature is (Eq.
4.130)
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12A black hole is fully characterized by only three parameters – its mass, its spin angular momentum,
and its electric charge (the latter probably not being of astrophysical relevance, because astronomical
bodies are expected to be almost completely neutral). Spacetime around a rotating black hole is de-
scribed by a metric called the Kerr metric, rather than by the Schwarzschild metric. Black hole spin is
accompanied by the general relativistic phenomenon of “frame dragging”, in which spacetime outside
the event horizon rotates with the black hole. In a rotating black hole, the last stable orbit and the event
horizon are at smaller radii than in the non-rotating case.

13The accretion rate can be limited by the rate at which the donor star transfers mass through the
L

1

point, by the efficiency of the viscous process that causes material in the accretion disk to fall to
smaller radii, or by the radiation pressure of the luminosity resulting from the accretion process – see
Section 4.6.2
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The thermal spectrum from the disk therefore peaks in the far UV part of the
spectrum, and is usually distinct from the spectrum of the main-sequence or red
giant donor star (which of course generally has a red spectrum). The integrated
spectrum of the system will therefore have at least two distinct components.
When the orbits of cataclysmic variables are sufficiently inclined to our line of

sight, monitoring the total light output over time, as the systems rotate, reveals
changes due to mutual eclipses by the various components: the donor star, the ac-
cretion disk, and sometimes a “hot spot” where the stream of matter from the donor
hits the disk. The changing projected area of the distorted donor star also affects
the light output. Analysis of such data allows reconstructing the configurations
and parameters of these systems. In addition to the periodic variability induced by
eclipses and changes in orientation, accreting systems reveal also aperiodic vari-
ability, i.e., variations with a “noise-like” character. These variations likely arise
from an unstable flow of the material overflowing the donor’s Roche lobe, causing
changes in Ṁ , as well as from instabilities and flares in the accretion disk itself.
In a class of cataclysmic variable called novae there are also outbursts of lu-

minosity during which the system brightens dramatically for about a month. The
outbursts occur once every 10 − 105 yr, as a result of rapid thermonuclear burn-
ing of the hydrogen-rich (and hence potentially explosive) accreted material that
has accumulated on the surface of the white dwarf. Assuming again an accretion
rate of 10−9M⊙ yr−1, over a period of 1000 yr, a mass of 10−6M⊙ will cover the
surface of the white dwarf. If completely ignited, it yields an energy

Enova = 0.007mc2 = 0.007×10−6×2×1033 g×(3×1010 cm s−1)2 ≈ 1046 erg.
(4.136)

When divided by a month (2.5 × 106 s), this gives a mean luminosity of 4 ×
1039 erg s−1 = 106L⊙, i.e., 106 times the normal luminosity of the accretion
disk. In reality, only partial processing of the accreted hydrogen takes place, and
the energy is also partly consumed in unbinding some material from the underlying
white dwarf. On the other hand, for longer recurrence times between outbursts, the
mass of accumulated hydrogen can be larger than assumed above. The gamma-ray
spectra of novae reveal emission from the radioactive decay of elements that are
synthesized in these explosions, providing direct evidence of the process at hand.
As discussed in Section 4.3.3, under certain conditions (likely involving the

reaching of the Chandrasekhar mass by the accreting white dwarf) an extreme,
runaway version of the nova eruption, called a type-Ia supernova, occurs. In such
an event, a large fraction of the white dwarf mass (i.e., of order 1M⊙ of carbon,
rather than the 10−6M⊙ of hydrogen in the nova case) is ignited and is explosively
synthesized into iron-group elements. The total energy is, correspondingly, 106

times larger than that of a nova, i.e., 1051−52 erg. As in the core-collapse supernova
explosions that end the life of massive stars, the ratio of kinetic to luminous energy
is about 100, and thus type-Ia supernovae, with a luminosity of about 1010L⊙, can
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Schwarzschild radius, rs = 2GM/c2 (Eq. 4.107), that corresponds to such a mass
(recall that rs ≈ 3 km for 1M⊙). The rest-mass-to-radiative energy conversion effi-
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various situations. In cataclysmic variables, the accretor is a white dwarf, with
a typical mass of 1M⊙ and a radius of 104 km. A typical accretion rate13 is
10−9M⊙ yr−1. This produces a luminosity of

L =
1
2

GMṀ

rin
=

6.7× 10−8 cgs× 2× 1033 g × 10−9 × 2× 1033 g
2× 3.15× 107 s× 109 cm

(4.134)

= 4× 1033 erg s−1 ≈ L⊙.

The luminosity from the accretion disk thus completely overpowers the luminosity
of the white dwarf. The disk luminosity can be much greater than that of the donor
star (for low-mass main-sequence donors, the most common case), comparable to
the donor star (for intermediate-mass main sequence stars) or much smaller than
the donor luminosity (for high-mass main sequence and red-giant donors). At the
inner radius (which dominates the luminosity from the disk) the temperature is (Eq.
4.130)

T (r) =

√
GMṀ

8πσ

!1/4

r−3/4 (4.135)

12A black hole is fully characterized by only three parameters – its mass, its spin angular momentum,
and its electric charge (the latter probably not being of astrophysical relevance, because astronomical
bodies are expected to be almost completely neutral). Spacetime around a rotating black hole is de-
scribed by a metric called the Kerr metric, rather than by the Schwarzschild metric. Black hole spin is
accompanied by the general relativistic phenomenon of “frame dragging”, in which spacetime outside
the event horizon rotates with the black hole. In a rotating black hole, the last stable orbit and the event
horizon are at smaller radii than in the non-rotating case.

13The accretion rate can be limited by the rate at which the donor star transfers mass through the
L

1

point, by the efficiency of the viscous process that causes material in the accretion disk to fall to
smaller radii, or by the radiation pressure of the luminosity resulting from the accretion process – see
Section 4.6.2
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outbursts occur once every 10 − 105 yr, as a result of rapid thermonuclear burn-
ing of the hydrogen-rich (and hence potentially explosive) accreted material that
has accumulated on the surface of the white dwarf. Assuming again an accretion
rate of 10−9M⊙ yr−1, over a period of 1000 yr, a mass of 10−6M⊙ will cover the
surface of the white dwarf. If completely ignited, it yields an energy

Enova = 0.007mc2 = 0.007×10−6×2×1033 g×(3×1010 cm s−1)2 ≈ 1046 erg.
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When divided by a month (2.5 × 106 s), this gives a mean luminosity of 4 ×
1039 erg s−1 = 106L⊙, i.e., 106 times the normal luminosity of the accretion
disk. In reality, only partial processing of the accreted hydrogen takes place, and
the energy is also partly consumed in unbinding some material from the underlying
white dwarf. On the other hand, for longer recurrence times between outbursts, the
mass of accumulated hydrogen can be larger than assumed above. The gamma-ray
spectra of novae reveal emission from the radioactive decay of elements that are
synthesized in these explosions, providing direct evidence of the process at hand.
As discussed in Section 4.3.3, under certain conditions (likely involving the

reaching of the Chandrasekhar mass by the accreting white dwarf) an extreme,
runaway version of the nova eruption, called a type-Ia supernova, occurs. In such
an event, a large fraction of the white dwarf mass (i.e., of order 1M⊙ of carbon,
rather than the 10−6M⊙ of hydrogen in the nova case) is ignited and is explosively
synthesized into iron-group elements. The total energy is, correspondingly, 106

times larger than that of a nova, i.e., 1051−52 erg. As in the core-collapse supernova
explosions that end the life of massive stars, the ratio of kinetic to luminous energy
is about 100, and thus type-Ia supernovae, with a luminosity of about 1010L⊙, can

In which part of the EM spectrum does this star peak?

�
max

=
0.29 cmK

T
=

0.29 cmK

5⇥ 104 K
= 5.8⇥ 10�6 cm = 58 nm

This is well into the UV part of the EM spectrum.

Compare this to a neutron star accretor.  For a typical neutron star of 
1.4 Msun with radius 10 km we have 

- L ~ 1037 ergs (vs ~ 1033) 
- T ~ 107 K (vs ~ 104) 
- λmax ~ 0.58 nm (x-ray specturm)
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Accreting White Dwarfs
Novae are a class of cataclysmic variable binary stars.  Mass transfers 
though disk, builds up on WD surface and eventually undergoes 
nuclear fusion.

- Typical energy ~ 1046 erg. 
- Duration ~ 1 month, typical luminosity ~ 4 x 1039erg s-1.

Type Ia supernovae are the runaway version of the nova eruption.  
Mass builds up on the WD until mass exceeds the Chandrasekhar 
limit.  WD fuses to iron-group elements and explodes.

- Typical energy ~ 1051-52 erg. 
- Duration ~ 1 month, typical luminosity ~ 1043-44 erg s-1 ~10Lsun. 
- 99% of energy is carried away by neutrinos (thus, core-collapse 

SN are far more energetic) 
- have a narrow range of observed optical luminosities. 
- useful as “standard candles” for measuring distances.
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Eddington Limit
Consider radiation pressure from an object of luminosity L acting on 
ionized inflowing gas.  The dominant interaction will be Thomson 
scatter.
The rate at which an electron scatters photons depends on the # 
photons per unit area is the energy flux at that frequency dived by the 
energy of an individual photon.

⌃ =
f⌫
h⌫

=
L⌫

4⇡r2h⌫

The electron will scatter via Thomson scatter at a rate

Rscat = �T
L⌫

4⇡r2h⌫
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Each scattering event transfers, on average a momentum to the 
electron given by

p =
h⌫

c

The force exerted on the electron is then

F⌫ =
dp

dt
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outshine their host galaxies for a period of about a month (see Problem 4). Al-
though core-collape supernovae and type-Ia supernovae have similar luminous and
kinetic energy outputs, one should remember that in core-collapse supernovae 99%
of the energy is carried away by neutrinos, and therefore core-collapse supernovae
are intrinsically far more energetic events. Type-Ia supernovae have a narrow range
of observed optical luminosities, probably as a result of the fact that they generally
involve the explosion of about 1.4M⊙ of white dwarf material. These supernovae
are therefore very useful as “standard candles” for measuring distances. In Chap-
ters 7 and 9 we will see how they have been used in this application.
When the receiving star in an interacting binary is a neutron star or a black hole,

the inner radius of the accretion disk is of order 10 km, rather than 104 km, and
therefore the luminosity is much greater than in a white dwarf accretor. For exam-
ple, scaling from Eq. 4.134, if the accretor is a 1.4M⊙ neutron star with the same
accretion rate, the accretion-disk luminosity is of order 1037 erg s−1. The temper-
ature at the inner radius, scaling as M1/4r−3/4 (Eq. 4.135), is T = 107 K. The
emission therefore peaks in the X-rays, and hence the name “X-ray binaries”. In
reality, due to the extreme matter and radiation densities, temperatures, and mag-
netic fields near the surface of a neutron star, the accretion disk may not actually
reach the surface, and accreting material is sometimes channeled to the poles, form-
ing a hot-spot where it hits the surface. In addition to the thermal emission from
the accretion disk, other, non-thermal, radiation components are observed in such
systems, e.g., synchrotron emission from relativistic electrons spiraling along mag-
netic field lines. Some accreting white dwarfs also possess strong magnetic fields
that funnel the accretion flow directly onto hot spots on the white dwarf. Such
“magnetic cataclysmic variables” also appear then as X-ray sources.

4.6.2 Accretion Rate and Eddington Luminosity

The above discussion shows that the properties of accreting systems are largely
determined by three parameters,M , Ṁ , and rin. M and rin are limited to particular
values by the properties of stars and stellar remnants. However, the accretion rate,
Ṁ , also cannot assume arbitrarily large values. To see this, consider an electron
at a radius r in an ionized gas that is taking part in an accretion flow toward some
compact object of massM . The accretion flow produces a luminosity per frequency
interval Lν , and therefore the density of photons with energy hν at r is

nph =
Lν

4πr2chν
. (4.137)

The rate at which photons of this energy are scattered via Thomson scattering on
the electron is

Rscat = nphσT c, (4.138)

where σT is the Thomson scattering cross section. Each scattering event transfers,
on average, a momentum p = hν/c to the electron. The rate of momentum transfer
to the electron, i.e., the force exerted on it by the radiation, is then

dp

dt
= Rscat

hν

c
=

LνσT

4πr2c
. (4.139)

The total force is found by integrating over all frequencies, ν.
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The total radiative force on the electron is obtained by integrating over all frequen-
cies ν,

Frad =
LσT

4πr2c
. (4.140)

The electron would be repelled from the accreting source of luminosity, were it
not for the gravitational attraction of the accreting object. This force will be much
greater on protons than on electrons. However, the Coulomb attraction between
electrons and protons prevents their separation, and therefore the gravitational at-
traction on a proton effectively operates on neighboring electrons as well. The
attractive force on the electron is therefore

Fgrav =
GMmp

r2
. (4.141)

The accretion flow, and its resulting luminosity, can proceed only if the radiative
force does not halt the inward flow of matter, i.e., Frad < Fgrav. Equating the two
forces, using Eqns. 4.140 and 4.141, we obtain the maximum luminosity possible
in a system powered by accretion,

LE =
4πcGMmp

σT
(4.142)

=
4π × 3× 1010 × 6.7× 10−8 cgs× 2× 1033 g × 1.7× 10−24 g

6.7× 10−25 cm2

M

M⊙

= 1.3× 1038 erg s−1 M

M⊙
= 6.5× 104 L⊙

M

M⊙
.

This limiting luminosity is called the Eddington luminosity.
Recalling our derivation, above, of a luminosity of order 1037 erg s−1 from an ac-

cretion disk around a 1.4M⊙ neutron star with an accretion rate Ṁ = 10−9M⊙ yr−1,
we see that an accretion rate, say, 100 times larger would bring the system to a lu-
minosity of several times LE , and is therefore impossible. This is not strictly true,
since in the derivation of LE we have assumed spherical accretion and an isotrop-
ically radiating source. Both assumptions fail in an accretion disk, which takes
in matter along an equatorial plane, and radiates preferentially in directions per-
pendicular to that plane. Nevertheless, detailed models of accretion disk structure
show that disks become unstable when radiating at luminosities approaching LE .
The Eddington limit is therefore a useful benchmark even for non-spherical ac-
creting systems. Finally, note that LE applies to systems undergoing steady-state
accretion. Objects of a given mass can have higher luminosities (see, e.g., the lu-
minosities of novae and supernovae that we calculated above), but then an outflow
of material is unavoidable, the object is disrupted, and the large luminosity must be
transient.

4.6.3 Evolution of Interacting Binary Systems

The transfer of mass between members of interacting binaries can have drastic
effects on both members. We recall that isolated neutron stars power their pulsar

Gravitational attraction prevents the electron from being repelled by 
the accreting source of luminosity.  The gravitational force will be 
felt more strongly by protons, but electrons are attracted to the 
protons by the coulomb attraction.  Thus,
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The total radiative force on the electron is obtained by integrating over all frequen-
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. (4.140)

The electron would be repelled from the accreting source of luminosity, were it
not for the gravitational attraction of the accreting object. This force will be much
greater on protons than on electrons. However, the Coulomb attraction between
electrons and protons prevents their separation, and therefore the gravitational at-
traction on a proton effectively operates on neighboring electrons as well. The
attractive force on the electron is therefore

Fgrav =
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The accretion flow, and its resulting luminosity, can proceed only if the radiative
force does not halt the inward flow of matter, i.e., Frad < Fgrav. Equating the two
forces, using Eqns. 4.140 and 4.141, we obtain the maximum luminosity possible
in a system powered by accretion,
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This limiting luminosity is called the Eddington luminosity.
Recalling our derivation, above, of a luminosity of order 1037 erg s−1 from an ac-

cretion disk around a 1.4M⊙ neutron star with an accretion rate Ṁ = 10−9M⊙ yr−1,
we see that an accretion rate, say, 100 times larger would bring the system to a lu-
minosity of several times LE , and is therefore impossible. This is not strictly true,
since in the derivation of LE we have assumed spherical accretion and an isotrop-
ically radiating source. Both assumptions fail in an accretion disk, which takes
in matter along an equatorial plane, and radiates preferentially in directions per-
pendicular to that plane. Nevertheless, detailed models of accretion disk structure
show that disks become unstable when radiating at luminosities approaching LE .
The Eddington limit is therefore a useful benchmark even for non-spherical ac-
creting systems. Finally, note that LE applies to systems undergoing steady-state
accretion. Objects of a given mass can have higher luminosities (see, e.g., the lu-
minosities of novae and supernovae that we calculated above), but then an outflow
of material is unavoidable, the object is disrupted, and the large luminosity must be
transient.

4.6.3 Evolution of Interacting Binary Systems

The transfer of mass between members of interacting binaries can have drastic
effects on both members. We recall that isolated neutron stars power their pulsar
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The total radiative force on the electron is obtained by integrating over all frequen-
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greater on protons than on electrons. However, the Coulomb attraction between
electrons and protons prevents their separation, and therefore the gravitational at-
traction on a proton effectively operates on neighboring electrons as well. The
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The accretion flow, and its resulting luminosity, can proceed only if the radiative
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Recalling our derivation, above, of a luminosity of order 1037 erg s−1 from an ac-

cretion disk around a 1.4M⊙ neutron star with an accretion rate Ṁ = 10−9M⊙ yr−1,
we see that an accretion rate, say, 100 times larger would bring the system to a lu-
minosity of several times LE , and is therefore impossible. This is not strictly true,
since in the derivation of LE we have assumed spherical accretion and an isotrop-
ically radiating source. Both assumptions fail in an accretion disk, which takes
in matter along an equatorial plane, and radiates preferentially in directions per-
pendicular to that plane. Nevertheless, detailed models of accretion disk structure
show that disks become unstable when radiating at luminosities approaching LE .
The Eddington limit is therefore a useful benchmark even for non-spherical ac-
creting systems. Finally, note that LE applies to systems undergoing steady-state
accretion. Objects of a given mass can have higher luminosities (see, e.g., the lu-
minosities of novae and supernovae that we calculated above), but then an outflow
of material is unavoidable, the object is disrupted, and the large luminosity must be
transient.

4.6.3 Evolution of Interacting Binary Systems
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traction on a proton effectively operates on neighboring electrons as well. The
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The accretion flow, and its resulting luminosity, can proceed only if the radiative
force does not halt the inward flow of matter, i.e., Frad < Fgrav. Equating the two
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Recalling our derivation, above, of a luminosity of order 1037 erg s−1 from an ac-

cretion disk around a 1.4M⊙ neutron star with an accretion rate Ṁ = 10−9M⊙ yr−1,
we see that an accretion rate, say, 100 times larger would bring the system to a lu-
minosity of several times LE , and is therefore impossible. This is not strictly true,
since in the derivation of LE we have assumed spherical accretion and an isotrop-
ically radiating source. Both assumptions fail in an accretion disk, which takes
in matter along an equatorial plane, and radiates preferentially in directions per-
pendicular to that plane. Nevertheless, detailed models of accretion disk structure
show that disks become unstable when radiating at luminosities approaching LE .
The Eddington limit is therefore a useful benchmark even for non-spherical ac-
creting systems. Finally, note that LE applies to systems undergoing steady-state
accretion. Objects of a given mass can have higher luminosities (see, e.g., the lu-
minosities of novae and supernovae that we calculated above), but then an outflow
of material is unavoidable, the object is disrupted, and the large luminosity must be
transient.

4.6.3 Evolution of Interacting Binary Systems

The transfer of mass between members of interacting binaries can have drastic
effects on both members. We recall that isolated neutron stars power their pulsar
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The total radiative force on the electron is obtained by integrating over all frequen-
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The electron would be repelled from the accreting source of luminosity, were it
not for the gravitational attraction of the accreting object. This force will be much
greater on protons than on electrons. However, the Coulomb attraction between
electrons and protons prevents their separation, and therefore the gravitational at-
traction on a proton effectively operates on neighboring electrons as well. The
attractive force on the electron is therefore

Fgrav =
GMmp
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The accretion flow, and its resulting luminosity, can proceed only if the radiative
force does not halt the inward flow of matter, i.e., Frad < Fgrav. Equating the two
forces, using Eqns. 4.140 and 4.141, we obtain the maximum luminosity possible
in a system powered by accretion,
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This limiting luminosity is called the Eddington luminosity.
Recalling our derivation, above, of a luminosity of order 1037 erg s−1 from an ac-

cretion disk around a 1.4M⊙ neutron star with an accretion rate Ṁ = 10−9M⊙ yr−1,
we see that an accretion rate, say, 100 times larger would bring the system to a lu-
minosity of several times LE , and is therefore impossible. This is not strictly true,
since in the derivation of LE we have assumed spherical accretion and an isotrop-
ically radiating source. Both assumptions fail in an accretion disk, which takes
in matter along an equatorial plane, and radiates preferentially in directions per-
pendicular to that plane. Nevertheless, detailed models of accretion disk structure
show that disks become unstable when radiating at luminosities approaching LE .
The Eddington limit is therefore a useful benchmark even for non-spherical ac-
creting systems. Finally, note that LE applies to systems undergoing steady-state
accretion. Objects of a given mass can have higher luminosities (see, e.g., the lu-
minosities of novae and supernovae that we calculated above), but then an outflow
of material is unavoidable, the object is disrupted, and the large luminosity must be
transient.

4.6.3 Evolution of Interacting Binary Systems

The transfer of mass between members of interacting binaries can have drastic
effects on both members. We recall that isolated neutron stars power their pulsar

The accretion flow will stop if Frad > Fgrav since the net force on matter 
in the flow would then be outward.  The maximum accretion rate and 
maximum luminosity occurs when the radiation pressure exactly 
balances gravity.  This is the Eddington Luminosity.

LE�T

4⇡r2c
=

GMmp

r2
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The total radiative force on the electron is obtained by integrating over all frequen-
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The electron would be repelled from the accreting source of luminosity, were it
not for the gravitational attraction of the accreting object. This force will be much
greater on protons than on electrons. However, the Coulomb attraction between
electrons and protons prevents their separation, and therefore the gravitational at-
traction on a proton effectively operates on neighboring electrons as well. The
attractive force on the electron is therefore

Fgrav =
GMmp

r2
. (4.141)

The accretion flow, and its resulting luminosity, can proceed only if the radiative
force does not halt the inward flow of matter, i.e., Frad < Fgrav. Equating the two
forces, using Eqns. 4.140 and 4.141, we obtain the maximum luminosity possible
in a system powered by accretion,
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=
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This limiting luminosity is called the Eddington luminosity.
Recalling our derivation, above, of a luminosity of order 1037 erg s−1 from an ac-

cretion disk around a 1.4M⊙ neutron star with an accretion rate Ṁ = 10−9M⊙ yr−1,
we see that an accretion rate, say, 100 times larger would bring the system to a lu-
minosity of several times LE , and is therefore impossible. This is not strictly true,
since in the derivation of LE we have assumed spherical accretion and an isotrop-
ically radiating source. Both assumptions fail in an accretion disk, which takes
in matter along an equatorial plane, and radiates preferentially in directions per-
pendicular to that plane. Nevertheless, detailed models of accretion disk structure
show that disks become unstable when radiating at luminosities approaching LE .
The Eddington limit is therefore a useful benchmark even for non-spherical ac-
creting systems. Finally, note that LE applies to systems undergoing steady-state
accretion. Objects of a given mass can have higher luminosities (see, e.g., the lu-
minosities of novae and supernovae that we calculated above), but then an outflow
of material is unavoidable, the object is disrupted, and the large luminosity must be
transient.

4.6.3 Evolution of Interacting Binary Systems

The transfer of mass between members of interacting binaries can have drastic
effects on both members. We recall that isolated neutron stars power their pulsar

Calculate this limit in terms of the M/Msun.
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minosity of several times LE , and is therefore impossible. This is not strictly true,
since in the derivation of LE we have assumed spherical accretion and an isotrop-
ically radiating source. Both assumptions fail in an accretion disk, which takes
in matter along an equatorial plane, and radiates preferentially in directions per-
pendicular to that plane. Nevertheless, detailed models of accretion disk structure
show that disks become unstable when radiating at luminosities approaching LE .
The Eddington limit is therefore a useful benchmark even for non-spherical ac-
creting systems. Finally, note that LE applies to systems undergoing steady-state
accretion. Objects of a given mass can have higher luminosities (see, e.g., the lu-
minosities of novae and supernovae that we calculated above), but then an outflow
of material is unavoidable, the object is disrupted, and the large luminosity must be
transient.
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cretion disk around a 1.4M⊙ neutron star with an accretion rate Ṁ = 10−9M⊙ yr−1,
we see that an accretion rate, say, 100 times larger would bring the system to a lu-
minosity of several times LE , and is therefore impossible. This is not strictly true,
since in the derivation of LE we have assumed spherical accretion and an isotrop-
ically radiating source. Both assumptions fail in an accretion disk, which takes
in matter along an equatorial plane, and radiates preferentially in directions per-
pendicular to that plane. Nevertheless, detailed models of accretion disk structure
show that disks become unstable when radiating at luminosities approaching LE .
The Eddington limit is therefore a useful benchmark even for non-spherical ac-
creting systems. Finally, note that LE applies to systems undergoing steady-state
accretion. Objects of a given mass can have higher luminosities (see, e.g., the lu-
minosities of novae and supernovae that we calculated above), but then an outflow
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Limiting luminosity is called 
the Eddington Luminosity
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Notes:
- Our calculations of luminosities for accretion onto neutron stars 

implies we would get luminosities higher than the Eddington 
limit.  This is not really true.  We made an assumptions/
simplifications of spherical accretion and an isotropically 
radiating source. 

- Matter is taken in along an equatorial plan and radiates 
preferentially in directions perpendicular to the plane.. 

- Detailed calculations show that accretion disks become unstable 
when radiating near LE. 

- LE applies to systems undergoing steady-state accretion.
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Evolution of Interacting Binary Systems

Recall that isolated neutron stars power their pulsar emission and 
their surrounding SN remnant emission at the expense of their 
rotational energy.

Neutron stars in binary systems that are accreting matter from a 
companion can GAIN angular momentum.

The jets and beams present in pulsars can hit one side of the donor 
star, heat it, ablate it or completely destroy it.  These pulsars are 
known as black-widow pulsars.  Example:  a millisecond pulsars 
with no companion.

http://www.nasa.gov/content/goddard/with-a-deadly-embrace-spidery-pulsars-
consume-their-mates/#.VSKgpEaRqC8
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Let’s examine the changes in evolution to of the parameters in a 
binary system.

basicastro4 October 26, 2006

106 CHAPTER 4

emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,

µ =
M1M2

M1 + M2
. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,

dJ

dt
=

p
G(M1 + M2)

µ
dµ

dt

√
a +

µ

2
√

a

da

dt

∂
= 0, (4.147)

or

− 2
µ

dµ

dt
=

1
a

da

dt
. (4.148)

Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2

µ
dM1

dt
M2 + M1

dM2

dt

∂
. (4.149)

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)

The orbital angular momentum of a circular binary composed of 
M1 and M2 with separation distance a.
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emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,
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(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
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we get
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Assuming conservation of total mass and angular momentum, the time derivative
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Expressing µ̇ in terms of its constituent masses,
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However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
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dt
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Ṁ1

M1 + M2
(M2 −M1). (4.150)

where I is the moment of inertia and µ is the reduced mass,

basicastro4 October 26, 2006

106 CHAPTER 4

emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,

µ =
M1M2

M1 + M2
. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,
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Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2

µ
dM1

dt
M2 + M1

dM2

dt

∂
. (4.149)

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)

Recall Kepler’s law (from chapter 2).
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emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,
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(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
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we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,

dJ

dt
=

p
G(M1 + M2)

µ
dµ

dt

√
a +

µ

2
√

a

da

dt

∂
= 0, (4.147)

or

− 2
µ

dµ

dt
=

1
a

da

dt
. (4.148)

Expressing µ̇ in terms of its constituent masses,
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However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)

Substituting yields

J = µa2
p

G(M1 +M2)

a3/2
= µ

p
G(M1 +M2)a
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J = µ
p

G(M1 +M2)a

Conservation of total mass and angular momentum require 

dJ

dt
= 0
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emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,

µ =
M1M2
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. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get
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Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,
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Expressing µ̇ in terms of its constituent masses,
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=

1
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However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)

Which term(s) are chaining with time? Need to invoke the chain rule.
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emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)
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emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)
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µ =
M1M2

M1 + M2
. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,

dJ

dt
=

p
G(M1 + M2)

µ
dµ

dt

√
a +

µ

2
√

a

da

dt

∂
= 0, (4.147)

or

− 2
µ

dµ

dt
=

1
a

da

dt
. (4.148)

Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2

µ
dM1

dt
M2 + M1

dM2

dt

∂
. (4.149)

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
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emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,

µ =
M1M2

M1 + M2
. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,

dJ

dt
=

p
G(M1 + M2)

µ
dµ

dt

√
a +

µ

2
√

a

da

dt

∂
= 0, (4.147)

or

− 2
µ

dµ

dt
=

1
a

da

dt
. (4.148)

Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2

µ
dM1

dt
M2 + M1

dM2

dt

∂
. (4.149)

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)

Examine dµ/dt
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small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,

µ =
M1M2

M1 + M2
. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,
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G(M1 + M2)

µ
dµ
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a +

µ

2
√
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∂
= 0, (4.147)

or

− 2
µ

dµ

dt
=

1
a

da

dt
. (4.148)

Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2

µ
dM1

dt
M2 + M1

dM2

dt

∂
. (4.149)

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)

Thus, we can write
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small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,
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(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),
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Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2
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M2 + M1
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∂
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However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)

Substituting yields
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Replacing in Eq. 4.148, we finally get

2Ṁ1
M1 −M2

M1M2
=

1
a

da

dt
. (4.151)

Eq. 4.151 determines how the period and separation of the system evolve, de-
pending on the constituent masses, the accretion rate, and its sign. For exam-
ple, consider a system that starts out with two close main sequence stars, with
M1 > M2. M1 will therefore be the first to become a red giant, fill its Roche lobe,
and transfer mass toM2. SinceM1 loses mass, Ṁ1 is negative. From Eq. 4.151, ȧ
is then negative. In other words, the two stars approach each other. The decrease
in separation a means that the Roche lobe around M1 moves to a smaller radius,
and the accretion rate grows further. If this trend is not interrupted (e.g., by the end
of the giant stage ofM1), the system reaches a common envelope stage. Evolution
resumes once M1 becomes a white dwarf, or at a later stage, when M2 becomes
a red giant, if it fills its Roche lobe. Accretion will now be in the opposite sense,
and Ṁ1 is therefore positive. If, despite the earlier accretion phase and the individ-
ual stellar evolution, M1 is still larger than M2, then ȧ will now be positive. If the
Roche lobe size ofM2 overtakes the star’s radius, accretion will stop. Alternatively,
if by this time M2 > M1, the two stars will again approach each other and there
may be a second common envelope phase. Obviously, there are many other possi-
ble evolution paths, depending on the initial parameters. Moreover, in reality stars
lose mass throughout their evolution by means of winds, and therefore the total
mass and angular momentum of a binary system will generally not be conserved,
opening further binary evolution paths.

PROBLEMS

1. In a fully degenerate gas, all the particles have energies lower than the Fermi
energy. For such a gas we found (Eq. 4.19) the relation between the density
ne and the Fermi momentum pf :

ne =
8π

3h3
p3

f .

a. For a nonrelativistic electron gas, use the relation pf =
p

2meEf between
the Fermi momentum, the electrom mass me, and the Fermi energy Ef , to
express Ef in terms of ne andme.
b. Estimate a characteristic ne under typical conditions inside a white dwarf.
Using the result of (a), and assuming a temperature T = 107 K, evaluate
numerically the ratioEth/Ef , whereEth is the characteristic thermal energy
of an electron in a gas of temperature T , to see that the electrons inside a
white dwarf are indeed degenerate.

2. Cold, planetary-mass, objects such as Jupiter are mostly devoid of internal
thermal energy sources, as is the case of white dwarfs. However, planets are
supported against gravity by repulsive atomic electrostatic forces rather than

This equation determines how 
period and separation evolve.
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