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Announcements
- Reading Assignments:  Chapter   4.6, & 8.1 - 8.2 & 8.4. 
- Problem Set 10 is due in class on Monday, April 20th. 
- Monday, April 13th:  Special lecture about something awesome  

by Matt Stein.  If you are participating in Honors Convocation, 
you are excused from class that day. 

- Wednesday, April 15th in class lab.  Be to report to FOSC 032 
that day. 

- Wednesday, April 15th your final paper is due (hard copy and 
electronic pdf).  Be sure to review the paper guidelines. 

- Dr. Cooley will be out of town April 14th - April 17th. 
- The final exam in this course will be on Wednesday, May 6th 

from 6:30 - 8:00 pm.  It will cover the second half of the course.
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Rough Lecture Outline
- April 8:  Friedman Equation (8.1 - 8.2, 8.4) 
- April 20:  History of the Universe and Dark Energy (8.3, 8.5) 
- April 22:  Redshift and the CMB as tests (9.1 - 9.2) 
- April 27:  CMB Anisotropy (9.3) 
- April 29:  Nucleosynthesis & Quasars (9.4 - 9.5) 
- May 4:  Special Topic Lecture (TBD)
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Today’s Lecture

- Explore the Cosmological Principle. 
- Describe curvature mathematically. 
- Derive the Friedmann Equations — 

Newton Edition!
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The Cosmological Principle
The Cosmological Principle postulates that the Universe is isotropic 
and homogenous.

- Homogenous:  Every observer sees the same expansion in 
space.  There is no preferred location.

- Isotropic:  At large enough scales the Universe is the same  
in all directions.  There is no preferred direction in space.
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Is this pattern isotropic and/or homogenous?

Is this pattern isotropic and/or homogenous?

Homogeneous on scales 
larger than stripe width.  
Not isotropic.

Isotropic, but not 
homogenous.
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The Cosmological Principle
The Cosmological Principle postulates that the Universe is isotropic 
and homogenous.

- Isotropic:  At large enough scales the Universe is the same  
in all directions.  There is no preferred direction in space.

- Homogenous:  Every observer sees the same expansion in 
space.  There is no preferred location.

Does isotropy imply homogeneity or vice versa?

No.    Here are some examples to illustrate: 
- A spherically symmetric Universe with radially varying 

density is not homogenous, but will appear isotropic to an 
observer at the center. 

- A rotating Universe may be homogeneous, but is not isotropic 
(since the preferred direction is along the rotation axis).
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General Relativity
- To describe the Universe, we require a relativistic theory of gravity, 

General Relativity.

- GR relates the density of mass and energy (sources of gravity) to 
the curvature of spacetime.  

- The curvature is described by a metric tensor, which specifies the 
line element of the curved spacetime.

- We need to find the metric of the Universe that corresponds to 
the cosmological principles of homogeneity and isotropy.

- If space is homogenous, it must have the same curvature everywhere.  
Three possibilities:  flat, positive curved or negative curved.
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Let’s begin by considering the simplest case:  two-dimensional spaces 
on a plane.  Here Euclidean geometry holds.  A geodesic is a straight 
line.

If a triangle is constructed on a plane, the 
angles of the vertices obey the relation

↵+ � + � = ⇡

On a plane, the Pythagorean theorem 
holds, so 

Note:  A plane has infinite area and no upper limit on the distance 
between points.

dl

2 = dx

2 + dy

2

or in polar coordinates

dl2 = dr2 + r2d✓2
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Now consider a 2D space on the surface of a sphere.

If a triangle is constructed on a plane, the 
angles of the vertices obey the relation

↵+ � + � = ⇡ +
A

R2

where A = area of triangle and R = radius 
of sphere.

“positively curved” space

Note:  A sphere has finite area and hence a maximum value on the 
distance between two points.  The distance between two antipodal 
points, at maximum separation is πR.

In polar coordinates, the distance between two points is

dl2 = dr2 +R2 sin2
✓

r

R

◆
d✓2
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Now consider a 2D space on the surface of constant negative curvature.

If a triangle is constructed on a plane, the 
angles of the vertices obey the relation

where A = area of triangle and R = radius 
of sphere.

↵+ � + � = ⇡ � A

R2

In polar coordinates, the distance between two points is

ds2 = dr2 +R2 sinh2
✓

r

R

◆
d✓2

Note:  A surface of constant negative curvature has infinite area and no 
upper limit on the distance between points.
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These results can be extend to a three dimensional space quite easily.

Flat 3D space:

basicastro4 October 26, 2006
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and taking the derivative,
xdx + ydy + zdz = 0. (8.2)

The line element, giving the distance between two close points, is

dl2 = dx2 + dy2 + dz2 = dx2 + dy2 +
(xdx + ydy)2

R2 − x2 − y2
. (8.3)

Note that the z coordinate is not needed in order to describe this curved 2-d space
embedded in a 3-d space. In spherical coordinates, the constraint that we must
remain on the surface of a sphere simply means that, in the usual 3-d line element
in spherical coordinates, we set r = R and dr = 0, and thus

dl2 = R2dθ2 + R2 sin2 θdφ2. (8.4)
Note also that no point on this curved 2-d surface is preferred, and it has no bound-
ary. It could therefore correspond to a 2-d homogeneous and isotropic Universe
that is unbounded but finite.
Since we live in a world with three space dimensions, we must extend these

concepts to a “hypersphere”, i.e., a positively curved 3-d surface, or “3-sphere”
of radius R, embedded in a Euclidean 4-space having coordinates x, y, z, and w.
The fourth space dimension along the w axis is fictitious and will not be needed to
describe the properties of this curved space. In analogy to the 2-sphere,

x2 + y2 + z2 + w2 = R2, (8.5)
and the line element is

dl2 = dx2 + dy2 + dz2 +
(xdx + ydy + zdz)2

R2 − x2 − y2 − z2
. (8.6)

Recalling that x2 + y2 + z2 = r�2, where r� is the usual 3-d radial coordinate, we
can write dl2 in spherical coordinates as

dl2 = dr�2+r�2dθ2+r�2 sin2 θdφ2+
r�2dr�2

R2 − r�2 =
R2dr�2

R2 − r�2 +r�2dθ2+r�2 sin2 θdφ2

(8.7)

=
dr�2

1− r�2

R2

+r�2dθ2+r�2 sin2 θdφ2 = R2

√
dr�2/R2

1− k r�2

R2

+
r�2

R2
dθ2 +

r�2

R2
sin2 θdφ2

!
.

In the last equality we have introduced a “curvature” parameter, k. For the case we
have considered, of a hypersphere, k = +1. Taking k = 0, we recover the usual 3-
d Euclidean relation, and this corresponds to “flat” 3-d space. Taking k = −1 gives
the line element for a negatively curved 3-d space of constant curvature, called a
3-hyperboloid. Finally, if we define a new dimensionless coordinate,

r ≡ r�

R
, dr ≡ dr�

R
, (8.8)

and add the time dimension to the line element, we get the spacetime interval be-
tween two adjacent events:

ds2 = c2dt2 − dl2 = c2dt2 −R2

µ
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

∂
. (8.9)

line element dl gives distance 
between two points

or in spherical coordinates

dl2 = dr2 + r2d✓2 + r2 sin2(✓)d�2

Uniform positive curvature:

dl2 = dr2 +R2sin2(r/R)[d✓2 + sin2 ✓d�2]

Uniform negative curvature:

dl2 = dr2 +R2sinh2(r/R)[d✓2 + sin2 ✓d�2]
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dl2 = dr2 + r2d✓2 + r2 sin2(✓)d�2 dl2 = dr2 +R2sin2(r/R)[d✓2 + sin2 ✓d�2]

dl2 = dr2 +R2sinh2(r/R)[d✓2 + sin2 ✓d�2]

We can write this more compactly as 

where
d⌦2 ⌘ d✓2 + sin2 ✓d�2

dl2 = dr2 + Sk(r)
2d⌦2

and

k = +1 
k = 0 
k = -1

positive curvature 
flat 
negative curvature
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Friedmann-Robertson-Walker Metric
So, far we have considered metrics for 2D and 3D spaces.  Relativity tells us 
that space and time together comprise 4D spacetime.
When we add the time dimension to the line element, the spacetime interval 
between two events becomes
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The coefficients of this interval constitute the  
Friedmann-Robertson-Walker (FRW) metric.

Notes:
- R is a scale factor that multiplies the dimensionless spatial part of the 

FRW metric. 
- The coordinates (r, θ, φ) are comoving coordinates.  Thus, a galaxy at 

coordinates (r, θ, φ) remains at those coordinates, even as R grows with 
time.
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The proper distance between two points is equal to the length of 
the spacial geodesic between them when the scale factor R is fixed 
at R(t).  
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The coefficients of this interval constitute the FriedmannRobertsonWalker (FRW)
metric. The meaning of the time coordinate we have introduced here (i.e., time as
measured by whom?) will be elucidated soon.
Note that the factor R that multiplies the dimensionless spatial part of the FRW

metric is a scale factor. For example, if R(t) grows with time, every observer
sees other points in the Universe receding radially, just as in the observed Hubble
expansion of galaxies. Thus, a galaxy at coordinates (r, θ,φ) remains at those co-
ordinates, and it is the coordinate system, which is “locked” onto the galaxies, that
expands according toR(t). The coordinates (r, θ, φ) are therefore called comoving
coordinates.
The instantaneous distance from us to a galaxy at coordinate r (as would be

measured, e.g., by an imaginary taut running tape measure, with one end held at
the galaxy and the other end held by us – this is called the proper distance) is

l =
Z r

r=0

dl = R(t)
Z r

0

dr√
1− kr2

=

8
<

:

R sin−1 r if k = +1
Rr if k = 0
R sinh−1 r if k = −1

. (8.10)

For k = +1, r = sin(l/R). The coordinate r reaches a maximum of 1 at a proper
distance l = πR/2, and galaxies beyond this point have smaller r, reaching r =
0 at l = πR, which is our antipode. If we travel continuously in one direction,
we will pass the antipode, and after traversing a distance 2πR, we will come back
to the point of origin, facing the same direction. Similarly, the area of a sphere
centered on us and passing through a galaxy at coordinate r, which corresponds to
a physical radial coordinate r� = Rr, is

A = 4πr�2 = 4πR2r2 = 4πR2 sin2 l

R
. (8.11)

Beyond l = πR/2, the area of the sphere decreases, and at the antipode at l = πR,
the sphere centered on us and enclosing all the previous spheres has zero area.
This geometrical behavior is the 3-d analog of traveling in a certain direction on
a 2-sphere, or of drawing concentric circles on a 2-sphere – once a circle passes
through a point at a distance (as measured on the surface of the sphere) of l = πR,
its circumference is zero, even though it encloses all the previous circles.
Since

l =
Z r

r=0

dl = R(t)
Z r

0

dr√
1− kr2

, (8.12)

and r is a comoving coordinate and therefore is independent of time, the velocity
of a galaxy at r is

v = l̇ = Ṙ(t)
Z r

0

dr√
1− kr2

=
Ṙ

R
l. (8.13)

If we identify the ratio Ṙ/R ≡ H(t) with the Hubble parameter, we recover
Hubble’s Law. Indeed, Hubble’s parameter must depend on time, since we saw it
is roughly just the reciprocal of the age of the Universe, and the age increases with
time. Stated differently, if, e.g., the galaxies used to measure Hubble’s Law do not
accelerate or decelerate, their distances grow linearly with time, and therefore the
Hubble parameter H = v/D becomes smaller with time.
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Consider the case of positive curvature.  

What is the maximum value of r and what is the value 
of l at that point? 

r reaches maximum value of 1 at proper 
distance 

l =
⇡R

2

l = R sin�1 r �! r = sin
l

R



Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

Consider the area of a sphere centered on us and passing through a 
galaxy at coordinate r, which corresponds to a physical coordinate 
r’ = rR.
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a 2-sphere, or of drawing concentric circles on a 2-sphere – once a circle passes
through a point at a distance (as measured on the surface of the sphere) of l = πR,
its circumference is zero, even though it encloses all the previous circles.
Since

l =
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and r is a comoving coordinate and therefore is independent of time, the velocity
of a galaxy at r is

v = l̇ = Ṙ(t)
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0

dr√
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=
Ṙ
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l. (8.13)

If we identify the ratio Ṙ/R ≡ H(t) with the Hubble parameter, we recover
Hubble’s Law. Indeed, Hubble’s parameter must depend on time, since we saw it
is roughly just the reciprocal of the age of the Universe, and the age increases with
time. Stated differently, if, e.g., the galaxies used to measure Hubble’s Law do not
accelerate or decelerate, their distances grow linearly with time, and therefore the
Hubble parameter H = v/D becomes smaller with time.
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The coefficients of this interval constitute the FriedmannRobertsonWalker (FRW)
metric. The meaning of the time coordinate we have introduced here (i.e., time as
measured by whom?) will be elucidated soon.
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If we identify the ratio Ṙ/R ≡ H(t) with the Hubble parameter, we recover
Hubble’s Law. Indeed, Hubble’s parameter must depend on time, since we saw it
is roughly just the reciprocal of the age of the Universe, and the age increases with
time. Stated differently, if, e.g., the galaxies used to measure Hubble’s Law do not
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Notes:

- Beyond l = πR/2, the area of the sphere decreases. 
- At the antipode l = πR, the sphere is centered on us and 

enclosing all previous spheres has ZERO area.

The velocity of the galaxy at r is the time derivative of the 
distance
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If we identify the ratio Ṙ/R ≡ H(t) with the Hubble parameter, we recover
Hubble’s Law. Indeed, Hubble’s parameter must depend on time, since we saw it
is roughly just the reciprocal of the age of the Universe, and the age increases with
time. Stated differently, if, e.g., the galaxies used to measure Hubble’s Law do not
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This ratio is the Hubble parameter.

= H(t)l
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Consider a spherical region of radius R, total mass M, and constant 
density ρ.  A galaxy of mass m is at the edge of the region at a radius 
R from an observer at the center.

What is the total energy?
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Figure 8.2 A galaxy at the edge of a spherical mass distribution of constant density ρ and
radius R, as viewed by an observer at the center. Energy conservation and New-
tonian kinematics lead to approximate versions of the Friedmann equations.

8.4 A NEWTONIAN DERIVATION OF THE FRIEDMANN EQUATIONS

Amore intuitive understanding of the Friedmann equations can be obtained from an
approximate derivation based on local Newtonian arguments. Consider a spherical
region of radius R, total mass M , and constant density ρ (see Fig. 8.2). A galaxy
of massm is at the edge of the region, at a radius R from an observer at the center.
Energy conservation means that

1
2
mṘ2 − GMm

R
= E, (8.83)

where the total energy, E, is a constant. ReplacingM with

M =
4π

3
R3ρ, (8.84)

we obtain
√

Ṙ

R

!2

=
8πG

3
ρ +

2E

mR2
. (8.85)

By identifying 2E/m with −kc2, we recover the first Friedmann equation, Eq.
8.27. We thus see that this equation basically says that the sum of the kinetic and
potential energies of the Universe is locally conserved.
The equation of motion for the galaxy, again using Eq. 8.84, is

mR̈ = −GMm

R2
= −4

3
πGRρm, (8.86)

or
R̈

R
= −4π

3
Gρ. (8.87)

This is the second Friedmann equation (Eq. 8.28), except for a missing 3P/c2 term
– this is missing since Newtonian gravity does not account for the gravitating effect
of pressure. The second Friedmann equation is thus just the equation of motion
under the influence of gravity.
The third Friedmann equation (Eq. 8.34) can be obtained from a thermodynamic

argument involving only Special, rather than General, Relativity. Conservation of

Note that we can write M as
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This is the second Friedmann equation (Eq. 8.28), except for a missing 3P/c2 term
– this is missing since Newtonian gravity does not account for the gravitating effect
of pressure. The second Friedmann equation is thus just the equation of motion
under the influence of gravity.
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argument involving only Special, rather than General, Relativity. Conservation of

Substitute:

mṘ2

2
= E +

4⇡Gm

3
⇢R2

If we had used GR to calculate the correct form of this equation 
we would have found
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In general, the components of the energy-momentum tensor Tµν , which is always
symmetric (or can be symmetrized), are:
T00=energy density;
T0i=momentum flux;
Tii=isotropic pressure;
Tij=anisotropic pressure (stress and strain),
where the 0 index refers to the time coordinate and the indices i, j to the three
spatial coordinates. For an isotropic and homogeneous Universe, Tµν is diagonal
and

Tµµ = (P + ρc2)
vµvµ

c2
− Pgµµ, (8.23)

where vµ is the 4-velocity, P is the pressure, and ρc2 is the mass-energy density.
Furthermore, for a comoving observer, v = (c, 0, 0, 0), and therefore

T00 = ρc2, T11 =
PR2

1− kr2
. (8.24)

Substituting the (0,0) and (1,1) components ofGµν and Tµν into the Einstein equa-
tions gives the two equations:

Ṙ2 + kc2

R2
=

8π

3
Gρ, (8.25)

and
2R̈

R
+

Ṙ2 + kc2

R2
= −8π

c2
GP. (8.26)

(The equations resulting from the two other non-zero components of Gµν and Tµν

are redundant with these equations. This is a consequence of the isotropy inherent
to the FRW metric.) Subtracting the two equations from each other, and slightly
rearranging the first equation, gives the first and second Friedmann Equations1,
that relate the first and second time derivatives of the scale factor R to the energy
density, pressure, and curvature of the Universe:

√
Ṙ

R

!2

=
8π

3
Gρ− kc2

R2
, (8.27)

and

R̈

R
= −4πG

3c2
(ρc2 + 3P ). (8.28)

The Friedmann equations are two coupled differential equations for the three
unknown functions R(t), ρ(t), and P (t). Given an equation of state, P (ρ), and
suitable boundary conditions, they can be solved. However, even before we solve
them, some immediate consequences are apparent. The first consequence of the
Friedmann equations is that the Universe must be expanding or contracting. We
know that the Universe has some nonzero mass density ρ, and therefore Eq. 8.27

1The second equation is often called “the acceleration equation.”

This is the First Friedmann Equation which tells us that the sum of 
the potential and kinetic energies of the Universe is locally conserved.

Ṙ2

R2
=

8⇡G

3
⇢+

2E

mR2
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Now let’s calculate the equation of  
motion for this galaxy.

= ma = mR̈

Use same substitution

basicastro4 October 26, 2006

BIG-BANG COSMOLOGY 203
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Ṙ

R

!2

=
8πG

3
ρ +

2E

mR2
. (8.85)

By identifying 2E/m with −kc2, we recover the first Friedmann equation, Eq.
8.27. We thus see that this equation basically says that the sum of the kinetic and
potential energies of the Universe is locally conserved.
The equation of motion for the galaxy, again using Eq. 8.84, is

mR̈ = −GMm

R2
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This is the second Friedmann equation (Eq. 8.28), except for a missing 3P/c2 term
– this is missing since Newtonian gravity does not account for the gravitating effect
of pressure. The second Friedmann equation is thus just the equation of motion
under the influence of gravity.
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argument involving only Special, rather than General, Relativity. Conservation of

F = �GMm

R2

Yields:

mR̈ = �Gm

R3

4⇡R3

3
⇢ �! R̈

R
=

4⇡G

3
⇢

If we had used GR to calculate the correct form of this equation 
we would have found
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rearranging the first equation, gives the first and second Friedmann Equations1,
that relate the first and second time derivatives of the scale factor R to the energy
density, pressure, and curvature of the Universe:

√
Ṙ

R

!2

=
8π

3
Gρ− kc2

R2
, (8.27)

and

R̈

R
= −4πG

3c2
(ρc2 + 3P ). (8.28)

The Friedmann equations are two coupled differential equations for the three
unknown functions R(t), ρ(t), and P (t). Given an equation of state, P (ρ), and
suitable boundary conditions, they can be solved. However, even before we solve
them, some immediate consequences are apparent. The first consequence of the
Friedmann equations is that the Universe must be expanding or contracting. We
know that the Universe has some nonzero mass density ρ, and therefore Eq. 8.27

1The second equation is often called “the acceleration equation.”

This is the Second Friedmann Equation which is just an equation of 
motion under the influence of gravity.
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Conservation of energy implies that, in a system undergoing adiabatic 
compression or expansion the energy U, pressure P, and volume V 
obey 
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energy implies that, in a system undergoing adiabatic compression or expansion
(i.e., with no net heat flow into or out of the system), the energy U , pressure P , and
volume V obey

dU = −PdV. (8.88)

The adiabatic condition is consistent with the Cosmological Principle, since in a
homogeneous and isotropic Universe there can be no net energy flow from one
region to another. Substituting

U = ρc2V (8.89)

and taking the time derivative on both sides,
d(ρc2V )

dt
= −P

dV

dt
, (8.90)

we obtain

ρ̇c2V + ρc2 dV

dt
= −P

dV

dt
, (8.91)

which simplifies to

ρ̇c2 = − V̇

V
(ρc2 + P ). (8.92)

Since V ∝ R3,
dV

V
= 3

dR

R
. (8.93)

Substitution in Eq. 8.92 then gives the required result,

ρ̇c2 = −3
Ṙ

R
(ρc2 + P ). (8.94)

The third Friedmann equation, which we previously derived by combining the first
two equations, is thus basically a restatement of energy conservation. We can also
see now that the above derivation holds separately for each of several co-spatial
systems of particles with no net exchange of energy between the systems (so that
the adiabatic condition holds for each system). This can occur if there is no inter-
action between the systems, or if they are in full thermodynamic equilibrium. For
example, in a gas composed of matter and radiation in thermodynamic equilibrium,
Eq. 8.94 will hold separately for the matter density and its associated pressure, and
for the radiation density and its pressure.

8.5 DARK ENERGY AND THE ACCELERATING UNIVERSE

We have derived above the dynamics of a universe that is controlled solely by the
gravity due to matter and radiation. However, it is possible, in principle, to add a
term Λgµν to the Einstein equations which, we will see, can act as a repulsive force
that counteracts the conventional attractive gravity. Such a term, called a cosmo-
logical constant, was first introduced by Einstein to his equations in order to allow

Is this condition consistent with the Cosmological Principle?

Yes, in a homogenous and isotropic Universe there can 
be no net energy flow from one region to another.

The energy U is given by
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Substitute and take the time derivative of both sides
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Ṙ

R
(ρc2 + P ). (8.94)

The third Friedmann equation, which we previously derived by combining the first
two equations, is thus basically a restatement of energy conservation. We can also
see now that the above derivation holds separately for each of several co-spatial
systems of particles with no net exchange of energy between the systems (so that
the adiabatic condition holds for each system). This can occur if there is no inter-
action between the systems, or if they are in full thermodynamic equilibrium. For
example, in a gas composed of matter and radiation in thermodynamic equilibrium,
Eq. 8.94 will hold separately for the matter density and its associated pressure, and
for the radiation density and its pressure.

8.5 DARK ENERGY AND THE ACCELERATING UNIVERSE

We have derived above the dynamics of a universe that is controlled solely by the
gravity due to matter and radiation. However, it is possible, in principle, to add a
term Λgµν to the Einstein equations which, we will see, can act as a repulsive force
that counteracts the conventional attractive gravity. Such a term, called a cosmo-
logical constant, was first introduced by Einstein to his equations in order to allow

Simplify

basicastro4 October 26, 2006

204 CHAPTER 8

energy implies that, in a system undergoing adiabatic compression or expansion
(i.e., with no net heat flow into or out of the system), the energy U , pressure P , and
volume V obey

dU = −PdV. (8.88)

The adiabatic condition is consistent with the Cosmological Principle, since in a
homogeneous and isotropic Universe there can be no net energy flow from one
region to another. Substituting

U = ρc2V (8.89)

and taking the time derivative on both sides,
d(ρc2V )

dt
= −P

dV

dt
, (8.90)

we obtain

ρ̇c2V + ρc2 dV

dt
= −P

dV

dt
, (8.91)

which simplifies to

ρ̇c2 = − V̇

V
(ρc2 + P ). (8.92)

Since V ∝ R3,
dV

V
= 3

dR

R
. (8.93)

Substitution in Eq. 8.92 then gives the required result,

ρ̇c2 = −3
Ṙ
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8.5 DARK ENERGY AND THE ACCELERATING UNIVERSE

We have derived above the dynamics of a universe that is controlled solely by the
gravity due to matter and radiation. However, it is possible, in principle, to add a
term Λgµν to the Einstein equations which, we will see, can act as a repulsive force
that counteracts the conventional attractive gravity. Such a term, called a cosmo-
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⇢̇c2V = �⇢c2V̇ � PV̇

Note that V / R3
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This is the Third Friedmann Equation which is also known as the 
fluid equation or the energy conservation equation.
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Summary    
We have the FRW metric:
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and taking the derivative,
xdx + ydy + zdz = 0. (8.2)

The line element, giving the distance between two close points, is

dl2 = dx2 + dy2 + dz2 = dx2 + dy2 +
(xdx + ydy)2

R2 − x2 − y2
. (8.3)

Note that the z coordinate is not needed in order to describe this curved 2-d space
embedded in a 3-d space. In spherical coordinates, the constraint that we must
remain on the surface of a sphere simply means that, in the usual 3-d line element
in spherical coordinates, we set r = R and dr = 0, and thus

dl2 = R2dθ2 + R2 sin2 θdφ2. (8.4)
Note also that no point on this curved 2-d surface is preferred, and it has no bound-
ary. It could therefore correspond to a 2-d homogeneous and isotropic Universe
that is unbounded but finite.
Since we live in a world with three space dimensions, we must extend these

concepts to a “hypersphere”, i.e., a positively curved 3-d surface, or “3-sphere”
of radius R, embedded in a Euclidean 4-space having coordinates x, y, z, and w.
The fourth space dimension along the w axis is fictitious and will not be needed to
describe the properties of this curved space. In analogy to the 2-sphere,

x2 + y2 + z2 + w2 = R2, (8.5)
and the line element is

dl2 = dx2 + dy2 + dz2 +
(xdx + ydy + zdz)2

R2 − x2 − y2 − z2
. (8.6)

Recalling that x2 + y2 + z2 = r�2, where r� is the usual 3-d radial coordinate, we
can write dl2 in spherical coordinates as

dl2 = dr�2+r�2dθ2+r�2 sin2 θdφ2+
r�2dr�2

R2 − r�2 =
R2dr�2

R2 − r�2 +r�2dθ2+r�2 sin2 θdφ2

(8.7)

=
dr�2

1− r�2

R2

+r�2dθ2+r�2 sin2 θdφ2 = R2

√
dr�2/R2

1− k r�2

R2

+
r�2

R2
dθ2 +

r�2

R2
sin2 θdφ2

!
.

In the last equality we have introduced a “curvature” parameter, k. For the case we
have considered, of a hypersphere, k = +1. Taking k = 0, we recover the usual 3-
d Euclidean relation, and this corresponds to “flat” 3-d space. Taking k = −1 gives
the line element for a negatively curved 3-d space of constant curvature, called a
3-hyperboloid. Finally, if we define a new dimensionless coordinate,

r ≡ r�

R
, dr ≡ dr�

R
, (8.8)

and add the time dimension to the line element, we get the spacetime interval be-
tween two adjacent events:

ds2 = c2dt2 − dl2 = c2dt2 −R2

µ
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

∂
. (8.9)ds2

We have 3 Friedmann Equations:

basicastro4 October 26, 2006

BIG-BANG COSMOLOGY 195

In general, the components of the energy-momentum tensor Tµν , which is always
symmetric (or can be symmetrized), are:
T00=energy density;
T0i=momentum flux;
Tii=isotropic pressure;
Tij=anisotropic pressure (stress and strain),
where the 0 index refers to the time coordinate and the indices i, j to the three
spatial coordinates. For an isotropic and homogeneous Universe, Tµν is diagonal
and

Tµµ = (P + ρc2)
vµvµ

c2
− Pgµµ, (8.23)

where vµ is the 4-velocity, P is the pressure, and ρc2 is the mass-energy density.
Furthermore, for a comoving observer, v = (c, 0, 0, 0), and therefore

T00 = ρc2, T11 =
PR2

1− kr2
. (8.24)

Substituting the (0,0) and (1,1) components ofGµν and Tµν into the Einstein equa-
tions gives the two equations:

Ṙ2 + kc2

R2
=

8π

3
Gρ, (8.25)

and
2R̈

R
+

Ṙ2 + kc2

R2
= −8π

c2
GP. (8.26)

(The equations resulting from the two other non-zero components of Gµν and Tµν

are redundant with these equations. This is a consequence of the isotropy inherent
to the FRW metric.) Subtracting the two equations from each other, and slightly
rearranging the first equation, gives the first and second Friedmann Equations1,
that relate the first and second time derivatives of the scale factor R to the energy
density, pressure, and curvature of the Universe:

√
Ṙ

R

!2

=
8π

3
Gρ− kc2

R2
, (8.27)

and

R̈

R
= −4πG

3c2
(ρc2 + 3P ). (8.28)

The Friedmann equations are two coupled differential equations for the three
unknown functions R(t), ρ(t), and P (t). Given an equation of state, P (ρ), and
suitable boundary conditions, they can be solved. However, even before we solve
them, some immediate consequences are apparent. The first consequence of the
Friedmann equations is that the Universe must be expanding or contracting. We
know that the Universe has some nonzero mass density ρ, and therefore Eq. 8.27

1The second equation is often called “the acceleration equation.”
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Ṙ
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The third Friedmann equation, which we previously derived by combining the first
two equations, is thus basically a restatement of energy conservation. We can also
see now that the above derivation holds separately for each of several co-spatial
systems of particles with no net exchange of energy between the systems (so that
the adiabatic condition holds for each system). This can occur if there is no inter-
action between the systems, or if they are in full thermodynamic equilibrium. For
example, in a gas composed of matter and radiation in thermodynamic equilibrium,
Eq. 8.94 will hold separately for the matter density and its associated pressure, and
for the radiation density and its pressure.

8.5 DARK ENERGY AND THE ACCELERATING UNIVERSE

We have derived above the dynamics of a universe that is controlled solely by the
gravity due to matter and radiation. However, it is possible, in principle, to add a
term Λgµν to the Einstein equations which, we will see, can act as a repulsive force
that counteracts the conventional attractive gravity. Such a term, called a cosmo-
logical constant, was first introduced by Einstein to his equations in order to allow

sum of potential and kinetic 
energy is conserved locally

equation of motion under the 
influence of gravity

the fluid equation
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Stay Tuned!


