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Announcements
- Reading Assignments:  Chapters   8.3, 8.5 & 9.1 - 9.2. 
- Problem Set 11 is due in class on Wednesday, April 29th. 
- Monday, April 27th in class lab.  Be to report to FOSC 032 that 

day. 
- Final paper re-writes are due in class on Monday, May 4th.  A 

pdf must be emailed to Prof. Cooley before 6 pm and you must 
also submit a hard copy in class before 6 pm that day. 

- Problem Set 12 is due by 4 pm on Tuesday, May 5th.  You may 
turn your problem set into Lacey Porter in the main office during 
regular business hours.  She will provide you a copy of the 
solutions. 

- The final exam in this course will be on Wednesday, May 6th 
from 6:30 - 8:00 pm.  It will cover the second half of the course.
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Support Your Classmates

- Matthew and Mayisha will be giving their senior thesis 
defenses this Friday at 1:30 pm in FOSC 157.
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Rough Lecture Outline

-  April 22:  History of the Universe and Dark Energy (8.3, 8.5) 
- April 27:  April 27:  Last Lab Day! 
- April 29:  Redshift and the CMB as tests (9.1 - 9.2) and CMB 

Anisotropy (9.3) 
- May 4:  Nucleosynthesis & Quasars (9.4 - 9.5)
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Today’s Lecture

- How did it all begin? 
- Where will it all end? 
- What is dark energy?   

(Hint:  No one knows….)
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The Cosmological Principle postulates that the Universe is isotropic 
and homogenous.

- Homogenous:  Every observer sees the same expansion in 
space.  There is no preferred location.

- Isotropic:  At large enough scales the Universe is the same  
in all directions.  There is no preferred direction in space.

Last Time:

If space is homogenous, it must have the same curvature everywhere.  
Three possibilities:  flat, positive curved or negative curved.
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We have the FRW metric:
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and taking the derivative,
xdx + ydy + zdz = 0. (8.2)

The line element, giving the distance between two close points, is

dl2 = dx2 + dy2 + dz2 = dx2 + dy2 +
(xdx + ydy)2

R2 − x2 − y2
. (8.3)

Note that the z coordinate is not needed in order to describe this curved 2-d space
embedded in a 3-d space. In spherical coordinates, the constraint that we must
remain on the surface of a sphere simply means that, in the usual 3-d line element
in spherical coordinates, we set r = R and dr = 0, and thus

dl2 = R2dθ2 + R2 sin2 θdφ2. (8.4)
Note also that no point on this curved 2-d surface is preferred, and it has no bound-
ary. It could therefore correspond to a 2-d homogeneous and isotropic Universe
that is unbounded but finite.
Since we live in a world with three space dimensions, we must extend these

concepts to a “hypersphere”, i.e., a positively curved 3-d surface, or “3-sphere”
of radius R, embedded in a Euclidean 4-space having coordinates x, y, z, and w.
The fourth space dimension along the w axis is fictitious and will not be needed to
describe the properties of this curved space. In analogy to the 2-sphere,

x2 + y2 + z2 + w2 = R2, (8.5)
and the line element is

dl2 = dx2 + dy2 + dz2 +
(xdx + ydy + zdz)2

R2 − x2 − y2 − z2
. (8.6)

Recalling that x2 + y2 + z2 = r�2, where r� is the usual 3-d radial coordinate, we
can write dl2 in spherical coordinates as

dl2 = dr�2+r�2dθ2+r�2 sin2 θdφ2+
r�2dr�2

R2 − r�2 =
R2dr�2

R2 − r�2 +r�2dθ2+r�2 sin2 θdφ2

(8.7)

=
dr�2

1− r�2

R2

+r�2dθ2+r�2 sin2 θdφ2 = R2

√
dr�2/R2

1− k r�2

R2

+
r�2

R2
dθ2 +

r�2

R2
sin2 θdφ2

!
.

In the last equality we have introduced a “curvature” parameter, k. For the case we
have considered, of a hypersphere, k = +1. Taking k = 0, we recover the usual 3-
d Euclidean relation, and this corresponds to “flat” 3-d space. Taking k = −1 gives
the line element for a negatively curved 3-d space of constant curvature, called a
3-hyperboloid. Finally, if we define a new dimensionless coordinate,

r ≡ r�

R
, dr ≡ dr�

R
, (8.8)

and add the time dimension to the line element, we get the spacetime interval be-
tween two adjacent events:

ds2 = c2dt2 − dl2 = c2dt2 −R2

µ
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

∂
. (8.9)ds2

We have 3 Friedmann Equations:
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In general, the components of the energy-momentum tensor Tµν , which is always
symmetric (or can be symmetrized), are:
T00=energy density;
T0i=momentum flux;
Tii=isotropic pressure;
Tij=anisotropic pressure (stress and strain),
where the 0 index refers to the time coordinate and the indices i, j to the three
spatial coordinates. For an isotropic and homogeneous Universe, Tµν is diagonal
and

Tµµ = (P + ρc2)
vµvµ

c2
− Pgµµ, (8.23)

where vµ is the 4-velocity, P is the pressure, and ρc2 is the mass-energy density.
Furthermore, for a comoving observer, v = (c, 0, 0, 0), and therefore

T00 = ρc2, T11 =
PR2

1− kr2
. (8.24)

Substituting the (0,0) and (1,1) components ofGµν and Tµν into the Einstein equa-
tions gives the two equations:

Ṙ2 + kc2

R2
=

8π

3
Gρ, (8.25)

and
2R̈

R
+

Ṙ2 + kc2

R2
= −8π

c2
GP. (8.26)

(The equations resulting from the two other non-zero components of Gµν and Tµν

are redundant with these equations. This is a consequence of the isotropy inherent
to the FRW metric.) Subtracting the two equations from each other, and slightly
rearranging the first equation, gives the first and second Friedmann Equations1,
that relate the first and second time derivatives of the scale factor R to the energy
density, pressure, and curvature of the Universe:

√
Ṙ

R

!2

=
8π

3
Gρ− kc2

R2
, (8.27)

and

R̈

R
= −4πG

3c2
(ρc2 + 3P ). (8.28)

The Friedmann equations are two coupled differential equations for the three
unknown functions R(t), ρ(t), and P (t). Given an equation of state, P (ρ), and
suitable boundary conditions, they can be solved. However, even before we solve
them, some immediate consequences are apparent. The first consequence of the
Friedmann equations is that the Universe must be expanding or contracting. We
know that the Universe has some nonzero mass density ρ, and therefore Eq. 8.27

1The second equation is often called “the acceleration equation.”
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energy implies that, in a system undergoing adiabatic compression or expansion
(i.e., with no net heat flow into or out of the system), the energy U , pressure P , and
volume V obey

dU = −PdV. (8.88)

The adiabatic condition is consistent with the Cosmological Principle, since in a
homogeneous and isotropic Universe there can be no net energy flow from one
region to another. Substituting

U = ρc2V (8.89)

and taking the time derivative on both sides,
d(ρc2V )

dt
= −P

dV

dt
, (8.90)

we obtain

ρ̇c2V + ρc2 dV

dt
= −P

dV

dt
, (8.91)

which simplifies to

ρ̇c2 = − V̇

V
(ρc2 + P ). (8.92)

Since V ∝ R3,
dV

V
= 3

dR

R
. (8.93)

Substitution in Eq. 8.92 then gives the required result,

ρ̇c2 = −3
Ṙ

R
(ρc2 + P ). (8.94)

The third Friedmann equation, which we previously derived by combining the first
two equations, is thus basically a restatement of energy conservation. We can also
see now that the above derivation holds separately for each of several co-spatial
systems of particles with no net exchange of energy between the systems (so that
the adiabatic condition holds for each system). This can occur if there is no inter-
action between the systems, or if they are in full thermodynamic equilibrium. For
example, in a gas composed of matter and radiation in thermodynamic equilibrium,
Eq. 8.94 will hold separately for the matter density and its associated pressure, and
for the radiation density and its pressure.

8.5 DARK ENERGY AND THE ACCELERATING UNIVERSE

We have derived above the dynamics of a universe that is controlled solely by the
gravity due to matter and radiation. However, it is possible, in principle, to add a
term Λgµν to the Einstein equations which, we will see, can act as a repulsive force
that counteracts the conventional attractive gravity. Such a term, called a cosmo-
logical constant, was first introduced by Einstein to his equations in order to allow

sum of potential and kinetic 
energy is conserved locally

equation of motion under the 
influence of gravity

the fluid equation

Last Time:
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History of the Universe
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Mathematical Description
Solutions to the Friedmann equations give us a mathematical 
description of the history  and fate of the universe.
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energy implies that, in a system undergoing adiabatic compression or expansion
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Since V ∝ R3,
dV

V
= 3

dR

R
. (8.93)

Substitution in Eq. 8.92 then gives the required result,
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Ṙ

R
(ρc2 + P ). (8.94)

The third Friedmann equation, which we previously derived by combining the first
two equations, is thus basically a restatement of energy conservation. We can also
see now that the above derivation holds separately for each of several co-spatial
systems of particles with no net exchange of energy between the systems (so that
the adiabatic condition holds for each system). This can occur if there is no inter-
action between the systems, or if they are in full thermodynamic equilibrium. For
example, in a gas composed of matter and radiation in thermodynamic equilibrium,
Eq. 8.94 will hold separately for the matter density and its associated pressure, and
for the radiation density and its pressure.

8.5 DARK ENERGY AND THE ACCELERATING UNIVERSE

We have derived above the dynamics of a universe that is controlled solely by the
gravity due to matter and radiation. However, it is possible, in principle, to add a
term Λgµν to the Einstein equations which, we will see, can act as a repulsive force
that counteracts the conventional attractive gravity. Such a term, called a cosmo-
logical constant, was first introduced by Einstein to his equations in order to allow

Re-examine the equations:

Only two of these equations are 
independent.  The second can be 
derived from the first and third.

We have 3 unknowns:  R (scale factor), 
ρc2 (density), and P (pressure).  These 
unknowns are each a function of time.

We need an equation of state:  a mathematical relationship between 
the pressure and the energy density of “stuff” that fills up the 
universe.
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We will consider 2 cases:

Case 1:  Matter dominated -  pressure << matter density
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tells us that Ṙ is nonzero. (Even if the right hand side of Eq. 8.27 is momen-
tarily zero, Eq. 8.28 guarantees that this is only momentary). Eq. 8.28 says the
acceleration is always negative, i.e., the Universe is decelerating, and always has
been. Since the Hubble Law shows us that the Universe is currently expanding, the
Universe was expanding in the past too, and even faster than now2. Thus, if the
assumptions of homogeneity and isotropy are valid, and the formulation of General
Relativity that we have presented is correct, it is unavoidable that the Universe be-
gan in an infinitely dense state not more than 14 Gyr ago, the “Big Bang”, and has
been expanding since.
The two Friedmann equations imply a third useful relation, obtained as follows.

Equation 8.27, slightly rearranged, is,

Ṙ2 =
8π

3
GρR2 − kc2. (8.29)

Taking the time derivative of both sides gives

2ṘR̈ =
8π

3
Gρ2RṘ +

8π

3
Gρ̇R2. (8.30)

Substituting Eq. 8.28 for R̈,

2Ṙ

∑
−4πGR

3c2
(ρc2 + 3P )

∏
=

8π

3
Gρ2RṘ +

8π

3
Gρ̇R2. (8.31)

This simplifies to
−Ṙ(ρc2 + 3P ) = 2ρc2Ṙ + ρ̇c2R. (8.32)

Collecting like terms gives
−3Ṙ(ρc2 + P ) = ρ̇c2R, (8.33)

or

ρ̇c2 = −3
Ṙ

R
(ρc2 + P ), (8.34)

which, as we will see, expresses the conservation of energy, and which is often
called the “third Friedmann equation”, the “fluid equation”, or the “energy conser-
vation equation”. Note that, in the three equations, ρ is a mass density and ρc2 is an
energy density. Thus, if the dominant source of energy density is not the rest mass
density (e.g., if it is mainly a radiation density, ρrad), then we will replace ρ with
ρrad/c2 in each equation.

8.3 HISTORY AND FUTURE OF THE UNIVERSE

Solving the Friedmann equations for R(t) can give a description of the history and
future of the Universe. First, however, an equation of state, P (ρ), needs to be

2In Section 8.5, we will find a more general formulation of the Friedmann equations, that actually
does allow for positive acceleration of R. In Chapter 9, we will see that such an acceleration, under
the influence of a yet-unexplained form of “dark energy”, is likely taking place now, and probably also
occurred in the very early Universe.

What happens to the third equation in this case? 
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specified. There are two important cases. In the “matter-dominated” case, the
pressure from all sources is much less than the matter density,

P � ρc2. (8.35)
Setting P = 0 in Eq. 8.34, we find

ρ̇

ρ
= −3

Ṙ

R
, (8.36)

which has the solution
ρ ∝ R−3. (8.37)

A second important case is when the dominant energy density comes from ultra-
relativistic particles (e.g., photons), which have a pressure that is 1/3 of their energy
density (see Eq. 3.74),

P =
1
3
u =

1
3
ρc2. (8.38)

In this “radiation dominated” case, Eq. 8.34 becomes
ρ̇

ρ
= −4

Ṙ

R
, (8.39)

with the solution
ρ ∝ R−4. (8.40)

Let us consider now the history of the scale factor R(t). Since ρ behaves as R−3

to R−4, in Eq. 8.27 one can always find an early enough time, when R was small
enough, such that the second term, which goes as R−2 can be neglected,

8π

3
Gρ�

ØØØØ
kc2

R2

ØØØØ . (8.41)

In the matter-dominated era, when ρ ∼ R−3, Eq. 8.27 then becomes approxi-
mately

√
Ṙ

R

!2

∼ 1
R3

, (8.42)

or
R1/2dR ∼ dt. (8.43)

Integration gives
R3/2 ∝ t, (8.44)

and
R(t) ∝ t2/3. (8.45)

Since the energy density of radiation falls faster with R than that of matter, at an
early enough time there must have been a radiation dominated era, during which
ρ ∼ R−4. At that time

√
Ṙ

R

!2

∼ 1
R4

, (8.46)

0

This equation has the solution
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Ṙ

R
, (8.36)

which has the solution
ρ ∝ R−3. (8.37)

A second important case is when the dominant energy density comes from ultra-
relativistic particles (e.g., photons), which have a pressure that is 1/3 of their energy
density (see Eq. 3.74),

P =
1
3
u =

1
3
ρc2. (8.38)

In this “radiation dominated” case, Eq. 8.34 becomes
ρ̇

ρ
= −4

Ṙ
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Case 2:  Radiation dominated - dominant density comes from ultra-
relativistic particles.  In this case the pressure is 1/3 of the energy 
density.
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√
Ṙ

R

!2

∼ 1
R4
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What happens to our Friedmann Equation in this case?
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tells us that Ṙ is nonzero. (Even if the right hand side of Eq. 8.27 is momen-
tarily zero, Eq. 8.28 guarantees that this is only momentary). Eq. 8.28 says the
acceleration is always negative, i.e., the Universe is decelerating, and always has
been. Since the Hubble Law shows us that the Universe is currently expanding, the
Universe was expanding in the past too, and even faster than now2. Thus, if the
assumptions of homogeneity and isotropy are valid, and the formulation of General
Relativity that we have presented is correct, it is unavoidable that the Universe be-
gan in an infinitely dense state not more than 14 Gyr ago, the “Big Bang”, and has
been expanding since.
The two Friedmann equations imply a third useful relation, obtained as follows.

Equation 8.27, slightly rearranged, is,

Ṙ2 =
8π

3
GρR2 − kc2. (8.29)

Taking the time derivative of both sides gives

2ṘR̈ =
8π

3
Gρ2RṘ +

8π

3
Gρ̇R2. (8.30)

Substituting Eq. 8.28 for R̈,

2Ṙ

∑
−4πGR

3c2
(ρc2 + 3P )

∏
=

8π

3
Gρ2RṘ +

8π

3
Gρ̇R2. (8.31)

This simplifies to
−Ṙ(ρc2 + 3P ) = 2ρc2Ṙ + ρ̇c2R. (8.32)

Collecting like terms gives
−3Ṙ(ρc2 + P ) = ρ̇c2R, (8.33)

or

ρ̇c2 = −3
Ṙ

R
(ρc2 + P ), (8.34)

which, as we will see, expresses the conservation of energy, and which is often
called the “third Friedmann equation”, the “fluid equation”, or the “energy conser-
vation equation”. Note that, in the three equations, ρ is a mass density and ρc2 is an
energy density. Thus, if the dominant source of energy density is not the rest mass
density (e.g., if it is mainly a radiation density, ρrad), then we will replace ρ with
ρrad/c2 in each equation.

8.3 HISTORY AND FUTURE OF THE UNIVERSE

Solving the Friedmann equations for R(t) can give a description of the history and
future of the Universe. First, however, an equation of state, P (ρ), needs to be

2In Section 8.5, we will find a more general formulation of the Friedmann equations, that actually
does allow for positive acceleration of R. In Chapter 9, we will see that such an acceleration, under
the influence of a yet-unexplained form of “dark energy”, is likely taking place now, and probably also
occurred in the very early Universe.

⇢̇c2 = �3
Ṙ

R
(⇢c2 +

1

3
⇢c2)

⇢̇c2 = �4
Ṙ

R
⇢c2
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specified. There are two important cases. In the “matter-dominated” case, the
pressure from all sources is much less than the matter density,

P � ρc2. (8.35)
Setting P = 0 in Eq. 8.34, we find

ρ̇

ρ
= −3

Ṙ

R
, (8.36)

which has the solution
ρ ∝ R−3. (8.37)

A second important case is when the dominant energy density comes from ultra-
relativistic particles (e.g., photons), which have a pressure that is 1/3 of their energy
density (see Eq. 3.74),

P =
1
3
u =

1
3
ρc2. (8.38)

In this “radiation dominated” case, Eq. 8.34 becomes
ρ̇

ρ
= −4

Ṙ

R
, (8.39)

with the solution
ρ ∝ R−4. (8.40)

Let us consider now the history of the scale factor R(t). Since ρ behaves as R−3

to R−4, in Eq. 8.27 one can always find an early enough time, when R was small
enough, such that the second term, which goes as R−2 can be neglected,

8π

3
Gρ�

ØØØØ
kc2

R2

ØØØØ . (8.41)

In the matter-dominated era, when ρ ∼ R−3, Eq. 8.27 then becomes approxi-
mately

√
Ṙ

R

!2

∼ 1
R3

, (8.42)

or
R1/2dR ∼ dt. (8.43)

Integration gives
R3/2 ∝ t, (8.44)

and
R(t) ∝ t2/3. (8.45)

Since the energy density of radiation falls faster with R than that of matter, at an
early enough time there must have been a radiation dominated era, during which
ρ ∼ R−4. At that time

√
Ṙ

R

!2

∼ 1
R4

, (8.46)

The solution to this equation is — 

basicastro4 October 26, 2006

BIG-BANG COSMOLOGY 197

specified. There are two important cases. In the “matter-dominated” case, the
pressure from all sources is much less than the matter density,

P � ρc2. (8.35)
Setting P = 0 in Eq. 8.34, we find

ρ̇

ρ
= −3

Ṙ

R
, (8.36)

which has the solution
ρ ∝ R−3. (8.37)

A second important case is when the dominant energy density comes from ultra-
relativistic particles (e.g., photons), which have a pressure that is 1/3 of their energy
density (see Eq. 3.74),

P =
1
3
u =

1
3
ρc2. (8.38)

In this “radiation dominated” case, Eq. 8.34 becomes
ρ̇

ρ
= −4

Ṙ

R
, (8.39)

with the solution
ρ ∝ R−4. (8.40)

Let us consider now the history of the scale factor R(t). Since ρ behaves as R−3

to R−4, in Eq. 8.27 one can always find an early enough time, when R was small
enough, such that the second term, which goes as R−2 can be neglected,

8π

3
Gρ�

ØØØØ
kc2

R2

ØØØØ . (8.41)

In the matter-dominated era, when ρ ∼ R−3, Eq. 8.27 then becomes approxi-
mately

√
Ṙ

R

!2

∼ 1
R3

, (8.42)

or
R1/2dR ∼ dt. (8.43)

Integration gives
R3/2 ∝ t, (8.44)

and
R(t) ∝ t2/3. (8.45)

Since the energy density of radiation falls faster with R than that of matter, at an
early enough time there must have been a radiation dominated era, during which
ρ ∼ R−4. At that time

√
Ṙ

R

!2

∼ 1
R4

, (8.46)
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In general, the components of the energy-momentum tensor Tµν , which is always
symmetric (or can be symmetrized), are:
T00=energy density;
T0i=momentum flux;
Tii=isotropic pressure;
Tij=anisotropic pressure (stress and strain),
where the 0 index refers to the time coordinate and the indices i, j to the three
spatial coordinates. For an isotropic and homogeneous Universe, Tµν is diagonal
and

Tµµ = (P + ρc2)
vµvµ

c2
− Pgµµ, (8.23)

where vµ is the 4-velocity, P is the pressure, and ρc2 is the mass-energy density.
Furthermore, for a comoving observer, v = (c, 0, 0, 0), and therefore

T00 = ρc2, T11 =
PR2

1− kr2
. (8.24)

Substituting the (0,0) and (1,1) components ofGµν and Tµν into the Einstein equa-
tions gives the two equations:

Ṙ2 + kc2

R2
=

8π

3
Gρ, (8.25)

and
2R̈

R
+

Ṙ2 + kc2

R2
= −8π

c2
GP. (8.26)

(The equations resulting from the two other non-zero components of Gµν and Tµν

are redundant with these equations. This is a consequence of the isotropy inherent
to the FRW metric.) Subtracting the two equations from each other, and slightly
rearranging the first equation, gives the first and second Friedmann Equations1,
that relate the first and second time derivatives of the scale factor R to the energy
density, pressure, and curvature of the Universe:

√
Ṙ

R

!2

=
8π

3
Gρ− kc2

R2
, (8.27)

and

R̈

R
= −4πG

3c2
(ρc2 + 3P ). (8.28)

The Friedmann equations are two coupled differential equations for the three
unknown functions R(t), ρ(t), and P (t). Given an equation of state, P (ρ), and
suitable boundary conditions, they can be solved. However, even before we solve
them, some immediate consequences are apparent. The first consequence of the
Friedmann equations is that the Universe must be expanding or contracting. We
know that the Universe has some nonzero mass density ρ, and therefore Eq. 8.27

1The second equation is often called “the acceleration equation.”
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specified. There are two important cases. In the “matter-dominated” case, the
pressure from all sources is much less than the matter density,

P � ρc2. (8.35)
Setting P = 0 in Eq. 8.34, we find

ρ̇

ρ
= −3

Ṙ

R
, (8.36)

which has the solution
ρ ∝ R−3. (8.37)

A second important case is when the dominant energy density comes from ultra-
relativistic particles (e.g., photons), which have a pressure that is 1/3 of their energy
density (see Eq. 3.74),

P =
1
3
u =

1
3
ρc2. (8.38)

In this “radiation dominated” case, Eq. 8.34 becomes
ρ̇

ρ
= −4

Ṙ

R
, (8.39)

with the solution
ρ ∝ R−4. (8.40)

Let us consider now the history of the scale factor R(t). Since ρ behaves as R−3

to R−4, in Eq. 8.27 one can always find an early enough time, when R was small
enough, such that the second term, which goes as R−2 can be neglected,

8π

3
Gρ�

ØØØØ
kc2

R2

ØØØØ . (8.41)

In the matter-dominated era, when ρ ∼ R−3, Eq. 8.27 then becomes approxi-
mately

√
Ṙ

R

!2

∼ 1
R3

, (8.42)

or
R1/2dR ∼ dt. (8.43)

Integration gives
R3/2 ∝ t, (8.44)

and
R(t) ∝ t2/3. (8.45)

Since the energy density of radiation falls faster with R than that of matter, at an
early enough time there must have been a radiation dominated era, during which
ρ ∼ R−4. At that time

√
Ṙ

R

!2

∼ 1
R4

, (8.46)

matter dominated:
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specified. There are two important cases. In the “matter-dominated” case, the
pressure from all sources is much less than the matter density,

P � ρc2. (8.35)
Setting P = 0 in Eq. 8.34, we find

ρ̇

ρ
= −3

Ṙ

R
, (8.36)

which has the solution
ρ ∝ R−3. (8.37)

A second important case is when the dominant energy density comes from ultra-
relativistic particles (e.g., photons), which have a pressure that is 1/3 of their energy
density (see Eq. 3.74),

P =
1
3
u =

1
3
ρc2. (8.38)

In this “radiation dominated” case, Eq. 8.34 becomes
ρ̇

ρ
= −4

Ṙ

R
, (8.39)

with the solution
ρ ∝ R−4. (8.40)

Let us consider now the history of the scale factor R(t). Since ρ behaves as R−3

to R−4, in Eq. 8.27 one can always find an early enough time, when R was small
enough, such that the second term, which goes as R−2 can be neglected,

8π

3
Gρ�

ØØØØ
kc2

R2

ØØØØ . (8.41)

In the matter-dominated era, when ρ ∼ R−3, Eq. 8.27 then becomes approxi-
mately

√
Ṙ

R

!2

∼ 1
R3

, (8.42)

or
R1/2dR ∼ dt. (8.43)

Integration gives
R3/2 ∝ t, (8.44)

and
R(t) ∝ t2/3. (8.45)

Since the energy density of radiation falls faster with R than that of matter, at an
early enough time there must have been a radiation dominated era, during which
ρ ∼ R−4. At that time

√
Ṙ

R

!2

∼ 1
R4

, (8.46)

radiation dominated:

Now consider the matter dominated era
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specified. There are two important cases. In the “matter-dominated” case, the
pressure from all sources is much less than the matter density,

P � ρc2. (8.35)
Setting P = 0 in Eq. 8.34, we find

ρ̇

ρ
= −3

Ṙ

R
, (8.36)

which has the solution
ρ ∝ R−3. (8.37)

A second important case is when the dominant energy density comes from ultra-
relativistic particles (e.g., photons), which have a pressure that is 1/3 of their energy
density (see Eq. 3.74),

P =
1
3
u =

1
3
ρc2. (8.38)

In this “radiation dominated” case, Eq. 8.34 becomes
ρ̇

ρ
= −4

Ṙ

R
, (8.39)

with the solution
ρ ∝ R−4. (8.40)

Let us consider now the history of the scale factor R(t). Since ρ behaves as R−3

to R−4, in Eq. 8.27 one can always find an early enough time, when R was small
enough, such that the second term, which goes as R−2 can be neglected,

8π

3
Gρ�

ØØØØ
kc2

R2

ØØØØ . (8.41)

In the matter-dominated era, when ρ ∼ R−3, Eq. 8.27 then becomes approxi-
mately

√
Ṙ

R

!2

∼ 1
R3

, (8.42)

or
R1/2dR ∼ dt. (8.43)

Integration gives
R3/2 ∝ t, (8.44)

and
R(t) ∝ t2/3. (8.45)

Since the energy density of radiation falls faster with R than that of matter, at an
early enough time there must have been a radiation dominated era, during which
ρ ∼ R−4. At that time

√
Ṙ

R

!2

∼ 1
R4

, (8.46)

Now let’s consider the scale factor R(t).  Examine the first 
Friedmann equation.

Since ρ goes as both R-3 and R-4, we can find a time where the R-2 
term can be neglected.
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specified. There are two important cases. In the “matter-dominated” case, the
pressure from all sources is much less than the matter density,

P � ρc2. (8.35)
Setting P = 0 in Eq. 8.34, we find

ρ̇

ρ
= −3

Ṙ

R
, (8.36)

which has the solution
ρ ∝ R−3. (8.37)

A second important case is when the dominant energy density comes from ultra-
relativistic particles (e.g., photons), which have a pressure that is 1/3 of their energy
density (see Eq. 3.74),

P =
1
3
u =

1
3
ρc2. (8.38)

In this “radiation dominated” case, Eq. 8.34 becomes
ρ̇

ρ
= −4

Ṙ

R
, (8.39)

with the solution
ρ ∝ R−4. (8.40)

Let us consider now the history of the scale factor R(t). Since ρ behaves as R−3

to R−4, in Eq. 8.27 one can always find an early enough time, when R was small
enough, such that the second term, which goes as R−2 can be neglected,

8π

3
Gρ�

ØØØØ
kc2

R2

ØØØØ . (8.41)

In the matter-dominated era, when ρ ∼ R−3, Eq. 8.27 then becomes approxi-
mately

√
Ṙ

R

!2

∼ 1
R3

, (8.42)

or
R1/2dR ∼ dt. (8.43)

Integration gives
R3/2 ∝ t, (8.44)

and
R(t) ∝ t2/3. (8.45)

Since the energy density of radiation falls faster with R than that of matter, at an
early enough time there must have been a radiation dominated era, during which
ρ ∼ R−4. At that time

√
Ṙ

R

!2

∼ 1
R4

, (8.46)
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specified. There are two important cases. In the “matter-dominated” case, the
pressure from all sources is much less than the matter density,

P � ρc2. (8.35)
Setting P = 0 in Eq. 8.34, we find

ρ̇

ρ
= −3

Ṙ

R
, (8.36)

which has the solution
ρ ∝ R−3. (8.37)

A second important case is when the dominant energy density comes from ultra-
relativistic particles (e.g., photons), which have a pressure that is 1/3 of their energy
density (see Eq. 3.74),

P =
1
3
u =

1
3
ρc2. (8.38)

In this “radiation dominated” case, Eq. 8.34 becomes
ρ̇

ρ
= −4

Ṙ

R
, (8.39)

with the solution
ρ ∝ R−4. (8.40)

Let us consider now the history of the scale factor R(t). Since ρ behaves as R−3

to R−4, in Eq. 8.27 one can always find an early enough time, when R was small
enough, such that the second term, which goes as R−2 can be neglected,

8π

3
Gρ�

ØØØØ
kc2

R2

ØØØØ . (8.41)

In the matter-dominated era, when ρ ∼ R−3, Eq. 8.27 then becomes approxi-
mately

√
Ṙ

R

!2

∼ 1
R3

, (8.42)

or
R1/2dR ∼ dt. (8.43)

Integration gives
R3/2 ∝ t, (8.44)

and
R(t) ∝ t2/3. (8.45)

Since the energy density of radiation falls faster with R than that of matter, at an
early enough time there must have been a radiation dominated era, during which
ρ ∼ R−4. At that time

√
Ṙ

R

!2

∼ 1
R4

, (8.46)
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specified. There are two important cases. In the “matter-dominated” case, the
pressure from all sources is much less than the matter density,

P � ρc2. (8.35)
Setting P = 0 in Eq. 8.34, we find

ρ̇

ρ
= −3

Ṙ

R
, (8.36)

which has the solution
ρ ∝ R−3. (8.37)

A second important case is when the dominant energy density comes from ultra-
relativistic particles (e.g., photons), which have a pressure that is 1/3 of their energy
density (see Eq. 3.74),

P =
1
3
u =

1
3
ρc2. (8.38)

In this “radiation dominated” case, Eq. 8.34 becomes
ρ̇

ρ
= −4

Ṙ

R
, (8.39)

with the solution
ρ ∝ R−4. (8.40)

Let us consider now the history of the scale factor R(t). Since ρ behaves as R−3

to R−4, in Eq. 8.27 one can always find an early enough time, when R was small
enough, such that the second term, which goes as R−2 can be neglected,

8π

3
Gρ�

ØØØØ
kc2

R2

ØØØØ . (8.41)

In the matter-dominated era, when ρ ∼ R−3, Eq. 8.27 then becomes approxi-
mately

√
Ṙ

R

!2

∼ 1
R3

, (8.42)

or
R1/2dR ∼ dt. (8.43)

Integration gives
R3/2 ∝ t, (8.44)

and
R(t) ∝ t2/3. (8.45)

Since the energy density of radiation falls faster with R than that of matter, at an
early enough time there must have been a radiation dominated era, during which
ρ ∼ R−4. At that time

√
Ṙ

R

!2

∼ 1
R4

, (8.46)
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specified. There are two important cases. In the “matter-dominated” case, the
pressure from all sources is much less than the matter density,

P � ρc2. (8.35)
Setting P = 0 in Eq. 8.34, we find

ρ̇

ρ
= −3

Ṙ

R
, (8.36)

which has the solution
ρ ∝ R−3. (8.37)

A second important case is when the dominant energy density comes from ultra-
relativistic particles (e.g., photons), which have a pressure that is 1/3 of their energy
density (see Eq. 3.74),

P =
1
3
u =

1
3
ρc2. (8.38)

In this “radiation dominated” case, Eq. 8.34 becomes
ρ̇

ρ
= −4

Ṙ

R
, (8.39)

with the solution
ρ ∝ R−4. (8.40)

Let us consider now the history of the scale factor R(t). Since ρ behaves as R−3

to R−4, in Eq. 8.27 one can always find an early enough time, when R was small
enough, such that the second term, which goes as R−2 can be neglected,

8π

3
Gρ�

ØØØØ
kc2

R2

ØØØØ . (8.41)

In the matter-dominated era, when ρ ∼ R−3, Eq. 8.27 then becomes approxi-
mately

√
Ṙ

R

!2

∼ 1
R3

, (8.42)

or
R1/2dR ∼ dt. (8.43)

Integration gives
R3/2 ∝ t, (8.44)

and
R(t) ∝ t2/3. (8.45)

Since the energy density of radiation falls faster with R than that of matter, at an
early enough time there must have been a radiation dominated era, during which
ρ ∼ R−4. At that time

√
Ṙ

R

!2

∼ 1
R4

, (8.46)
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specified. There are two important cases. In the “matter-dominated” case, the
pressure from all sources is much less than the matter density,

P � ρc2. (8.35)
Setting P = 0 in Eq. 8.34, we find

ρ̇

ρ
= −3

Ṙ

R
, (8.36)

which has the solution
ρ ∝ R−3. (8.37)

A second important case is when the dominant energy density comes from ultra-
relativistic particles (e.g., photons), which have a pressure that is 1/3 of their energy
density (see Eq. 3.74),

P =
1
3
u =

1
3
ρc2. (8.38)

In this “radiation dominated” case, Eq. 8.34 becomes
ρ̇

ρ
= −4

Ṙ

R
, (8.39)

with the solution
ρ ∝ R−4. (8.40)

Let us consider now the history of the scale factor R(t). Since ρ behaves as R−3

to R−4, in Eq. 8.27 one can always find an early enough time, when R was small
enough, such that the second term, which goes as R−2 can be neglected,

8π

3
Gρ�

ØØØØ
kc2
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ØØØØ . (8.41)

In the matter-dominated era, when ρ ∼ R−3, Eq. 8.27 then becomes approxi-
mately

√
Ṙ

R

!2

∼ 1
R3

, (8.42)

or
R1/2dR ∼ dt. (8.43)

Integration gives
R3/2 ∝ t, (8.44)

and
R(t) ∝ t2/3. (8.45)

Since the energy density of radiation falls faster with R than that of matter, at an
early enough time there must have been a radiation dominated era, during which
ρ ∼ R−4. At that time

√
Ṙ

R

!2

∼ 1
R4

, (8.46)

radiation dominated:

Now consider the radiation dominated era
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specified. There are two important cases. In the “matter-dominated” case, the
pressure from all sources is much less than the matter density,

P � ρc2. (8.35)
Setting P = 0 in Eq. 8.34, we find

ρ̇

ρ
= −3

Ṙ

R
, (8.36)

which has the solution
ρ ∝ R−3. (8.37)

A second important case is when the dominant energy density comes from ultra-
relativistic particles (e.g., photons), which have a pressure that is 1/3 of their energy
density (see Eq. 3.74),

P =
1
3
u =

1
3
ρc2. (8.38)

In this “radiation dominated” case, Eq. 8.34 becomes
ρ̇

ρ
= −4

Ṙ

R
, (8.39)

with the solution
ρ ∝ R−4. (8.40)

Let us consider now the history of the scale factor R(t). Since ρ behaves as R−3

to R−4, in Eq. 8.27 one can always find an early enough time, when R was small
enough, such that the second term, which goes as R−2 can be neglected,

8π

3
Gρ�

ØØØØ
kc2

R2

ØØØØ . (8.41)

In the matter-dominated era, when ρ ∼ R−3, Eq. 8.27 then becomes approxi-
mately

√
Ṙ

R

!2

∼ 1
R3

, (8.42)

or
R1/2dR ∼ dt. (8.43)

Integration gives
R3/2 ∝ t, (8.44)

and
R(t) ∝ t2/3. (8.45)

Since the energy density of radiation falls faster with R than that of matter, at an
early enough time there must have been a radiation dominated era, during which
ρ ∼ R−4. At that time

√
Ṙ

R

!2

∼ 1
R4

, (8.46)
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or
R dR ∝ dt, (8.47)

R2 ∝ t, (8.48)
and

R(t) ∝ t1/2. (8.49)
Note that the reason why the expansion is slower during the radiation-dominated
phase, compared to the matter dominated phase (R ∝ t1/2 vs. R ∝ t2/3, respec-
tively) is because the gravitating effect of the radiation pressure, in the former case,
contributes to slowing down the expansion.
As we look back to the earliest times, as expected, we find that

lim
t→0

R(t) = 0, (8.50)

and
lim
t→0

ρ(t) = lim
t→0

R−4 =∞. (8.51)

This singularity in density as t → 0 is the Big Bang.3 By now we can also see
what is the meaning of the time coordinate t. It is simply a universal, or “cosmic”,
time that can be measured by all comoving observers since the Big Bang. Since the
Universe is homogeneous and isotropic, all comoving clocks advance at the same
rate. All observers could, in principle, synchronize their clocks by, e.g., agreeing
that t = t0 will occur when the local mean density measured by an observer reaches
a particular value, ρ0.
Looking to the future, at some point we can no longer ignore the curvature term

in Eq. 8.27. We then need to consider separately the three possibilities, k = 0,±1.
If space is flat (k = 0), Eq. 8.27 becomes

√
Ṙ

R

!2

=
8π

3
Gρ. (8.52)

Recalling the definition of the time-dependent Hubble parameter as

H ≡ Ṙ

R
, (8.53)

this can be rewritten as

ρ =
3H2

8πG
. (8.54)

In other words, a flat Universe implies a particular critical density for every mo-
ment, including now. We previously saw (Eq. 7.22) that, for a current value of the

3It is a common misconception that, as t → 0, all the matter in the Universe “was concentrated in
a single point”. This would imply that the Big Bang occurred at a particular location in space, contrary
to the Cosmological Principle. In fact, the singularity is in the density, and it occurs everywhere in the
Universe at once. Even if the Universe is infinite (k = 0 and k = −1 cases), and hence has infinite
volume and mass, then no matter how highly compressed is the matter within some volume, there is
infinitely more matter outside the volume, and an equally high density is achievable everywhere else.
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In other words, a flat Universe implies a particular critical density for every mo-
ment, including now. We previously saw (Eq. 7.22) that, for a current value of the
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to the Cosmological Principle. In fact, the singularity is in the density, and it occurs everywhere in the
Universe at once. Even if the Universe is infinite (k = 0 and k = −1 cases), and hence has infinite
volume and mass, then no matter how highly compressed is the matter within some volume, there is
infinitely more matter outside the volume, and an equally high density is achievable everywhere else.
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ρ =
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In other words, a flat Universe implies a particular critical density for every mo-
ment, including now. We previously saw (Eq. 7.22) that, for a current value of the

3It is a common misconception that, as t → 0, all the matter in the Universe “was concentrated in
a single point”. This would imply that the Big Bang occurred at a particular location in space, contrary
to the Cosmological Principle. In fact, the singularity is in the density, and it occurs everywhere in the
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infinitely more matter outside the volume, and an equally high density is achievable everywhere else.
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specified. There are two important cases. In the “matter-dominated” case, the
pressure from all sources is much less than the matter density,

P � ρc2. (8.35)
Setting P = 0 in Eq. 8.34, we find

ρ̇

ρ
= −3

Ṙ

R
, (8.36)

which has the solution
ρ ∝ R−3. (8.37)

A second important case is when the dominant energy density comes from ultra-
relativistic particles (e.g., photons), which have a pressure that is 1/3 of their energy
density (see Eq. 3.74),

P =
1
3
u =

1
3
ρc2. (8.38)

In this “radiation dominated” case, Eq. 8.34 becomes
ρ̇

ρ
= −4

Ṙ

R
, (8.39)

with the solution
ρ ∝ R−4. (8.40)

Let us consider now the history of the scale factor R(t). Since ρ behaves as R−3

to R−4, in Eq. 8.27 one can always find an early enough time, when R was small
enough, such that the second term, which goes as R−2 can be neglected,

8π

3
Gρ�

ØØØØ
kc2

R2

ØØØØ . (8.41)

In the matter-dominated era, when ρ ∼ R−3, Eq. 8.27 then becomes approxi-
mately

√
Ṙ

R

!2

∼ 1
R3

, (8.42)

or
R1/2dR ∼ dt. (8.43)

Integration gives
R3/2 ∝ t, (8.44)

and
R(t) ∝ t2/3. (8.45)

Since the energy density of radiation falls faster with R than that of matter, at an
early enough time there must have been a radiation dominated era, during which
ρ ∼ R−4. At that time

√
Ṙ

R

!2

∼ 1
R4

, (8.46)

Compare the scale factors between the two eras.  The expansion is 
slower during the radiation dominated era.  Any ideas why?

The gravitating effect of radiation pressure slows 
the expansion down in the radiation dominated era.

Examine what happens as we go back to the earliest times:
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Recalling the definition of the time-dependent Hubble parameter as

H ≡ Ṙ

R
, (8.53)

this can be rewritten as

ρ =
3H2

8πG
. (8.54)

In other words, a flat Universe implies a particular critical density for every mo-
ment, including now. We previously saw (Eq. 7.22) that, for a current value of the

3It is a common misconception that, as t → 0, all the matter in the Universe “was concentrated in
a single point”. This would imply that the Big Bang occurred at a particular location in space, contrary
to the Cosmological Principle. In fact, the singularity is in the density, and it occurs everywhere in the
Universe at once. Even if the Universe is infinite (k = 0 and k = −1 cases), and hence has infinite
volume and mass, then no matter how highly compressed is the matter within some volume, there is
infinitely more matter outside the volume, and an equally high density is achievable everywhere else.
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volume and mass, then no matter how highly compressed is the matter within some volume, there is
infinitely more matter outside the volume, and an equally high density is achievable everywhere else.
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Recalling the definition of the time-dependent Hubble parameter as
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R
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this can be rewritten as

ρ =
3H2

8πG
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In other words, a flat Universe implies a particular critical density for every mo-
ment, including now. We previously saw (Eq. 7.22) that, for a current value of the

3It is a common misconception that, as t → 0, all the matter in the Universe “was concentrated in
a single point”. This would imply that the Big Bang occurred at a particular location in space, contrary
to the Cosmological Principle. In fact, the singularity is in the density, and it occurs everywhere in the
Universe at once. Even if the Universe is infinite (k = 0 and k = −1 cases), and hence has infinite
volume and mass, then no matter how highly compressed is the matter within some volume, there is
infinitely more matter outside the volume, and an equally high density is achievable everywhere else.

The singularity in the density is 
the Big Bang!



Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

Examine the Future
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In general, the components of the energy-momentum tensor Tµν , which is always
symmetric (or can be symmetrized), are:
T00=energy density;
T0i=momentum flux;
Tii=isotropic pressure;
Tij=anisotropic pressure (stress and strain),
where the 0 index refers to the time coordinate and the indices i, j to the three
spatial coordinates. For an isotropic and homogeneous Universe, Tµν is diagonal
and

Tµµ = (P + ρc2)
vµvµ

c2
− Pgµµ, (8.23)

where vµ is the 4-velocity, P is the pressure, and ρc2 is the mass-energy density.
Furthermore, for a comoving observer, v = (c, 0, 0, 0), and therefore

T00 = ρc2, T11 =
PR2

1− kr2
. (8.24)

Substituting the (0,0) and (1,1) components ofGµν and Tµν into the Einstein equa-
tions gives the two equations:

Ṙ2 + kc2

R2
=

8π

3
Gρ, (8.25)

and
2R̈

R
+

Ṙ2 + kc2

R2
= −8π

c2
GP. (8.26)

(The equations resulting from the two other non-zero components of Gµν and Tµν

are redundant with these equations. This is a consequence of the isotropy inherent
to the FRW metric.) Subtracting the two equations from each other, and slightly
rearranging the first equation, gives the first and second Friedmann Equations1,
that relate the first and second time derivatives of the scale factor R to the energy
density, pressure, and curvature of the Universe:

√
Ṙ

R

!2

=
8π

3
Gρ− kc2

R2
, (8.27)

and

R̈

R
= −4πG

3c2
(ρc2 + 3P ). (8.28)

The Friedmann equations are two coupled differential equations for the three
unknown functions R(t), ρ(t), and P (t). Given an equation of state, P (ρ), and
suitable boundary conditions, they can be solved. However, even before we solve
them, some immediate consequences are apparent. The first consequence of the
Friedmann equations is that the Universe must be expanding or contracting. We
know that the Universe has some nonzero mass density ρ, and therefore Eq. 8.27

1The second equation is often called “the acceleration equation.”

We can no longer ignore the curvature term, k.  So, we have 3 
cases: k = -1, 0 ,+1

Case:  Flat Universe, k = 0
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or
R dR ∝ dt, (8.47)

R2 ∝ t, (8.48)
and

R(t) ∝ t1/2. (8.49)
Note that the reason why the expansion is slower during the radiation-dominated
phase, compared to the matter dominated phase (R ∝ t1/2 vs. R ∝ t2/3, respec-
tively) is because the gravitating effect of the radiation pressure, in the former case,
contributes to slowing down the expansion.
As we look back to the earliest times, as expected, we find that

lim
t→0

R(t) = 0, (8.50)

and
lim
t→0

ρ(t) = lim
t→0

R−4 =∞. (8.51)

This singularity in density as t → 0 is the Big Bang.3 By now we can also see
what is the meaning of the time coordinate t. It is simply a universal, or “cosmic”,
time that can be measured by all comoving observers since the Big Bang. Since the
Universe is homogeneous and isotropic, all comoving clocks advance at the same
rate. All observers could, in principle, synchronize their clocks by, e.g., agreeing
that t = t0 will occur when the local mean density measured by an observer reaches
a particular value, ρ0.
Looking to the future, at some point we can no longer ignore the curvature term

in Eq. 8.27. We then need to consider separately the three possibilities, k = 0,±1.
If space is flat (k = 0), Eq. 8.27 becomes

√
Ṙ

R

!2

=
8π

3
Gρ. (8.52)

Recalling the definition of the time-dependent Hubble parameter as

H ≡ Ṙ

R
, (8.53)

this can be rewritten as

ρ =
3H2

8πG
. (8.54)

In other words, a flat Universe implies a particular critical density for every mo-
ment, including now. We previously saw (Eq. 7.22) that, for a current value of the

3It is a common misconception that, as t → 0, all the matter in the Universe “was concentrated in
a single point”. This would imply that the Big Bang occurred at a particular location in space, contrary
to the Cosmological Principle. In fact, the singularity is in the density, and it occurs everywhere in the
Universe at once. Even if the Universe is infinite (k = 0 and k = −1 cases), and hence has infinite
volume and mass, then no matter how highly compressed is the matter within some volume, there is
infinitely more matter outside the volume, and an equally high density is achievable everywhere else.

Recall the Hubble parameter:
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rate. All observers could, in principle, synchronize their clocks by, e.g., agreeing
that t = t0 will occur when the local mean density measured by an observer reaches
a particular value, ρ0.
Looking to the future, at some point we can no longer ignore the curvature term

in Eq. 8.27. We then need to consider separately the three possibilities, k = 0,±1.
If space is flat (k = 0), Eq. 8.27 becomes

√
Ṙ
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=
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3
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Recalling the definition of the time-dependent Hubble parameter as

H ≡ Ṙ

R
, (8.53)

this can be rewritten as

ρ =
3H2

8πG
. (8.54)

In other words, a flat Universe implies a particular critical density for every mo-
ment, including now. We previously saw (Eq. 7.22) that, for a current value of the

3It is a common misconception that, as t → 0, all the matter in the Universe “was concentrated in
a single point”. This would imply that the Big Bang occurred at a particular location in space, contrary
to the Cosmological Principle. In fact, the singularity is in the density, and it occurs everywhere in the
Universe at once. Even if the Universe is infinite (k = 0 and k = −1 cases), and hence has infinite
volume and mass, then no matter how highly compressed is the matter within some volume, there is
infinitely more matter outside the volume, and an equally high density is achievable everywhere else.
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lim
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and
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ρ(t) = lim
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This singularity in density as t → 0 is the Big Bang.3 By now we can also see
what is the meaning of the time coordinate t. It is simply a universal, or “cosmic”,
time that can be measured by all comoving observers since the Big Bang. Since the
Universe is homogeneous and isotropic, all comoving clocks advance at the same
rate. All observers could, in principle, synchronize their clocks by, e.g., agreeing
that t = t0 will occur when the local mean density measured by an observer reaches
a particular value, ρ0.
Looking to the future, at some point we can no longer ignore the curvature term

in Eq. 8.27. We then need to consider separately the three possibilities, k = 0,±1.
If space is flat (k = 0), Eq. 8.27 becomes

√
Ṙ

R

!2

=
8π

3
Gρ. (8.52)

Recalling the definition of the time-dependent Hubble parameter as

H ≡ Ṙ

R
, (8.53)

this can be rewritten as

ρ =
3H2

8πG
. (8.54)

In other words, a flat Universe implies a particular critical density for every mo-
ment, including now. We previously saw (Eq. 7.22) that, for a current value of the

3It is a common misconception that, as t → 0, all the matter in the Universe “was concentrated in
a single point”. This would imply that the Big Bang occurred at a particular location in space, contrary
to the Cosmological Principle. In fact, the singularity is in the density, and it occurs everywhere in the
Universe at once. Even if the Universe is infinite (k = 0 and k = −1 cases), and hence has infinite
volume and mass, then no matter how highly compressed is the matter within some volume, there is
infinitely more matter outside the volume, and an equally high density is achievable everywhere else.

This implies a critical density 
for each moment in time.

What is the current critical density?  In cgs units, H0 is presently 
2.3 x 10-18 s-1. 
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Figure 8.1 Examples of the time dependence of the relative scale factor, R/R
0

, for var-
ious cosmologies. At early, radiation-dominated times, R grows as t1/2, and
during early matter domination, R ∼ t2/3 for all models. The t2/3 behav-
ior continues forever in the flat (k = 0), critical-density model. In the open,
curvature-dominated (k = −1) model, the Universe reaches a final “coasting”
phase, with R ∼ t. In the supercritical, k = +1, case, R attains a maximum and
the Universe then recollapses to a singularity, retracing its past evolution sym-
metrically in reverse. The asymmetric appearance of the k = +1 curve is due to
the logarithmic scale of the plot (the logarithmic scale is useful for visualizing
the early-time behavior and the various power-law dependences).

Hubble parameter, H0 = 70 km s−1 Mpc−1, 1/H0 = 4.4× 1017 s, and therefore
in cgs units H0 = 2.3× 10−18 s−1. At present, the critical density is

ρc,0 =
3H2

0

8πG
(8.55)

=
3(2.3× 10−18 s−1)2

8π × 6.7× 10−8 cgs
= 9.2× 10−30 g cm−3 = 1.4× 1011M⊙ Mpc−3.

Recall that the typical density of L∗ galaxies (see Chapter 6.2) is 10−2 Mpc−3,
and that such galaxies, including their dark halos, have masses of ∼ 1012M⊙. The
matter density due to galaxies is therefore of order 10 times less than the critical
density. It is convenient to express the actual matter density of the Universe in units
of the critical density, by means of the parameter

Ωm ≡ ρ

ρc
. (8.56)

If Ωm = 1, then k = 0. If, furthermore, we are now in a matter-dominated era
(as we will see below that we are), then the approximate solution of Eq. 8.27 that
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the Universe then recollapses to a singularity, retracing its past evolution sym-
metrically in reverse. The asymmetric appearance of the k = +1 curve is due to
the logarithmic scale of the plot (the logarithmic scale is useful for visualizing
the early-time behavior and the various power-law dependences).

Hubble parameter, H0 = 70 km s−1 Mpc−1, 1/H0 = 4.4× 1017 s, and therefore
in cgs units H0 = 2.3× 10−18 s−1. At present, the critical density is

ρc,0 =
3H2

0

8πG
(8.55)

=
3(2.3× 10−18 s−1)2

8π × 6.7× 10−8 cgs
= 9.2× 10−30 g cm−3 = 1.4× 1011M⊙ Mpc−3.

Recall that the typical density of L∗ galaxies (see Chapter 6.2) is 10−2 Mpc−3,
and that such galaxies, including their dark halos, have masses of ∼ 1012M⊙. The
matter density due to galaxies is therefore of order 10 times less than the critical
density. It is convenient to express the actual matter density of the Universe in units
of the critical density, by means of the parameter

Ωm ≡ ρ

ρc
. (8.56)

If Ωm = 1, then k = 0. If, furthermore, we are now in a matter-dominated era
(as we will see below that we are), then the approximate solution of Eq. 8.27 that
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If Ωm = 1, then k = 0. If, furthermore, we are now in a matter-dominated era
(as we will see below that we are), then the approximate solution of Eq. 8.27 that
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The matter density of the Universe is often quoted in terms of the 
critical density.
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during early matter domination, R ∼ t2/3 for all models. The t2/3 behav-
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curvature-dominated (k = −1) model, the Universe reaches a final “coasting”
phase, with R ∼ t. In the supercritical, k = +1, case, R attains a maximum and
the Universe then recollapses to a singularity, retracing its past evolution sym-
metrically in reverse. The asymmetric appearance of the k = +1 curve is due to
the logarithmic scale of the plot (the logarithmic scale is useful for visualizing
the early-time behavior and the various power-law dependences).

Hubble parameter, H0 = 70 km s−1 Mpc−1, 1/H0 = 4.4× 1017 s, and therefore
in cgs units H0 = 2.3× 10−18 s−1. At present, the critical density is

ρc,0 =
3H2

0

8πG
(8.55)

=
3(2.3× 10−18 s−1)2

8π × 6.7× 10−8 cgs
= 9.2× 10−30 g cm−3 = 1.4× 1011M⊙ Mpc−3.

Recall that the typical density of L∗ galaxies (see Chapter 6.2) is 10−2 Mpc−3,
and that such galaxies, including their dark halos, have masses of ∼ 1012M⊙. The
matter density due to galaxies is therefore of order 10 times less than the critical
density. It is convenient to express the actual matter density of the Universe in units
of the critical density, by means of the parameter

Ωm ≡ ρ

ρc
. (8.56)

If Ωm = 1, then k = 0. If, furthermore, we are now in a matter-dominated era
(as we will see below that we are), then the approximate solution of Eq. 8.27 that

Ωm = 1 for a flat universe.

Assume that we are in the matter dominated era, then
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specified. There are two important cases. In the “matter-dominated” case, the
pressure from all sources is much less than the matter density,

P � ρc2. (8.35)
Setting P = 0 in Eq. 8.34, we find

ρ̇

ρ
= −3

Ṙ

R
, (8.36)

which has the solution
ρ ∝ R−3. (8.37)

A second important case is when the dominant energy density comes from ultra-
relativistic particles (e.g., photons), which have a pressure that is 1/3 of their energy
density (see Eq. 3.74),

P =
1
3
u =

1
3
ρc2. (8.38)

In this “radiation dominated” case, Eq. 8.34 becomes
ρ̇

ρ
= −4

Ṙ

R
, (8.39)

with the solution
ρ ∝ R−4. (8.40)

Let us consider now the history of the scale factor R(t). Since ρ behaves as R−3

to R−4, in Eq. 8.27 one can always find an early enough time, when R was small
enough, such that the second term, which goes as R−2 can be neglected,

8π

3
Gρ�

ØØØØ
kc2

R2

ØØØØ . (8.41)

In the matter-dominated era, when ρ ∼ R−3, Eq. 8.27 then becomes approxi-
mately

√
Ṙ

R

!2

∼ 1
R3

, (8.42)

or
R1/2dR ∼ dt. (8.43)

Integration gives
R3/2 ∝ t, (8.44)

and
R(t) ∝ t2/3. (8.45)

Since the energy density of radiation falls faster with R than that of matter, at an
early enough time there must have been a radiation dominated era, during which
ρ ∼ R−4. At that time

√
Ṙ

R

!2

∼ 1
R4

, (8.46)
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we found before is exact, R ∝ t2/3, and therefore Ṙ ∝ t−1/3. The scale factor
(and hence the distance between any two galaxies) continues to grow forever while
gradually slowing down, stopping only at t =∞.
Proceeding to the fate of the Universe in the second case, of a positively curved

space with k = +1, as R continues to grow and the density ρ goes down, there will
come a time when the two terms on the right-hand side of Eq. 8.27 are equal,

8π

3
Gρ =

kc2

R2
. (8.57)

This will happen when the scale radius

R =
µ

3c2

8πGρ

∂1/2

, (8.58)

at which time
√

Ṙ

R

!2

= 0, (8.59)

i.e., the expansion will halt. However, the deceleration in Eq. 8.28 does not change
its negative sign, and therefore this is the beginning of a collapse, in which the
Universe traces in reverse its past expansion, up to a “Big Crunch”. Recall that,
since such a recollapsing Universe has positive curvature, its volume is finite but
unbounded. It is called a closed Universe.
Finally, if k = −1, after sufficient time the curvature term will dominate over

the density term in Eq. 8.27, so that
√

Ṙ

R

!2

∼ c2

R2
, (8.60)

or
Ṙ = c. (8.61)

In other words, the expansion continues forever at a constant, “coasting”, rate. The
k = −1 universe is an “open” universe that is infinite and forever expanding (as
is the k = 0 case). Figure 8.1 shows examples of the time dependence of R(t) for
each of the three curvature possibilities.
When is the transition from a radiation dominated Universe, with ρ ∼ R−4, to a

matter dominated Universe, with ρ ∼ R−3? The energy density in radiation at any
time, ρrad, is related to its value today, ρrad,0, by

ρrad = ρrad,0
R4

0

R4
. (8.62)

Similarly for the mass energy density,

ρmc2 = ρm,0c
2 R3

0

R3
. (8.63)

The two energy densities were equal when
R0

R
=

ρm,0c
2

ρrad,0
. (8.64)

The scale factor grows as a function of time (forever) and gradually 
slows down until time = infinity! 

The fate of the universe:  It expands forever.
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Case:  Positively Curved Universe, k = +1
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In general, the components of the energy-momentum tensor Tµν , which is always
symmetric (or can be symmetrized), are:
T00=energy density;
T0i=momentum flux;
Tii=isotropic pressure;
Tij=anisotropic pressure (stress and strain),
where the 0 index refers to the time coordinate and the indices i, j to the three
spatial coordinates. For an isotropic and homogeneous Universe, Tµν is diagonal
and

Tµµ = (P + ρc2)
vµvµ

c2
− Pgµµ, (8.23)

where vµ is the 4-velocity, P is the pressure, and ρc2 is the mass-energy density.
Furthermore, for a comoving observer, v = (c, 0, 0, 0), and therefore

T00 = ρc2, T11 =
PR2

1− kr2
. (8.24)

Substituting the (0,0) and (1,1) components ofGµν and Tµν into the Einstein equa-
tions gives the two equations:

Ṙ2 + kc2

R2
=

8π

3
Gρ, (8.25)

and
2R̈

R
+

Ṙ2 + kc2

R2
= −8π

c2
GP. (8.26)

(The equations resulting from the two other non-zero components of Gµν and Tµν

are redundant with these equations. This is a consequence of the isotropy inherent
to the FRW metric.) Subtracting the two equations from each other, and slightly
rearranging the first equation, gives the first and second Friedmann Equations1,
that relate the first and second time derivatives of the scale factor R to the energy
density, pressure, and curvature of the Universe:

√
Ṙ

R

!2

=
8π

3
Gρ− kc2

R2
, (8.27)

and

R̈

R
= −4πG

3c2
(ρc2 + 3P ). (8.28)

The Friedmann equations are two coupled differential equations for the three
unknown functions R(t), ρ(t), and P (t). Given an equation of state, P (ρ), and
suitable boundary conditions, they can be solved. However, even before we solve
them, some immediate consequences are apparent. The first consequence of the
Friedmann equations is that the Universe must be expanding or contracting. We
know that the Universe has some nonzero mass density ρ, and therefore Eq. 8.27

1The second equation is often called “the acceleration equation.”

As R grows, the density ρ goes down.  At some point we will have
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we found before is exact, R ∝ t2/3, and therefore Ṙ ∝ t−1/3. The scale factor
(and hence the distance between any two galaxies) continues to grow forever while
gradually slowing down, stopping only at t =∞.
Proceeding to the fate of the Universe in the second case, of a positively curved

space with k = +1, as R continues to grow and the density ρ goes down, there will
come a time when the two terms on the right-hand side of Eq. 8.27 are equal,

8π

3
Gρ =

kc2

R2
. (8.57)

This will happen when the scale radius

R =
µ

3c2

8πGρ

∂1/2

, (8.58)

at which time
√

Ṙ

R

!2

= 0, (8.59)

i.e., the expansion will halt. However, the deceleration in Eq. 8.28 does not change
its negative sign, and therefore this is the beginning of a collapse, in which the
Universe traces in reverse its past expansion, up to a “Big Crunch”. Recall that,
since such a recollapsing Universe has positive curvature, its volume is finite but
unbounded. It is called a closed Universe.
Finally, if k = −1, after sufficient time the curvature term will dominate over

the density term in Eq. 8.27, so that
√

Ṙ

R

!2

∼ c2

R2
, (8.60)

or
Ṙ = c. (8.61)

In other words, the expansion continues forever at a constant, “coasting”, rate. The
k = −1 universe is an “open” universe that is infinite and forever expanding (as
is the k = 0 case). Figure 8.1 shows examples of the time dependence of R(t) for
each of the three curvature possibilities.
When is the transition from a radiation dominated Universe, with ρ ∼ R−4, to a

matter dominated Universe, with ρ ∼ R−3? The energy density in radiation at any
time, ρrad, is related to its value today, ρrad,0, by

ρrad = ρrad,0
R4

0

R4
. (8.62)

Similarly for the mass energy density,

ρmc2 = ρm,0c
2 R3

0

R3
. (8.63)

The two energy densities were equal when
R0

R
=

ρm,0c
2

ρrad,0
. (8.64)

Solving this equation for R gives us the radius at which this occurs.
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we found before is exact, R ∝ t2/3, and therefore Ṙ ∝ t−1/3. The scale factor
(and hence the distance between any two galaxies) continues to grow forever while
gradually slowing down, stopping only at t =∞.
Proceeding to the fate of the Universe in the second case, of a positively curved

space with k = +1, as R continues to grow and the density ρ goes down, there will
come a time when the two terms on the right-hand side of Eq. 8.27 are equal,

8π

3
Gρ =

kc2

R2
. (8.57)

This will happen when the scale radius

R =
µ

3c2

8πGρ

∂1/2

, (8.58)

at which time
√

Ṙ

R

!2

= 0, (8.59)

i.e., the expansion will halt. However, the deceleration in Eq. 8.28 does not change
its negative sign, and therefore this is the beginning of a collapse, in which the
Universe traces in reverse its past expansion, up to a “Big Crunch”. Recall that,
since such a recollapsing Universe has positive curvature, its volume is finite but
unbounded. It is called a closed Universe.
Finally, if k = −1, after sufficient time the curvature term will dominate over

the density term in Eq. 8.27, so that
√

Ṙ

R

!2

∼ c2

R2
, (8.60)

or
Ṙ = c. (8.61)

In other words, the expansion continues forever at a constant, “coasting”, rate. The
k = −1 universe is an “open” universe that is infinite and forever expanding (as
is the k = 0 case). Figure 8.1 shows examples of the time dependence of R(t) for
each of the three curvature possibilities.
When is the transition from a radiation dominated Universe, with ρ ∼ R−4, to a

matter dominated Universe, with ρ ∼ R−3? The energy density in radiation at any
time, ρrad, is related to its value today, ρrad,0, by

ρrad = ρrad,0
R4

0

R4
. (8.62)

Similarly for the mass energy density,

ρmc2 = ρm,0c
2 R3

0

R3
. (8.63)

The two energy densities were equal when
R0

R
=

ρm,0c
2

ρrad,0
. (8.64)

At that time the expansion halts.
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we found before is exact, R ∝ t2/3, and therefore Ṙ ∝ t−1/3. The scale factor
(and hence the distance between any two galaxies) continues to grow forever while
gradually slowing down, stopping only at t =∞.
Proceeding to the fate of the Universe in the second case, of a positively curved

space with k = +1, as R continues to grow and the density ρ goes down, there will
come a time when the two terms on the right-hand side of Eq. 8.27 are equal,
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R =
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8πGρ
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, (8.58)

at which time
√

Ṙ

R

!2

= 0, (8.59)

i.e., the expansion will halt. However, the deceleration in Eq. 8.28 does not change
its negative sign, and therefore this is the beginning of a collapse, in which the
Universe traces in reverse its past expansion, up to a “Big Crunch”. Recall that,
since such a recollapsing Universe has positive curvature, its volume is finite but
unbounded. It is called a closed Universe.
Finally, if k = −1, after sufficient time the curvature term will dominate over

the density term in Eq. 8.27, so that
√

Ṙ

R

!2

∼ c2

R2
, (8.60)

or
Ṙ = c. (8.61)

In other words, the expansion continues forever at a constant, “coasting”, rate. The
k = −1 universe is an “open” universe that is infinite and forever expanding (as
is the k = 0 case). Figure 8.1 shows examples of the time dependence of R(t) for
each of the three curvature possibilities.
When is the transition from a radiation dominated Universe, with ρ ∼ R−4, to a

matter dominated Universe, with ρ ∼ R−3? The energy density in radiation at any
time, ρrad, is related to its value today, ρrad,0, by

ρrad = ρrad,0
R4

0

R4
. (8.62)

Similarly for the mass energy density,

ρmc2 = ρm,0c
2 R3

0

R3
. (8.63)

The two energy densities were equal when
R0

R
=

ρm,0c
2

ρrad,0
. (8.64)
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(and hence the distance between any two galaxies) continues to grow forever while
gradually slowing down, stopping only at t =∞.
Proceeding to the fate of the Universe in the second case, of a positively curved

space with k = +1, as R continues to grow and the density ρ goes down, there will
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i.e., the expansion will halt. However, the deceleration in Eq. 8.28 does not change
its negative sign, and therefore this is the beginning of a collapse, in which the
Universe traces in reverse its past expansion, up to a “Big Crunch”. Recall that,
since such a recollapsing Universe has positive curvature, its volume is finite but
unbounded. It is called a closed Universe.
Finally, if k = −1, after sufficient time the curvature term will dominate over

the density term in Eq. 8.27, so that
√

Ṙ

R

!2

∼ c2

R2
, (8.60)

or
Ṙ = c. (8.61)

In other words, the expansion continues forever at a constant, “coasting”, rate. The
k = −1 universe is an “open” universe that is infinite and forever expanding (as
is the k = 0 case). Figure 8.1 shows examples of the time dependence of R(t) for
each of the three curvature possibilities.
When is the transition from a radiation dominated Universe, with ρ ∼ R−4, to a

matter dominated Universe, with ρ ∼ R−3? The energy density in radiation at any
time, ρrad, is related to its value today, ρrad,0, by

ρrad = ρrad,0
R4

0

R4
. (8.62)

Similarly for the mass energy density,

ρmc2 = ρm,0c
2 R3

0

R3
. (8.63)

The two energy densities were equal when
R0

R
=

ρm,0c
2

ρrad,0
. (8.64)
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In general, the components of the energy-momentum tensor Tµν , which is always
symmetric (or can be symmetrized), are:
T00=energy density;
T0i=momentum flux;
Tii=isotropic pressure;
Tij=anisotropic pressure (stress and strain),
where the 0 index refers to the time coordinate and the indices i, j to the three
spatial coordinates. For an isotropic and homogeneous Universe, Tµν is diagonal
and

Tµµ = (P + ρc2)
vµvµ

c2
− Pgµµ, (8.23)

where vµ is the 4-velocity, P is the pressure, and ρc2 is the mass-energy density.
Furthermore, for a comoving observer, v = (c, 0, 0, 0), and therefore

T00 = ρc2, T11 =
PR2

1− kr2
. (8.24)

Substituting the (0,0) and (1,1) components ofGµν and Tµν into the Einstein equa-
tions gives the two equations:

Ṙ2 + kc2

R2
=

8π

3
Gρ, (8.25)

and
2R̈

R
+

Ṙ2 + kc2

R2
= −8π

c2
GP. (8.26)

(The equations resulting from the two other non-zero components of Gµν and Tµν

are redundant with these equations. This is a consequence of the isotropy inherent
to the FRW metric.) Subtracting the two equations from each other, and slightly
rearranging the first equation, gives the first and second Friedmann Equations1,
that relate the first and second time derivatives of the scale factor R to the energy
density, pressure, and curvature of the Universe:

√
Ṙ

R

!2

=
8π

3
Gρ− kc2

R2
, (8.27)

and

R̈

R
= −4πG

3c2
(ρc2 + 3P ). (8.28)

The Friedmann equations are two coupled differential equations for the three
unknown functions R(t), ρ(t), and P (t). Given an equation of state, P (ρ), and
suitable boundary conditions, they can be solved. However, even before we solve
them, some immediate consequences are apparent. The first consequence of the
Friedmann equations is that the Universe must be expanding or contracting. We
know that the Universe has some nonzero mass density ρ, and therefore Eq. 8.27

1The second equation is often called “the acceleration equation.”

Note:  The negative term in the third Friedmann equation does not 
change.  What happens next?

The expansion stops, and then contraction begins.

The fate of the Universe:  The Big Crunch!

For a positively curved universe the volume is finite but unbound. 
It is called a closed universe.
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In general, the components of the energy-momentum tensor Tµν , which is always
symmetric (or can be symmetrized), are:
T00=energy density;
T0i=momentum flux;
Tii=isotropic pressure;
Tij=anisotropic pressure (stress and strain),
where the 0 index refers to the time coordinate and the indices i, j to the three
spatial coordinates. For an isotropic and homogeneous Universe, Tµν is diagonal
and

Tµµ = (P + ρc2)
vµvµ

c2
− Pgµµ, (8.23)

where vµ is the 4-velocity, P is the pressure, and ρc2 is the mass-energy density.
Furthermore, for a comoving observer, v = (c, 0, 0, 0), and therefore

T00 = ρc2, T11 =
PR2

1− kr2
. (8.24)

Substituting the (0,0) and (1,1) components ofGµν and Tµν into the Einstein equa-
tions gives the two equations:

Ṙ2 + kc2

R2
=

8π

3
Gρ, (8.25)

and
2R̈

R
+

Ṙ2 + kc2

R2
= −8π

c2
GP. (8.26)

(The equations resulting from the two other non-zero components of Gµν and Tµν

are redundant with these equations. This is a consequence of the isotropy inherent
to the FRW metric.) Subtracting the two equations from each other, and slightly
rearranging the first equation, gives the first and second Friedmann Equations1,
that relate the first and second time derivatives of the scale factor R to the energy
density, pressure, and curvature of the Universe:

√
Ṙ

R

!2

=
8π

3
Gρ− kc2

R2
, (8.27)

and

R̈

R
= −4πG

3c2
(ρc2 + 3P ). (8.28)

The Friedmann equations are two coupled differential equations for the three
unknown functions R(t), ρ(t), and P (t). Given an equation of state, P (ρ), and
suitable boundary conditions, they can be solved. However, even before we solve
them, some immediate consequences are apparent. The first consequence of the
Friedmann equations is that the Universe must be expanding or contracting. We
know that the Universe has some nonzero mass density ρ, and therefore Eq. 8.27

1The second equation is often called “the acceleration equation.”

Given sufficient time, the curvature term will dominate over the 
density term.
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we found before is exact, R ∝ t2/3, and therefore Ṙ ∝ t−1/3. The scale factor
(and hence the distance between any two galaxies) continues to grow forever while
gradually slowing down, stopping only at t =∞.
Proceeding to the fate of the Universe in the second case, of a positively curved

space with k = +1, as R continues to grow and the density ρ goes down, there will
come a time when the two terms on the right-hand side of Eq. 8.27 are equal,

8π

3
Gρ =

kc2

R2
. (8.57)

This will happen when the scale radius

R =
µ

3c2

8πGρ

∂1/2

, (8.58)

at which time
√

Ṙ

R

!2

= 0, (8.59)

i.e., the expansion will halt. However, the deceleration in Eq. 8.28 does not change
its negative sign, and therefore this is the beginning of a collapse, in which the
Universe traces in reverse its past expansion, up to a “Big Crunch”. Recall that,
since such a recollapsing Universe has positive curvature, its volume is finite but
unbounded. It is called a closed Universe.
Finally, if k = −1, after sufficient time the curvature term will dominate over

the density term in Eq. 8.27, so that
√

Ṙ
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R2
, (8.60)

or
Ṙ = c. (8.61)

In other words, the expansion continues forever at a constant, “coasting”, rate. The
k = −1 universe is an “open” universe that is infinite and forever expanding (as
is the k = 0 case). Figure 8.1 shows examples of the time dependence of R(t) for
each of the three curvature possibilities.
When is the transition from a radiation dominated Universe, with ρ ∼ R−4, to a

matter dominated Universe, with ρ ∼ R−3? The energy density in radiation at any
time, ρrad, is related to its value today, ρrad,0, by

ρrad = ρrad,0
R4

0

R4
. (8.62)

Similarly for the mass energy density,

ρmc2 = ρm,0c
2 R3

0

R3
. (8.63)

The two energy densities were equal when
R0

R
=

ρm,0c
2

ρrad,0
. (8.64)
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What does that mean?

The universe is open and will expand forever.
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Radiation-to-Matter Domination
When does the Universe transition from radiation dominated to 
matter dominate?
The radiation density at any time is related to the radiation 
density today by

⇢radR
4 = ⇢rad,0R

4
0
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Similarly, for matter density
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Setting the two equal, we find
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What are the densities today?
We can find the radiation density in the universe today using the 
cosmic microwave background.  We know the CMB has a 
blackbody spectrum at temperature T0 = 2.73K.
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As we will see, the Universe is filled today with a radiation field, the cosmic
microwave background, that has the spectrum of a blackbody at a temperature T0 =
2.73 K. The radiation energy density today is therefore

ρrad,0 = aT 4
0 = 7.6×10−15 erg cm−3 K−4×(2.73 K)4 = 4.2×10−13 erg cm−3.

(8.65)
We saw that the present-day matter density is not far (within an order of magnitude)
from the critical closure density ρc. We will see later on that it is actually about 0.3
of the critical density. Thus

ρm,0c
2 ≈ 0.3ρc,0c

2 = 0.3× 9.2× 10−30 g cm−3 × (3× 1010 cm s−1)2 (8.66)

= 2.5× 10−9 erg cm−3.

Therefore, today we are clearly in a matter-dominated era. The transition from
domination by relativistic particles to the present, matter-dominated, era occurred
when the scale factor R was smaller than its present value R0 by

R0

R
=

ρm,0c
2

1.7ρrad,0
=

2.5× 10−9 erg cm−3

1.7× 4.2× 10−13 erg cm−3
= 3500. (8.67)

(The factor 1.7 accounts for the energy density due to the cosmic neutrino back-
ground, another component of the Universe that must exist, although it has not yet
been detected – see Chapter 9, Problem 9. At early times these neutrinos, even
though they have a non-zero mass, were relativistic, and therefore behaved just
like the radiation, with a density proportional to R−4. It can be shown that their
energy density then was 0.68 times the photon energy density.) Recall that under
matter-dominated conditions R grows as t2/3 (Eq. 8.45), and therefore

R0

R
=

µ
t0
t

∂2/3

. (8.68)

Thus, the time of transition to matter domination was

t =
t0

(3500)3/2
=

t0
2× 105

. (8.69)

In other words, the Universal expansion has been matter-dominated for all but a
small fraction of the age of the Universe.
To calculate the age of the Universe, we can therefore safely make the approxi-

mation that we have had ρ ∼ R−3 throughout the history of the Universe. Let us
examine the various possibilities. First, if ρ0 = ρc,0, so that k = 0, we saw that Eq.
8.27 gives

H2(t) ≡
√

Ṙ

R

!2

=
8πG

3
ρ ∝ R−3. (8.70)

Then
√

Ṙ

R

!2

= H2
0

R3
0

R3
, (8.71)
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The matter density of the Universes is 0.3 times the critical density.
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small fraction of the age of the Universe.
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Clearly, we are in a matter dominated era.
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When did the transition occur?

The transition occurred when the scale factor R was smaller than its 
present value R0 by
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Therefore, today we are clearly in a matter-dominated era. The transition from
domination by relativistic particles to the present, matter-dominated, era occurred
when the scale factor R was smaller than its present value R0 by

R0

R
=

ρm,0c
2

1.7ρrad,0
=

2.5× 10−9 erg cm−3

1.7× 4.2× 10−13 erg cm−3
= 3500. (8.67)

(The factor 1.7 accounts for the energy density due to the cosmic neutrino back-
ground, another component of the Universe that must exist, although it has not yet
been detected – see Chapter 9, Problem 9. At early times these neutrinos, even
though they have a non-zero mass, were relativistic, and therefore behaved just
like the radiation, with a density proportional to R−4. It can be shown that their
energy density then was 0.68 times the photon energy density.) Recall that under
matter-dominated conditions R grows as t2/3 (Eq. 8.45), and therefore

R0

R
=

µ
t0
t

∂2/3

. (8.68)

Thus, the time of transition to matter domination was

t =
t0

(3500)3/2
=

t0
2× 105

. (8.69)

In other words, the Universal expansion has been matter-dominated for all but a
small fraction of the age of the Universe.
To calculate the age of the Universe, we can therefore safely make the approxi-

mation that we have had ρ ∼ R−3 throughout the history of the Universe. Let us
examine the various possibilities. First, if ρ0 = ρc,0, so that k = 0, we saw that Eq.
8.27 gives

H2(t) ≡
√

Ṙ

R

!2

=
8πG

3
ρ ∝ R−3. (8.70)

Then
√

Ṙ

R

!2

= H2
0

R3
0

R3
, (8.71)

Accounts for the energy density due to the cosmic neutrino background.
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In other words, the Universal expansion has been matter-dominated for all but a
small fraction of the age of the Universe.
To calculate the age of the Universe, we can therefore safely make the approxi-

mation that we have had ρ ∼ R−3 throughout the history of the Universe. Let us
examine the various possibilities. First, if ρ0 = ρc,0, so that k = 0, we saw that Eq.
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Thus, the time of the transition was
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In other words, the Universal expansion has been matter-dominated for all but a
small fraction of the age of the Universe.
To calculate the age of the Universe, we can therefore safely make the approxi-

mation that we have had ρ ∼ R−3 throughout the history of the Universe. Let us
examine the various possibilities. First, if ρ0 = ρc,0, so that k = 0, we saw that Eq.
8.27 gives
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Now, we need to calculate the age of the Universe, t0.
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In general, the components of the energy-momentum tensor Tµν , which is always
symmetric (or can be symmetrized), are:
T00=energy density;
T0i=momentum flux;
Tii=isotropic pressure;
Tij=anisotropic pressure (stress and strain),
where the 0 index refers to the time coordinate and the indices i, j to the three
spatial coordinates. For an isotropic and homogeneous Universe, Tµν is diagonal
and

Tµµ = (P + ρc2)
vµvµ

c2
− Pgµµ, (8.23)

where vµ is the 4-velocity, P is the pressure, and ρc2 is the mass-energy density.
Furthermore, for a comoving observer, v = (c, 0, 0, 0), and therefore

T00 = ρc2, T11 =
PR2

1− kr2
. (8.24)

Substituting the (0,0) and (1,1) components ofGµν and Tµν into the Einstein equa-
tions gives the two equations:

Ṙ2 + kc2

R2
=

8π

3
Gρ, (8.25)

and
2R̈

R
+

Ṙ2 + kc2

R2
= −8π

c2
GP. (8.26)

(The equations resulting from the two other non-zero components of Gµν and Tµν

are redundant with these equations. This is a consequence of the isotropy inherent
to the FRW metric.) Subtracting the two equations from each other, and slightly
rearranging the first equation, gives the first and second Friedmann Equations1,
that relate the first and second time derivatives of the scale factor R to the energy
density, pressure, and curvature of the Universe:

√
Ṙ

R

!2

=
8π

3
Gρ− kc2

R2
, (8.27)

and

R̈

R
= −4πG

3c2
(ρc2 + 3P ). (8.28)

The Friedmann equations are two coupled differential equations for the three
unknown functions R(t), ρ(t), and P (t). Given an equation of state, P (ρ), and
suitable boundary conditions, they can be solved. However, even before we solve
them, some immediate consequences are apparent. The first consequence of the
Friedmann equations is that the Universe must be expanding or contracting. We
know that the Universe has some nonzero mass density ρ, and therefore Eq. 8.27

1The second equation is often called “the acceleration equation.”
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As we will see, the Universe is filled today with a radiation field, the cosmic
microwave background, that has the spectrum of a blackbody at a temperature T0 =
2.73 K. The radiation energy density today is therefore

ρrad,0 = aT 4
0 = 7.6×10−15 erg cm−3 K−4×(2.73 K)4 = 4.2×10−13 erg cm−3.

(8.65)
We saw that the present-day matter density is not far (within an order of magnitude)
from the critical closure density ρc. We will see later on that it is actually about 0.3
of the critical density. Thus

ρm,0c
2 ≈ 0.3ρc,0c

2 = 0.3× 9.2× 10−30 g cm−3 × (3× 1010 cm s−1)2 (8.66)

= 2.5× 10−9 erg cm−3.

Therefore, today we are clearly in a matter-dominated era. The transition from
domination by relativistic particles to the present, matter-dominated, era occurred
when the scale factor R was smaller than its present value R0 by

R0

R
=

ρm,0c
2

1.7ρrad,0
=

2.5× 10−9 erg cm−3

1.7× 4.2× 10−13 erg cm−3
= 3500. (8.67)

(The factor 1.7 accounts for the energy density due to the cosmic neutrino back-
ground, another component of the Universe that must exist, although it has not yet
been detected – see Chapter 9, Problem 9. At early times these neutrinos, even
though they have a non-zero mass, were relativistic, and therefore behaved just
like the radiation, with a density proportional to R−4. It can be shown that their
energy density then was 0.68 times the photon energy density.) Recall that under
matter-dominated conditions R grows as t2/3 (Eq. 8.45), and therefore

R0

R
=

µ
t0
t

∂2/3

. (8.68)

Thus, the time of transition to matter domination was

t =
t0

(3500)3/2
=

t0
2× 105

. (8.69)

In other words, the Universal expansion has been matter-dominated for all but a
small fraction of the age of the Universe.
To calculate the age of the Universe, we can therefore safely make the approxi-

mation that we have had ρ ∼ R−3 throughout the history of the Universe. Let us
examine the various possibilities. First, if ρ0 = ρc,0, so that k = 0, we saw that Eq.
8.27 gives

H2(t) ≡
√

Ṙ

R

!2

=
8πG

3
ρ ∝ R−3. (8.70)

Then
√

Ṙ

R

!2

= H2
0

R3
0

R3
, (8.71)
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In other words, the Universal expansion has been matter-dominated for all but a
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To calculate the age of the Universe, we can therefore safely make the approxi-
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ground, another component of the Universe that must exist, although it has not yet
been detected – see Chapter 9, Problem 9. At early times these neutrinos, even
though they have a non-zero mass, were relativistic, and therefore behaved just
like the radiation, with a density proportional to R−4. It can be shown that their
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small fraction of the age of the Universe.
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small fraction of the age of the Universe.
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mation that we have had ρ ∼ R−3 throughout the history of the Universe. Let us
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Figure 8.1 Examples of the time dependence of the relative scale factor, R/R
0

, for var-
ious cosmologies. At early, radiation-dominated times, R grows as t1/2, and
during early matter domination, R ∼ t2/3 for all models. The t2/3 behav-
ior continues forever in the flat (k = 0), critical-density model. In the open,
curvature-dominated (k = −1) model, the Universe reaches a final “coasting”
phase, with R ∼ t. In the supercritical, k = +1, case, R attains a maximum and
the Universe then recollapses to a singularity, retracing its past evolution sym-
metrically in reverse. The asymmetric appearance of the k = +1 curve is due to
the logarithmic scale of the plot (the logarithmic scale is useful for visualizing
the early-time behavior and the various power-law dependences).

Hubble parameter, H0 = 70 km s−1 Mpc−1, 1/H0 = 4.4× 1017 s, and therefore
in cgs units H0 = 2.3× 10−18 s−1. At present, the critical density is

ρc,0 =
3H2

0

8πG
(8.55)

=
3(2.3× 10−18 s−1)2

8π × 6.7× 10−8 cgs
= 9.2× 10−30 g cm−3 = 1.4× 1011M⊙ Mpc−3.

Recall that the typical density of L∗ galaxies (see Chapter 6.2) is 10−2 Mpc−3,
and that such galaxies, including their dark halos, have masses of ∼ 1012M⊙. The
matter density due to galaxies is therefore of order 10 times less than the critical
density. It is convenient to express the actual matter density of the Universe in units
of the critical density, by means of the parameter

Ωm ≡ ρ

ρc
. (8.56)

If Ωm = 1, then k = 0. If, furthermore, we are now in a matter-dominated era
(as we will see below that we are), then the approximate solution of Eq. 8.27 that

Since, all but a very small fraction of the age of the universe, matter 
has dominated, we will make the simplification that at all times
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As we will see, the Universe is filled today with a radiation field, the cosmic
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2.73 K. The radiation energy density today is therefore
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(The factor 1.7 accounts for the energy density due to the cosmic neutrino back-
ground, another component of the Universe that must exist, although it has not yet
been detected – see Chapter 9, Problem 9. At early times these neutrinos, even
though they have a non-zero mass, were relativistic, and therefore behaved just
like the radiation, with a density proportional to R−4. It can be shown that their
energy density then was 0.68 times the photon energy density.) Recall that under
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In other words, the Universal expansion has been matter-dominated for all but a
small fraction of the age of the Universe.
To calculate the age of the Universe, we can therefore safely make the approxi-

mation that we have had ρ ∼ R−3 throughout the history of the Universe. Let us
examine the various possibilities. First, if ρ0 = ρc,0, so that k = 0, we saw that Eq.
8.27 gives
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which after separating the variables and integrating becomes

1
H0

Z R
0

0

R1/2dR

R
3/2
0

=
Z t

0

0

dt, (8.72)

or

t0 =
2
3
H−1

0 . (8.73)

If we consider an empty Universe with ρ = 0, which is the extreme case of
k = −1, Eq. 8.28 becomes

R̈ = 0, (8.74)

and

Ṙ = const. (8.75)

But

H =
Ṙ

R
, (8.76)

so

Ṙ = HR = H0R0, (8.77)

Z R
0

0

dR

H0R0
=

Z t
0

0

dt, (8.78)

and

t0 = H−1
0 . (8.79)

Thus, for

1 > Ωm,0 > 0, (8.80)

the age of the Universe is in the range

2
3
H−1

0 < t0 < H−1
0 . (8.81)

We already saw that, forH0 = 70 km s−1Mpc−1,H−1
0 = 14Gyr. The age of the

Universe is therefore between 9 and 14 Gyr, for this range of values of the density
parameter Ωm,0. The transition from a radiation-dominated to a matter-dominated
expansion occurred at a time

t =
t0

(3500)3/2
=

t0
2× 105

∼ 65, 000 yr (8.82)

after the Big Bang, assuming the larger age.

✓
Ṙ

R

◆2

=
8⇡G

3

3H2
0

8⇡G

R3
0

R3

Then, at the present time, we have

✓
Ṙ

R

◆2

=
8⇡G

3
⇢c,0
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In general, the components of the energy-momentum tensor Tµν , which is always
symmetric (or can be symmetrized), are:
T00=energy density;
T0i=momentum flux;
Tii=isotropic pressure;
Tij=anisotropic pressure (stress and strain),
where the 0 index refers to the time coordinate and the indices i, j to the three
spatial coordinates. For an isotropic and homogeneous Universe, Tµν is diagonal
and

Tµµ = (P + ρc2)
vµvµ

c2
− Pgµµ, (8.23)

where vµ is the 4-velocity, P is the pressure, and ρc2 is the mass-energy density.
Furthermore, for a comoving observer, v = (c, 0, 0, 0), and therefore

T00 = ρc2, T11 =
PR2

1− kr2
. (8.24)

Substituting the (0,0) and (1,1) components ofGµν and Tµν into the Einstein equa-
tions gives the two equations:

Ṙ2 + kc2

R2
=

8π

3
Gρ, (8.25)

and
2R̈

R
+

Ṙ2 + kc2

R2
= −8π

c2
GP. (8.26)

(The equations resulting from the two other non-zero components of Gµν and Tµν

are redundant with these equations. This is a consequence of the isotropy inherent
to the FRW metric.) Subtracting the two equations from each other, and slightly
rearranging the first equation, gives the first and second Friedmann Equations1,
that relate the first and second time derivatives of the scale factor R to the energy
density, pressure, and curvature of the Universe:

√
Ṙ

R

!2

=
8π

3
Gρ− kc2

R2
, (8.27)

and

R̈

R
= −4πG

3c2
(ρc2 + 3P ). (8.28)

The Friedmann equations are two coupled differential equations for the three
unknown functions R(t), ρ(t), and P (t). Given an equation of state, P (ρ), and
suitable boundary conditions, they can be solved. However, even before we solve
them, some immediate consequences are apparent. The first consequence of the
Friedmann equations is that the Universe must be expanding or contracting. We
know that the Universe has some nonzero mass density ρ, and therefore Eq. 8.27

1The second equation is often called “the acceleration equation.”

✓
Ṙ

R

◆2

= �kc2

R2
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which after separating the variables and integrating becomes

1
H0

Z R
0

0

R1/2dR

R
3/2
0

=
Z t

0

0

dt, (8.72)

or

t0 =
2
3
H−1

0 . (8.73)

If we consider an empty Universe with ρ = 0, which is the extreme case of
k = −1, Eq. 8.28 becomes

R̈ = 0, (8.74)

and

Ṙ = const. (8.75)

But

H =
Ṙ

R
, (8.76)

so

Ṙ = HR = H0R0, (8.77)

Z R
0

0

dR

H0R0
=

Z t
0

0

dt, (8.78)

and

t0 = H−1
0 . (8.79)

Thus, for

1 > Ωm,0 > 0, (8.80)

the age of the Universe is in the range

2
3
H−1

0 < t0 < H−1
0 . (8.81)

We already saw that, forH0 = 70 km s−1Mpc−1,H−1
0 = 14Gyr. The age of the

Universe is therefore between 9 and 14 Gyr, for this range of values of the density
parameter Ωm,0. The transition from a radiation-dominated to a matter-dominated
expansion occurred at a time

t =
t0

(3500)3/2
=

t0
2× 105

∼ 65, 000 yr (8.82)

after the Big Bang, assuming the larger age.
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Ṙ = const. (8.75)

But

H =
Ṙ
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Thus, the age of the Universe is in the range:

basicastro4 October 26, 2006

202 CHAPTER 8

which after separating the variables and integrating becomes

1
H0

Z R
0

0

R1/2dR

R
3/2
0

=
Z t

0

0

dt, (8.72)

or

t0 =
2
3
H−1

0 . (8.73)

If we consider an empty Universe with ρ = 0, which is the extreme case of
k = −1, Eq. 8.28 becomes

R̈ = 0, (8.74)

and
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We already saw that, forH0 = 70 km s−1Mpc−1,H−1
0 = 14Gyr. The age of the

Universe is therefore between 9 and 14 Gyr, for this range of values of the density
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expansion occurred at a time

t =
t0

(3500)3/2
=

t0
2× 105

∼ 65, 000 yr (8.82)

after the Big Bang, assuming the larger age.

Since H0 = 70 km s-1 Mpc-1, H0-1 = 14 Gyr.  The age of the 
Universe is thus, between 9 and 14 Gyr for this range of the 
density parameter Ωm,0.

The transition from radiation-dominated to matter-dominated 
expansion occurred at the time:

t = t0
(3500)3/2 =

14⇥ 109

(3500)3/2
⇠ 68, 000 yr
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Learning to Love Λ
Einstein added a term to his theory of general relativity to “hold 
back” gravity and achieve a static universe.  This term is called the 
cosmological constant.

The addition of this constant changes the first two Friedmann 
Equations.
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the existence of a static Universe (which, as we saw, is not possible in the for-
mulation we have developed so far). After the Hubble expansion was discovered,
Einstein discarded the cosmological constant, but it has resurfaced several times
over the years, by way of attempts to explain a number of different observations.
In recent years, evidence is mounting that a Λ-like term may, in fact, be required to
describe the dynamics of our Universe. The cosmological constant is one possibil-
ity among a class of such terms that can be added to the Einstein equations, which
are generally referred to as dark energy or vacuum energy.
With the addition of Λ, the Friedmann equations that result by writing the Ein-

stein equations for the FRW metric are modified, and become
√

Ṙ

R

!2

=
8π

3
Gρ− kc2

R2
+

Λ
3

, (8.95)

and

R̈

R
= −4πG

3c2
(ρc2 + 3P ) +

Λ
3

. (8.96)

The third Friedmann equation,

ρ̇c2 = −3
Ṙ

R
(ρc2 + P ), (8.97)

remains unchanged (see Problem 4).
From Eq. 8.96, it is clear that a large enough positive value of Λ can cause R̈

to become positive, i.e., to make the Universe accelerate, as opposed to the de-
celeration that always exists without such a term. Note that Λ has dimensions of
[time]−2. From Eq. 8.95, we can see that the cosmological constant acts effectively
as an additional energy density,

�Λ =
c2

8πG
Λ. (8.98)

However, if Λ is constant, �Λ is an energy density that remains constant, rather than
falling, whenR grows with time.4 Thus, afterR has grown enough, it is guaranteed
that the Λ term will dominate the right-hand side of Eq. 8.95. We can then write
Eq. 8.95 as

H2 =

√
Ṙ

R

!2

≈ Λ
3

, (8.99)

or

Ṙ ≈
µ

Λ
3

∂1/2

R, (8.100)

4This counter-intuitive behavior results from the strange equation of state associated with the cosmo-
logical constant, which relates a negative pressure to �

Λ

: P = −�
Λ

(see Problem 5). When a volume
element in the Universe grows due to the expansion, the work done by the negative pressure maintains
the energy density constant.
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Ṙ

R

!2

=
8π

3
Gρ− kc2

R2
+

Λ
3

, (8.95)

and

R̈

R
= −4πG

3c2
(ρc2 + 3P ) +

Λ
3

. (8.96)

The third Friedmann equation,

ρ̇c2 = −3
Ṙ
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Ṙ

R

!2

≈ Λ
3

, (8.99)

or
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Note:  This equation implies that 
deceleration must always occur — 
unless Λ is large enough.  Then 
acceleration can occur.
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The cosmological constant acts as an energy density:
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units of Λ are [t-2]

If Λ is constant, εΛ must also be constant as R grows with time.  What 
happens to the first Friedmann equation?
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Once R is big enough,  the cosmological constant will 
dominate the RHS.
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However, if Λ is constant, �Λ is an energy density that remains constant, rather than
falling, whenR grows with time.4 Thus, afterR has grown enough, it is guaranteed
that the Λ term will dominate the right-hand side of Eq. 8.95. We can then write
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Ṙ
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3
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or

Ṙ ≈
µ

Λ
3

∂1/2

R, (8.100)

4This counter-intuitive behavior results from the strange equation of state associated with the cosmo-
logical constant, which relates a negative pressure to �

Λ

: P = −�
Λ

(see Problem 5). When a volume
element in the Universe grows due to the expansion, the work done by the negative pressure maintains
the energy density constant.
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Ṙ

R

!2

=
8π

3
Gρ− kc2

R2
+

Λ
3

, (8.95)

and

R̈

R
= −4πG

3c2
(ρc2 + 3P ) +

Λ
3

. (8.96)

The third Friedmann equation,

ρ̇c2 = −3
Ṙ
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which has the solution

R(t) ∝ exp

"µ
Λ
3

∂1/2

t

#
= exp(Ht), (8.101)

where the Hubble parameter H has actually become a constant. In other words,
once the cosmological constant term comes to dominate, the Universe enters an
accelerating, exponentially expanding, phase. If Λ remains constant, this phase
lasts forever. During the exponential expansion phase, the particle horizon – the
most distant point an observer can, in principle, see – tends to a constant comoving
coordinate rh (see Problems 1 and 2). Thus, as opposed to a Universe without a
cosmological constant, in which more and more of the volume becomes visible as
time progresses, there is a fixed limit beyond which light will never reach us (since,
at the time of emission, galaxies beyond that distance are receding from us faster
than the speed of light). Galaxies within the particle horizon will get more and
more redshifted with time, and therefore an observer in such a universe will see
more and more of the light sources around him “blinking out” (actually, getting
redshifted to infinity). Finally, observers in an exponentially expanding Universe
are surrounded also by an event horizon, similar to that around a black hole, that
bounds the region of space with which they can communicate or interact causally.
The comoving radial coordinate of the event horizon, reh, shrinks exponentially
with time, and therefore all observers eventually lose contact with each other (see
Problem 3).
It turns out observationally that a model that is particularly relevant to the real

Universe is one with a non-zero cosmological constant and a flat space. In this
case, setting k = 0 in Eq. 8.95 and dividing both sides by H2

0 , we obtain

H2

H2
0

=
8π

3H2
0

Gρ +
Λ

3H2
0

. (8.102)

Recalling our definition of the present critical density for closure,

ρc,0 =
3H2

0

8πG
, (8.103)

this can be written as
H2

H2
0

=
ρ

ρc,0
+

Λ
3H2

0

. (8.104)

If we recall also the definition of the density parameter,

Ωm ≡ ρ

ρc
, (8.105)

and define an analogous dimensionless parameter for Λ,

ΩΛ ≡
Λ

3H2
0

, (8.106)

then Eq. 8.104 at the present becomes

1 = Ωm,0 + ΩΛ,0. (8.107)
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then Eq. 8.104 at the present becomes

1 = Ωm,0 + ΩΛ,0. (8.107)

Implications:

1. The universe will enter a phase where it’s expand 
exponentially and this expansion is accelerating.

2. During the exponential expansion phase, the particle 
horizon tends to a constant coordinate rh.  This means that 
there is a fixed limit, beyond which light will never reach 
us.

3. Observers in an exponentially expanding Universe are 
surrounded by an event horizon.  This bounds the space 
by which they can interact causally.
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So, Where do we Live?
We live in a universe where space is flat (k = 0) and the 
cosmological constant is non-zero.  This is described by 
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We can rewrite using the density parameter and an analogous 
parameter for Λ
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1 = Ωm,0 + ΩΛ,0. (8.107)

Since the same argument can be made at anytime, for k=0 we 
always have
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However, the same argument can be made at any time, and therefore, if k = 0,

Ωm + ΩΛ = 1 (8.108)

always. Thus, as opposed to the flat, zero-Λ, universe, in which the mass density
always equals exactly the critical closure density (i.e., Ωm = 1), in a flat, non-zero-
Λ, universe, it is only the sum of Ωm and ΩΛ that is constant and equal to 1. In
a closed, positive-curvature Universe, Ωm + ΩΛ > 1, and in an open, negative-
curvature Universe, Ωm + ΩΛ < 1. In the next chapter, we will review recent
measurements indicating that Ωm + ΩΛ is very close to 1 (i.e., space is nearly
flat/Euclidean). As k = 0marks the border between a closed and an open Universe,
it may be difficult to find out whether space has a finite or infinite volume.

PROBLEMS

1. Show that the current proper distance to our particle horizon, defined as the
most distant place we can see (in principle), for a matter-dominated k = 0
universe with no cosmological constant, is rhR0 = 3ct0, where rh is the co-
moving radial coordinate of the particle horizon, R0 is the scale factor today,
and t0 is the present age of the Universe. Thus, more and more distant regions
of the Universe “enter the horizon” and become visible as time progresses.
Why is the answer different from the naively expected result, ct0?
Hint: Light moves along “null geodesics”, defined as paths along which ds =
0, and therefore in the FRW metric, light reaching us from a comoving
coordinate r will obey

0 = c2dt2 −R(t)2
dr2

1− kr2
.

Replace R(t) with R0(t/t0)2/3 appropriate for this cosmology, separate the
variables, and integrate from r = 0 to rh and from t = 0 (the Big Bang) to
t0 (today).

2. For a k = 0 universe with ΩΛ = 1, that at t = 0 already has a scale R0, find
the comoving radial coordinate, rh, of galaxies that will be on the particle
horizon (see Problem 1) at a time t in the future. Show that in this case, rh

approaches a constant, c/(H0R0), and therefore galaxies beyond this rh will
never become visible.
Hint: Proceed as in Problem 1, but now with R(t) = R0exp(H0t). (Show
why thisR(t) is an exact solution of the Friedmann equations for the cosmo-
logical parameters above).

3. a. For the same cosmology as in Problem 2 (k = 0, ΩΛ = 1), find the
comoving radius reh of galaxies that will be on our event horizon at a time t
in the future, i.e., galaxies with which we will be unable to communicate. In
other words, light signals sent by us at time t will never reach those galaxies,
light signals sent out by those galaxies at time t will never reach us, and
therefore we will never see those galaxies as they appeared at time t and

for open, flat universe

What if we had a different geometry?

⌦m + ⌦⇤ > 1 ⌦m + ⌦⇤ < 1 for open, negative 
curvature

for closed, positive 
curvature 
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Figure 6.3: The curvature and type of expansion for universes containing
both matter and a cosmological constant. The dashed line indicates κ = 0;
models lying above this line have κ = +1, and those lying below have κ = −1.
Also shown are the regions where the universe has a “Big Chill” expansion
(a → ∞ as t → ∞), a “Big Crunch” recollapse (a → 0 as t → tcrunch),
a loitering phase (a ∼ const for an extended period), or a “Big Bounce”
(a = amin > 0 at t = tbounce).
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