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Announcements
- Reading Assignments:  Chapter 9. 
- Problem Set 12 is due by 4 pm on Tuesday, May 5th.  You may 

turn your problem set into Lacey Porter in the main office during 
regular business hours.  She will provide you a copy of the 
solutions. 

- The final exam in this course will be on Wednesday, May 6th 
from 6:30 - 8:00 pm.  It will cover the second half of the course.  
Open book, open note — NO LAPTOPS, NO PHONES, NO 
INTERNET ENABLE-ABLE DEVICES!!!
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Today’s Lecture

- How and why is the CMB so isotropic? 
- How were elements formed? 
- What other probes of cosmology exist?
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Last Time:  Acoustic Oscillations in the early Universe

- Inhomogeneities in the nearly uniform cosmic mass 
distribution exist at the end of the inflationary era. 

- The mass density is mostly dark matter, mixed with a 
relativistic baryon gas and matter. 

- Attraction via gravity and repulsion via gas pressure result in 
a compression and expansion of sound waves. 

- These oscillations are in phase when the Universe emerges 
from the inflationary period. 

- At the time of recombination, baryons and photons decouple.   
- The impressions of cool (rarified) and hot (compressed) 

regions are left imprinted on the sky. 
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Recall the relation between wavelength, frequency and period.

� = cs⌫ =
cs
⌧ period of the mode

speed of sound

The equation of state for early universe (rad. dominated)
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9.3 ANISOTROPY OF THE MICROWAVE BACKGROUND

The temperature of the CMB, T = 2.725 K, is extremely uniform across the sky.
There is a small dipole in the CMB sky, arising from the Doppler effect due mostly
to the motion of the Local Group (at a velocity of ≈ 600 km s−1) relative to the
comoving cosmological frame. Apart from the dipole, the only deviations from
uniformity in the CMB sky are temperature anisotropies, i.e., regions of various
angular sizes with temperatures different from the mean, with fluctuations having
root-mean-squared δT = 29 µK, or

δT

T
∼ 10−5. (9.26)

Figure 9.4 shows a map of these temperature fluctuations. The extreme isotropy of
the appearance of the Universe at z ∼ 1000 is an overwhelming justification of the
assumption of homogeneity and isotropy inherent to the Cosmological Principle.
However, this extreme isotropy raises the questions of why and how the Universe
can appear so isotropic. At the time of recombination, the horizon size – the size of
a region in space across which light can propagate since the Big Bang (see Chap-
ter 8, Problems 1-3) – corresponded to a physical region that subtends only about
2◦ on the sky today. Thus, different regions separated by more than ∼ 2◦ could not
have been in causal contact by trec, and therefore it is surprising that they would
have the same temperature to within 10−5. CMB photons from opposite directions
on the sky have presumably never been in causal contact until now, yet they have
almost exactly the same temperature.
The currently favored explanation for this “horizon problem” is that, very early

during the evolution of the Universe, in the first small fraction of a second, there
was an epoch of “inflation”. During that epoch, a vacuum energy density with
negative pressure caused an exponential expansion of the scale factor, much like
the second acceleration epoch that, apparently, we are in today. The inflationary
expansion led causally connected regions to expand beyond the size of the horizon
at that time. All the different parts of the microwave sky we see today were, in fact,
part of a small, causally connected region before inflation. The cause and details
of inflation are still a matter of debate, but most versions of the theory predict that,
today, space is almost exactly flat (i.e., Ωm + ΩΛ is very close to 1). We will see
now that this prediction is strongly confirmed by the observed characteristics of the
anisotropies.
The temperature anisotropies in the CMB arise through a number of processes,

but at their root are small-amplitude inhomogeneities in the nearly uniform cosmic
mass distribution. These inhomogeneities are set up at the end of the inflationary
era, and their characteristics are yet another prediction of inflation theories. Most
of the mass density at that time, as now, is in a non-baryonic, pressure-less, dark
matter. Mixed with the dark matter, and sharing the same inhomegeneity pattern,
is a relativistic gas of baryons and radiation. The photon-baryon gas therefore has
an equation of state that is well described by

P =
1
3
ρc2. (9.27)

The speed of sound is then just
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The speed of sound is then

cs =

s
dP

dρ
=

c√
3
. (9.28)

The mass density inhomogeneities have a spatial spectrum with power spread con-
tinuously among all Fourier components, i.e., they have no single physical scale.
(The particular shape of the Fourier spectrum is, as noted above, a prediction of in-
flationary theories.) The gravitational potential of the inhomogeneities attracts the
baryon-photon fluid, which is compressed in the denser regions and more tenuous
in the underdense regions. However, the pressure of the fluid opposes the compres-
sion, and causes an expansion which stops only after the density has “overshot”
the equilibrium density and the gas in the originally overdense region has become
underdense. Thus, periodic expansion and contraction of the various fluid regions
ensues. This means that “standing” sound waves of all wavelengths represented
in the spatial Fourier spectrum of the density inhomogeneities are formed in the
photon-baryon gas6. Their periods τ and wavelengths λ are related by

τ =
λ

cs
. (9.29)

When the Universe emerges from the inflationary era, at an age of a small fraction
of a second, these acoustic oscillations are stationary and therefore they begin
everywhere in phase. Consider now an overdense or underdense region. One of the
Fourier modes that composes the region, and the fluid oscillations that it produces,
has a wavelength that corresponds to a half-period of trec,

λ = 2cstrec =
2ctrec√

3
, (9.30)

where trec is the cosmic time when recombination occurs. At trec, the baryon-
photon fluid in this particular mode will have executed one-half of a full density os-
cillation, and will have just reached its maximal rarefaction or compression, where
it will be colder or hotter, respectively, than the mean. At that time, however, the
baryons and photons decouple, and the imprint of the cool (rarified) and hot (com-
pressed) regions of the mode is frozen onto the CMB radiation field, and appears
in the form of spots on the CMB sky with temperatures that are lower or higher
than the mean. Similarly, higher modes that have had just enough time, between
t = 0 and t = trec, to undergo one full compression and one full rarefaction, or
two compressions and a rarefaction, etc., will also be at their hottest or coldest at
time trec. The CMB sky is therefore expected to display spots having particular
sizes. Stated differently, the fluctutation power spectrum of the CMB sky should
have discrete peaks at these favored spatial scales.
In reality, the picture is complicated by the fact that several processes, other

than adiabatic compression, affect the gas temperature observed from each point.

6The waves that are formed are not, strictly speaking, standing waves, since they do not obey bound-
ary conditions. They do resemble standing waves in the sense that a given Fourier component varies in
phase at all locations. However, the superposition of all these waves is not a standing wave pattern, and
does not have fixed nodes.

At recombination, the fluctuations will be largest.   So, τ = trec/2.

� =
cs
⌧

= 2cstrec =
2ctrecp

3

“ruler” size of fluctuations in CMB 
at known distance (distance when 
age of universe = trec/2)



Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

Angular Scale of First Acoustic Peak
We can use this to measure the geometry of the Universe!

Compare measured angular size of fluctuations to the calculated size.
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Calculate the angular size of the first peak.

� =
cs
⌧

=
2ctrecp

3

Flat space:  k=0
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Figure 9.5 The angular diameter of the sound-crossing horizon (measurable from the size of
the hot and cold spots in temperature anisotropy maps of the microwave sky), as
it appears to observers in different space geometries. In a k = 0 universe (“flat”
space), the spots subtend on the sky an angle θ given by Euclidean geometry.
In a k = +1 Universe, the angles of a triangle with sides along geodesics sum
to > 180

◦. Since light follows a geodesic path, the converging light rays from
the two sides of a CMB “spot” will bend, as shown, along their path, and θ will
appear larger than in the k = 0 case. For negative space curvature, the angles in
the triangle sum to < 180

◦, and θ is smaller than in the flat case.

However, all these effects can be calculated accurately, and a prediction of the
power spectrum can be made for a particular cosmological model. It turns out that
measurement of the angular scales at the positions of the “acoustic peaks” in the
power spectrum, and their relative heights, can determine most of the parameters
describing a cosmological model. Let us see how this works for one example –
the angular scale of the first acoustic peak as a measure of the global curvature of
space.
As seen in Eq. 9.30, the physical scale of the first acoustic peak is the “sound-

crossing horizon” at the time of recombination. It therefore provides an excellent
“standard ruler” at a known distance. The angle subtended on the sky by this stan-
dard ruler (i.e., the angle of the first peak) can be predicted for every geometry (i.e.,
curvature) of space. Comparison to the observed angle thus reveals directly what
that geometry is (see Fig. 9.5).
Consider, for example, a flat (k = 0) cosmology with no cosmological constant.

We wish to calculate the angular size on the sky, as it appears today, of a region of
physical size (Eq. 9.30)

Ds =
2ctrec√

3
=

2× 400, 000 l.y.√
3

= 140 kpc, (9.31)

from which light was emitted at time trec. Between recombination and the present
time, the Universal expansion is matter-dominated, with R ∝ t2/3 for this model,
i.e.,

R

R0
=

µ
t

t0

∂2/3

=
1

1 + z
, (9.32)
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from which light was emitted at time trec. Between recombination and the present
time, the Universal expansion is matter-dominated, with R ∝ t2/3 for this model,
i.e.,

R

R0
=

µ
t

t0

∂2/3

=
1

1 + z
, (9.32)

The angular size as it appears on the sky today is  

Before recombination, the Universe expansion was  
matter dominated.  So,
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from which light was emitted at time trec. Between recombination and the present
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R

R0
=

µ
t

t0

∂2/3

=
1

1 + z
, (9.32)

Thus, we can write 
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and hence we can also write Ds as

Ds =
2ct0√

3
(1 + zrec)−3/2. (9.33)

The angle subtended by the region equals its size, divided by its distance to us at the
time of emission (since that is when the angle between rays emanating from two
sides of the region was set). As we are concerned with observed angles, the type
of distance we are interested in is the distance which, when squared and multiplied
by 4π, will give the area of the sphere centered on us and passing through the
said region. If the comoving radial coordinate of the surface of last scattering is
r, the required distance is currently just r × R0, and is called the proper motion
distance. (For k = 0, the proper distance and the proper motion distance are the
same, as can be seen from Eq. 8.10.) The proper motion distance can again be
found by solving for the null geodesic in the FRW metric (see Eq. 9.2),

Z t
0

t
rec

cdt

R(t)
=

Z r

0

dr√
1− kr2

. (9.34)

Setting k = 0, and substituting

R(t) = R0

µ
t

t0

∂2/3

, (9.35)

we integrate and find

rR0 = 3ct0[1− (trec/t0)1/3] = 3ct0[1− (1 + zrec)−1/2]. (9.36)

However, at the time of emission, the scale factor of the Universe was 1 + z times
smaller. The so-called angular diameter distance to the last scattering surface is
therefore

DA =
rR0

1 + z
= 3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]. (9.37)

The angular size of the sound-crossing horizon at the recombination era in a k = 0
cosmology is thus expected to be

θ =
Ds

DA
=

2ct0(1 + zrec)−3/2

3
√

3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]
=

2
3
√

3[(1 + zrec)1/2 − 1]
.

(9.38)
Since recombination occurs at Trec ≈ 3000 K, and the current CMB temperature
is 2.7 K, zrec ≈ 1100, and

θ ≈ 0.012 radian = 0.7◦. (9.39)

For this particular cosmological model (k = 0, ΩΛ = 0), this will be the angular
scale of the first acoustic peak in the Fourier spectrum of the CMB fluctuations.
The hot and cold “spots” in CMB sky maps will correspond to half a wavelength,
i.e., will have half this angular size, or somewhat smaller than the diameter of the
full Moon (half a degree). In a negatively curved geometry, where the angles of a
triangle add up to less than 180◦, the angle subtended by the standard ruler of length
2cstrec will be smaller than in a flat geometry. In a positively curved Universe, this
angle will appear larger than in the flat case.
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=
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√

3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]
=
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3
√
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.
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Since recombination occurs at Trec ≈ 3000 K, and the current CMB temperature
is 2.7 K, zrec ≈ 1100, and

θ ≈ 0.012 radian = 0.7◦. (9.39)

For this particular cosmological model (k = 0, ΩΛ = 0), this will be the angular
scale of the first acoustic peak in the Fourier spectrum of the CMB fluctuations.
The hot and cold “spots” in CMB sky maps will correspond to half a wavelength,
i.e., will have half this angular size, or somewhat smaller than the diameter of the
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triangle add up to less than 180◦, the angle subtended by the standard ruler of length
2cstrec will be smaller than in a flat geometry. In a positively curved Universe, this
angle will appear larger than in the flat case.

- The angle subtended = size / distance at 
time of emission.
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Ds =
2ctrec√

3
=

2× 400, 000 l.y.√
3

= 140 kpc, (9.31)

from which light was emitted at time trec. Between recombination and the present
time, the Universal expansion is matter-dominated, with R ∝ t2/3 for this model,
i.e.,

R

R0
=

µ
t

t0

∂2/3

=
1

1 + z
, (9.32)

- The distance we are interested in is the 
proper motion distance = r x R0 
(currently).

- The proper motion distance is found by 
solving the null geodesic in the FRW 
metric.
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Chapter Nine

Tests and Probes of Big Bang Cosmology

In this final chapter, we will review three experimental predictions of the cosmo-
logical model that we developed in Chapter 8, and their observational verification.
These tests – cosmological redshift, the cosmic microwave background, and nu-
cleosynthesis of the light elements – also provide information on the particular
parameters that describe our Universe. We will conclude with a brief discussion on
the use quasars and other distant objects as cosmological probes.

9.1 COSMOLOGICAL REDSHIFT AND HUBBLE’S LAW

Consider light from a galaxy at a comoving radial coordinate re. Two wavefronts,
emitted at times te and te + ∆te, arrive at Earth at times t0 and t0 + ∆t0, respec-
tively. As already noted in Chapter 4.5 in the context of black holes, the metric of
spacetime dictates the trajectories of particles and radiation. Light, in particular,
follows a null geodesic with ds = 0. Thus, for a photon propagating in the FRW
metric (see also Chapter 8, Problems 1-3), we can write

0 = c2dt2 −R(t)2
dr2

1− kr2
. (9.1)

The first wavefront therefore obeys
Z t

0

te

dt

R(t)
=

1
c

Z re

0

dr√
1− kr2

, (9.2)

and the second wavefront
Z t

0

+∆t
0

te+∆te

dt

R(t)
=

1
c

Z re

0

dr√
1− kr2

. (9.3)

Since re is comoving, the right-hand sides of both equalities are independent of
time, and therefore equal. Equating the two left-hand sides,

Z t
0

+∆t
0

te+∆te

dt

R(t)
−

Z t
0

te

dt

R(t)
= 0. (9.4)

Expressing the first integral as the sum and difference of three integrals, we can
write

Z t
0

te

−
Z te+∆te

te

+
Z t

0

+∆t
0

t
0

−
Z t

0

te

= 0, (9.5)

and the first and fourth terms cancel out. Since the time interval between emission
of consecutive wavefronts, as well as the interval between their reception, is very

basicastro4 October 26, 2006

TESTS AND PROBES OF BIG BANG COSMOLOGY 221

and hence we can also write Ds as

Ds =
2ct0√

3
(1 + zrec)−3/2. (9.33)

The angle subtended by the region equals its size, divided by its distance to us at the
time of emission (since that is when the angle between rays emanating from two
sides of the region was set). As we are concerned with observed angles, the type
of distance we are interested in is the distance which, when squared and multiplied
by 4π, will give the area of the sphere centered on us and passing through the
said region. If the comoving radial coordinate of the surface of last scattering is
r, the required distance is currently just r × R0, and is called the proper motion
distance. (For k = 0, the proper distance and the proper motion distance are the
same, as can be seen from Eq. 8.10.) The proper motion distance can again be
found by solving for the null geodesic in the FRW metric (see Eq. 9.2),

Z t
0

t
rec

cdt

R(t)
=

Z r

0

dr√
1− kr2

. (9.34)

Setting k = 0, and substituting

R(t) = R0

µ
t

t0

∂2/3

, (9.35)

we integrate and find

rR0 = 3ct0[1− (trec/t0)1/3] = 3ct0[1− (1 + zrec)−1/2]. (9.36)

However, at the time of emission, the scale factor of the Universe was 1 + z times
smaller. The so-called angular diameter distance to the last scattering surface is
therefore

DA =
rR0

1 + z
= 3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]. (9.37)

The angular size of the sound-crossing horizon at the recombination era in a k = 0
cosmology is thus expected to be

θ =
Ds

DA
=

2ct0(1 + zrec)−3/2

3
√

3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]
=

2
3
√

3[(1 + zrec)1/2 − 1]
.

(9.38)
Since recombination occurs at Trec ≈ 3000 K, and the current CMB temperature
is 2.7 K, zrec ≈ 1100, and

θ ≈ 0.012 radian = 0.7◦. (9.39)

For this particular cosmological model (k = 0, ΩΛ = 0), this will be the angular
scale of the first acoustic peak in the Fourier spectrum of the CMB fluctuations.
The hot and cold “spots” in CMB sky maps will correspond to half a wavelength,
i.e., will have half this angular size, or somewhat smaller than the diameter of the
full Moon (half a degree). In a negatively curved geometry, where the angles of a
triangle add up to less than 180◦, the angle subtended by the standard ruler of length
2cstrec will be smaller than in a flat geometry. In a positively curved Universe, this
angle will appear larger than in the flat case.
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and hence we can also write Ds as

Ds =
2ct0√

3
(1 + zrec)−3/2. (9.33)

The angle subtended by the region equals its size, divided by its distance to us at the
time of emission (since that is when the angle between rays emanating from two
sides of the region was set). As we are concerned with observed angles, the type
of distance we are interested in is the distance which, when squared and multiplied
by 4π, will give the area of the sphere centered on us and passing through the
said region. If the comoving radial coordinate of the surface of last scattering is
r, the required distance is currently just r × R0, and is called the proper motion
distance. (For k = 0, the proper distance and the proper motion distance are the
same, as can be seen from Eq. 8.10.) The proper motion distance can again be
found by solving for the null geodesic in the FRW metric (see Eq. 9.2),
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=
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0

dr√
1− kr2

. (9.34)

Setting k = 0, and substituting

R(t) = R0

µ
t

t0

∂2/3

, (9.35)

we integrate and find

rR0 = 3ct0[1− (trec/t0)1/3] = 3ct0[1− (1 + zrec)−1/2]. (9.36)

However, at the time of emission, the scale factor of the Universe was 1 + z times
smaller. The so-called angular diameter distance to the last scattering surface is
therefore

DA =
rR0

1 + z
= 3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]. (9.37)

The angular size of the sound-crossing horizon at the recombination era in a k = 0
cosmology is thus expected to be

θ =
Ds

DA
=

2ct0(1 + zrec)−3/2

3
√

3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]
=

2
3
√

3[(1 + zrec)1/2 − 1]
.

(9.38)
Since recombination occurs at Trec ≈ 3000 K, and the current CMB temperature
is 2.7 K, zrec ≈ 1100, and

θ ≈ 0.012 radian = 0.7◦. (9.39)

For this particular cosmological model (k = 0, ΩΛ = 0), this will be the angular
scale of the first acoustic peak in the Fourier spectrum of the CMB fluctuations.
The hot and cold “spots” in CMB sky maps will correspond to half a wavelength,
i.e., will have half this angular size, or somewhat smaller than the diameter of the
full Moon (half a degree). In a negatively curved geometry, where the angles of a
triangle add up to less than 180◦, the angle subtended by the standard ruler of length
2cstrec will be smaller than in a flat geometry. In a positively curved Universe, this
angle will appear larger than in the flat case.

Substitute:

c

Z t0

trec

dt

R0

✓
t

t0

◆3/2

=

Z r

0
dr
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c

Z t0

trec

dt

R0

✓
t

t0

◆3/2

=

Z r

0
dr

Solving yields:
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and hence we can also write Ds as

Ds =
2ct0√

3
(1 + zrec)−3/2. (9.33)

The angle subtended by the region equals its size, divided by its distance to us at the
time of emission (since that is when the angle between rays emanating from two
sides of the region was set). As we are concerned with observed angles, the type
of distance we are interested in is the distance which, when squared and multiplied
by 4π, will give the area of the sphere centered on us and passing through the
said region. If the comoving radial coordinate of the surface of last scattering is
r, the required distance is currently just r × R0, and is called the proper motion
distance. (For k = 0, the proper distance and the proper motion distance are the
same, as can be seen from Eq. 8.10.) The proper motion distance can again be
found by solving for the null geodesic in the FRW metric (see Eq. 9.2),
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t
rec

cdt

R(t)
=

Z r

0

dr√
1− kr2

. (9.34)

Setting k = 0, and substituting

R(t) = R0

µ
t

t0

∂2/3

, (9.35)

we integrate and find

rR0 = 3ct0[1− (trec/t0)1/3] = 3ct0[1− (1 + zrec)−1/2]. (9.36)

However, at the time of emission, the scale factor of the Universe was 1 + z times
smaller. The so-called angular diameter distance to the last scattering surface is
therefore

DA =
rR0

1 + z
= 3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]. (9.37)

The angular size of the sound-crossing horizon at the recombination era in a k = 0
cosmology is thus expected to be

θ =
Ds

DA
=

2ct0(1 + zrec)−3/2

3
√

3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]
=

2
3
√

3[(1 + zrec)1/2 − 1]
.

(9.38)
Since recombination occurs at Trec ≈ 3000 K, and the current CMB temperature
is 2.7 K, zrec ≈ 1100, and

θ ≈ 0.012 radian = 0.7◦. (9.39)

For this particular cosmological model (k = 0, ΩΛ = 0), this will be the angular
scale of the first acoustic peak in the Fourier spectrum of the CMB fluctuations.
The hot and cold “spots” in CMB sky maps will correspond to half a wavelength,
i.e., will have half this angular size, or somewhat smaller than the diameter of the
full Moon (half a degree). In a negatively curved geometry, where the angles of a
triangle add up to less than 180◦, the angle subtended by the standard ruler of length
2cstrec will be smaller than in a flat geometry. In a positively curved Universe, this
angle will appear larger than in the flat case.
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and hence we can also write Ds as

Ds =
2ct0√

3
(1 + zrec)−3/2. (9.33)

The angle subtended by the region equals its size, divided by its distance to us at the
time of emission (since that is when the angle between rays emanating from two
sides of the region was set). As we are concerned with observed angles, the type
of distance we are interested in is the distance which, when squared and multiplied
by 4π, will give the area of the sphere centered on us and passing through the
said region. If the comoving radial coordinate of the surface of last scattering is
r, the required distance is currently just r × R0, and is called the proper motion
distance. (For k = 0, the proper distance and the proper motion distance are the
same, as can be seen from Eq. 8.10.) The proper motion distance can again be
found by solving for the null geodesic in the FRW metric (see Eq. 9.2),
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rec
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R(t)
=

Z r

0

dr√
1− kr2

. (9.34)

Setting k = 0, and substituting

R(t) = R0

µ
t

t0

∂2/3

, (9.35)

we integrate and find

rR0 = 3ct0[1− (trec/t0)1/3] = 3ct0[1− (1 + zrec)−1/2]. (9.36)

However, at the time of emission, the scale factor of the Universe was 1 + z times
smaller. The so-called angular diameter distance to the last scattering surface is
therefore

DA =
rR0

1 + z
= 3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]. (9.37)

The angular size of the sound-crossing horizon at the recombination era in a k = 0
cosmology is thus expected to be

θ =
Ds

DA
=

2ct0(1 + zrec)−3/2

3
√

3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]
=

2
3
√

3[(1 + zrec)1/2 − 1]
.

(9.38)
Since recombination occurs at Trec ≈ 3000 K, and the current CMB temperature
is 2.7 K, zrec ≈ 1100, and

θ ≈ 0.012 radian = 0.7◦. (9.39)

For this particular cosmological model (k = 0, ΩΛ = 0), this will be the angular
scale of the first acoustic peak in the Fourier spectrum of the CMB fluctuations.
The hot and cold “spots” in CMB sky maps will correspond to half a wavelength,
i.e., will have half this angular size, or somewhat smaller than the diameter of the
full Moon (half a degree). In a negatively curved geometry, where the angles of a
triangle add up to less than 180◦, the angle subtended by the standard ruler of length
2cstrec will be smaller than in a flat geometry. In a positively curved Universe, this
angle will appear larger than in the flat case.

We also need to account for the fact that at the time of emission, the 
scale factor was 1+z times smaller.  The angular diameter distance to 
the last scattering surface is thus
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and hence we can also write Ds as

Ds =
2ct0√

3
(1 + zrec)−3/2. (9.33)

The angle subtended by the region equals its size, divided by its distance to us at the
time of emission (since that is when the angle between rays emanating from two
sides of the region was set). As we are concerned with observed angles, the type
of distance we are interested in is the distance which, when squared and multiplied
by 4π, will give the area of the sphere centered on us and passing through the
said region. If the comoving radial coordinate of the surface of last scattering is
r, the required distance is currently just r × R0, and is called the proper motion
distance. (For k = 0, the proper distance and the proper motion distance are the
same, as can be seen from Eq. 8.10.) The proper motion distance can again be
found by solving for the null geodesic in the FRW metric (see Eq. 9.2),
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0

dr√
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. (9.34)

Setting k = 0, and substituting

R(t) = R0

µ
t

t0

∂2/3

, (9.35)

we integrate and find

rR0 = 3ct0[1− (trec/t0)1/3] = 3ct0[1− (1 + zrec)−1/2]. (9.36)

However, at the time of emission, the scale factor of the Universe was 1 + z times
smaller. The so-called angular diameter distance to the last scattering surface is
therefore

DA =
rR0

1 + z
= 3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]. (9.37)

The angular size of the sound-crossing horizon at the recombination era in a k = 0
cosmology is thus expected to be

θ =
Ds

DA
=

2ct0(1 + zrec)−3/2

3
√

3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]
=

2
3
√

3[(1 + zrec)1/2 − 1]
.

(9.38)
Since recombination occurs at Trec ≈ 3000 K, and the current CMB temperature
is 2.7 K, zrec ≈ 1100, and

θ ≈ 0.012 radian = 0.7◦. (9.39)

For this particular cosmological model (k = 0, ΩΛ = 0), this will be the angular
scale of the first acoustic peak in the Fourier spectrum of the CMB fluctuations.
The hot and cold “spots” in CMB sky maps will correspond to half a wavelength,
i.e., will have half this angular size, or somewhat smaller than the diameter of the
full Moon (half a degree). In a negatively curved geometry, where the angles of a
triangle add up to less than 180◦, the angle subtended by the standard ruler of length
2cstrec will be smaller than in a flat geometry. In a positively curved Universe, this
angle will appear larger than in the flat case.
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and hence we can also write Ds as

Ds =
2ct0√

3
(1 + zrec)−3/2. (9.33)

The angle subtended by the region equals its size, divided by its distance to us at the
time of emission (since that is when the angle between rays emanating from two
sides of the region was set). As we are concerned with observed angles, the type
of distance we are interested in is the distance which, when squared and multiplied
by 4π, will give the area of the sphere centered on us and passing through the
said region. If the comoving radial coordinate of the surface of last scattering is
r, the required distance is currently just r × R0, and is called the proper motion
distance. (For k = 0, the proper distance and the proper motion distance are the
same, as can be seen from Eq. 8.10.) The proper motion distance can again be
found by solving for the null geodesic in the FRW metric (see Eq. 9.2),
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0

dr√
1− kr2

. (9.34)

Setting k = 0, and substituting

R(t) = R0

µ
t

t0

∂2/3

, (9.35)

we integrate and find

rR0 = 3ct0[1− (trec/t0)1/3] = 3ct0[1− (1 + zrec)−1/2]. (9.36)

However, at the time of emission, the scale factor of the Universe was 1 + z times
smaller. The so-called angular diameter distance to the last scattering surface is
therefore

DA =
rR0

1 + z
= 3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]. (9.37)

The angular size of the sound-crossing horizon at the recombination era in a k = 0
cosmology is thus expected to be

θ =
Ds

DA
=

2ct0(1 + zrec)−3/2

3
√

3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]
=

2
3
√

3[(1 + zrec)1/2 − 1]
.

(9.38)
Since recombination occurs at Trec ≈ 3000 K, and the current CMB temperature
is 2.7 K, zrec ≈ 1100, and

θ ≈ 0.012 radian = 0.7◦. (9.39)

For this particular cosmological model (k = 0, ΩΛ = 0), this will be the angular
scale of the first acoustic peak in the Fourier spectrum of the CMB fluctuations.
The hot and cold “spots” in CMB sky maps will correspond to half a wavelength,
i.e., will have half this angular size, or somewhat smaller than the diameter of the
full Moon (half a degree). In a negatively curved geometry, where the angles of a
triangle add up to less than 180◦, the angle subtended by the standard ruler of length
2cstrec will be smaller than in a flat geometry. In a positively curved Universe, this
angle will appear larger than in the flat case.

The angular size at the recombination era is then
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and hence we can also write Ds as
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3
(1 + zrec)−3/2. (9.33)

The angle subtended by the region equals its size, divided by its distance to us at the
time of emission (since that is when the angle between rays emanating from two
sides of the region was set). As we are concerned with observed angles, the type
of distance we are interested in is the distance which, when squared and multiplied
by 4π, will give the area of the sphere centered on us and passing through the
said region. If the comoving radial coordinate of the surface of last scattering is
r, the required distance is currently just r × R0, and is called the proper motion
distance. (For k = 0, the proper distance and the proper motion distance are the
same, as can be seen from Eq. 8.10.) The proper motion distance can again be
found by solving for the null geodesic in the FRW metric (see Eq. 9.2),
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Setting k = 0, and substituting

R(t) = R0

µ
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∂2/3

, (9.35)

we integrate and find

rR0 = 3ct0[1− (trec/t0)1/3] = 3ct0[1− (1 + zrec)−1/2]. (9.36)

However, at the time of emission, the scale factor of the Universe was 1 + z times
smaller. The so-called angular diameter distance to the last scattering surface is
therefore

DA =
rR0

1 + z
= 3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]. (9.37)

The angular size of the sound-crossing horizon at the recombination era in a k = 0
cosmology is thus expected to be

θ =
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(9.38)
Since recombination occurs at Trec ≈ 3000 K, and the current CMB temperature
is 2.7 K, zrec ≈ 1100, and

θ ≈ 0.012 radian = 0.7◦. (9.39)

For this particular cosmological model (k = 0, ΩΛ = 0), this will be the angular
scale of the first acoustic peak in the Fourier spectrum of the CMB fluctuations.
The hot and cold “spots” in CMB sky maps will correspond to half a wavelength,
i.e., will have half this angular size, or somewhat smaller than the diameter of the
full Moon (half a degree). In a negatively curved geometry, where the angles of a
triangle add up to less than 180◦, the angle subtended by the standard ruler of length
2cstrec will be smaller than in a flat geometry. In a positively curved Universe, this
angle will appear larger than in the flat case.
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and hence we can also write Ds as

Ds =
2ct0√

3
(1 + zrec)−3/2. (9.33)

The angle subtended by the region equals its size, divided by its distance to us at the
time of emission (since that is when the angle between rays emanating from two
sides of the region was set). As we are concerned with observed angles, the type
of distance we are interested in is the distance which, when squared and multiplied
by 4π, will give the area of the sphere centered on us and passing through the
said region. If the comoving radial coordinate of the surface of last scattering is
r, the required distance is currently just r × R0, and is called the proper motion
distance. (For k = 0, the proper distance and the proper motion distance are the
same, as can be seen from Eq. 8.10.) The proper motion distance can again be
found by solving for the null geodesic in the FRW metric (see Eq. 9.2),
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Setting k = 0, and substituting

R(t) = R0
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, (9.35)

we integrate and find

rR0 = 3ct0[1− (trec/t0)1/3] = 3ct0[1− (1 + zrec)−1/2]. (9.36)

However, at the time of emission, the scale factor of the Universe was 1 + z times
smaller. The so-called angular diameter distance to the last scattering surface is
therefore

DA =
rR0

1 + z
= 3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]. (9.37)

The angular size of the sound-crossing horizon at the recombination era in a k = 0
cosmology is thus expected to be
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(9.38)
Since recombination occurs at Trec ≈ 3000 K, and the current CMB temperature
is 2.7 K, zrec ≈ 1100, and

θ ≈ 0.012 radian = 0.7◦. (9.39)

For this particular cosmological model (k = 0, ΩΛ = 0), this will be the angular
scale of the first acoustic peak in the Fourier spectrum of the CMB fluctuations.
The hot and cold “spots” in CMB sky maps will correspond to half a wavelength,
i.e., will have half this angular size, or somewhat smaller than the diameter of the
full Moon (half a degree). In a negatively curved geometry, where the angles of a
triangle add up to less than 180◦, the angle subtended by the standard ruler of length
2cstrec will be smaller than in a flat geometry. In a positively curved Universe, this
angle will appear larger than in the flat case.

basicastro4 October 26, 2006

TESTS AND PROBES OF BIG BANG COSMOLOGY 221

and hence we can also write Ds as

Ds =
2ct0√

3
(1 + zrec)−3/2. (9.33)

The angle subtended by the region equals its size, divided by its distance to us at the
time of emission (since that is when the angle between rays emanating from two
sides of the region was set). As we are concerned with observed angles, the type
of distance we are interested in is the distance which, when squared and multiplied
by 4π, will give the area of the sphere centered on us and passing through the
said region. If the comoving radial coordinate of the surface of last scattering is
r, the required distance is currently just r × R0, and is called the proper motion
distance. (For k = 0, the proper distance and the proper motion distance are the
same, as can be seen from Eq. 8.10.) The proper motion distance can again be
found by solving for the null geodesic in the FRW metric (see Eq. 9.2),

Z t
0

t
rec

cdt

R(t)
=

Z r

0

dr√
1− kr2

. (9.34)

Setting k = 0, and substituting
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we integrate and find

rR0 = 3ct0[1− (trec/t0)1/3] = 3ct0[1− (1 + zrec)−1/2]. (9.36)

However, at the time of emission, the scale factor of the Universe was 1 + z times
smaller. The so-called angular diameter distance to the last scattering surface is
therefore

DA =
rR0

1 + z
= 3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]. (9.37)

The angular size of the sound-crossing horizon at the recombination era in a k = 0
cosmology is thus expected to be
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(9.38)
Since recombination occurs at Trec ≈ 3000 K, and the current CMB temperature
is 2.7 K, zrec ≈ 1100, and

θ ≈ 0.012 radian = 0.7◦. (9.39)

For this particular cosmological model (k = 0, ΩΛ = 0), this will be the angular
scale of the first acoustic peak in the Fourier spectrum of the CMB fluctuations.
The hot and cold “spots” in CMB sky maps will correspond to half a wavelength,
i.e., will have half this angular size, or somewhat smaller than the diameter of the
full Moon (half a degree). In a negatively curved geometry, where the angles of a
triangle add up to less than 180◦, the angle subtended by the standard ruler of length
2cstrec will be smaller than in a flat geometry. In a positively curved Universe, this
angle will appear larger than in the flat case.
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and hence we can also write Ds as

Ds =
2ct0√

3
(1 + zrec)−3/2. (9.33)

The angle subtended by the region equals its size, divided by its distance to us at the
time of emission (since that is when the angle between rays emanating from two
sides of the region was set). As we are concerned with observed angles, the type
of distance we are interested in is the distance which, when squared and multiplied
by 4π, will give the area of the sphere centered on us and passing through the
said region. If the comoving radial coordinate of the surface of last scattering is
r, the required distance is currently just r × R0, and is called the proper motion
distance. (For k = 0, the proper distance and the proper motion distance are the
same, as can be seen from Eq. 8.10.) The proper motion distance can again be
found by solving for the null geodesic in the FRW metric (see Eq. 9.2),
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Setting k = 0, and substituting
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we integrate and find

rR0 = 3ct0[1− (trec/t0)1/3] = 3ct0[1− (1 + zrec)−1/2]. (9.36)

However, at the time of emission, the scale factor of the Universe was 1 + z times
smaller. The so-called angular diameter distance to the last scattering surface is
therefore

DA =
rR0

1 + z
= 3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]. (9.37)

The angular size of the sound-crossing horizon at the recombination era in a k = 0
cosmology is thus expected to be
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3
√

3ct0[(1 + zrec)−1 − (1 + zrec)−3/2]
=

2
3
√
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.

(9.38)
Since recombination occurs at Trec ≈ 3000 K, and the current CMB temperature
is 2.7 K, zrec ≈ 1100, and

θ ≈ 0.012 radian = 0.7◦. (9.39)

For this particular cosmological model (k = 0, ΩΛ = 0), this will be the angular
scale of the first acoustic peak in the Fourier spectrum of the CMB fluctuations.
The hot and cold “spots” in CMB sky maps will correspond to half a wavelength,
i.e., will have half this angular size, or somewhat smaller than the diameter of the
full Moon (half a degree). In a negatively curved geometry, where the angles of a
triangle add up to less than 180◦, the angle subtended by the standard ruler of length
2cstrec will be smaller than in a flat geometry. In a positively curved Universe, this
angle will appear larger than in the flat case.

Substituting known quantities:  Trec ~  3000 K, T0 = 2.7 K and zero ~ 
1100.
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and hence we can also write Ds as

Ds =
2ct0√

3
(1 + zrec)−3/2. (9.33)

The angle subtended by the region equals its size, divided by its distance to us at the
time of emission (since that is when the angle between rays emanating from two
sides of the region was set). As we are concerned with observed angles, the type
of distance we are interested in is the distance which, when squared and multiplied
by 4π, will give the area of the sphere centered on us and passing through the
said region. If the comoving radial coordinate of the surface of last scattering is
r, the required distance is currently just r × R0, and is called the proper motion
distance. (For k = 0, the proper distance and the proper motion distance are the
same, as can be seen from Eq. 8.10.) The proper motion distance can again be
found by solving for the null geodesic in the FRW metric (see Eq. 9.2),
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dr√
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we integrate and find
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Since recombination occurs at Trec ≈ 3000 K, and the current CMB temperature
is 2.7 K, zrec ≈ 1100, and

θ ≈ 0.012 radian = 0.7◦. (9.39)

For this particular cosmological model (k = 0, ΩΛ = 0), this will be the angular
scale of the first acoustic peak in the Fourier spectrum of the CMB fluctuations.
The hot and cold “spots” in CMB sky maps will correspond to half a wavelength,
i.e., will have half this angular size, or somewhat smaller than the diameter of the
full Moon (half a degree). In a negatively curved geometry, where the angles of a
triangle add up to less than 180◦, the angle subtended by the standard ruler of length
2cstrec will be smaller than in a flat geometry. In a positively curved Universe, this
angle will appear larger than in the flat case.

angular scale of first peak 
for k = 0 and ΩΛ = 0 
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scale of the first acoustic peak in the Fourier spectrum of the CMB fluctuations.
The hot and cold “spots” in CMB sky maps will correspond to half a wavelength,
i.e., will have half this angular size, or somewhat smaller than the diameter of the
full Moon (half a degree). In a negatively curved geometry, where the angles of a
triangle add up to less than 180◦, the angle subtended by the standard ruler of length
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angle will appear larger than in the flat case.

for k = 0 and ΩΛ = 0 

Angular scale of first peak in the Fourier spectrum of CMB fluctuations:

For negative curvature (k = -1), angles add up to < 180°  and 
angle subtended < 2cst.

For positive curvature (k = +1), angles add up to > 180°  and 
angle subtended > 2cst.
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The first peak is at 0.8°, consistent with a flat geometry.
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Figure 9.6 Observed angular power spectrum of temperature fluctuations in the CMB. The
top axis shows the angular scales corresponding to the spherical harmonic mul-
tipoles on the bottom axis. The curve is based on a detailed calculation of the
fluctuation spectrum using values for the various cosmological parameters that
give the best fit to the data. Note the clear detection of acoustic peaks, with the
first peak on a scale θ ≈ 0.8◦, indicating a flat space geometry. Data Credits:
NASA/WMAP, CBI, and ACBAR collaborations.

Recent measurements of the CMB fluctuation power spectrum provide spectac-
ular confirmation of the expected acoustic peaks (see Fig. 9.6). When compared to
more sophisticated calculations that account for all the known effects that can in-
fluence the temperature anisotropies, the location of the first peak indicates a nearly
flat space geometry, with

Ωm + ΩΛ = 1.02± 0.02. (9.40)

Note that a region with the diameter of the sound-crossing horizon has, between
recombination and the present, expanded by 1 + zrec = 1100, and hence encom-
passes today (i.e., has a “comoving diameter”) 140 kpc× 1100 = 150 Mpc. Thus
the CMB hot and cold spots correspond to regions that, today, are quite large.
Among a number of other cosmological parameters that are determined by anal-

ysis of the observed CMB anisotropy power spectrum are

Ωm ≈ 0.3, (9.41)

which together with Eq. 9.40 confirms the result found from the Hubble diagram
of type-Ia supernovae, that the dynamics of the Universe are currently dominated
by a cosmological constant with

ΩΛ ≈ 0.7. (9.42)
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A number of cosmological parameters are determined by the analysis 
of the CMB.
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ΩΛ ≈ 0.7. (9.42)

when combined with SN-1a data
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by a cosmological constant with
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if the Universe is exactly flat
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If one assumes that the Universe is exactly flat, then the CMB results also give a
precise age of the Universe

t0 = 13.7± 0.2 Gyr, (9.43)

and a density in baryons

ΩB = 0.044± 0.004. (9.44)

The mere existence of acoustic peaks in the power spectrum means that density
perturbations existed long before the time of recombination, i.e., they were “pri-
mordial”, and that they had wavelengths much longer than the horizon size at the
time they were set up. Inflation is the only theory that currently predicts, based on
causal physics, the existence of primordial, “superhorizon-size”, perturbations. The
observation of the acoustic peaks can therefore be considered as another successful
prediction of inflation.
The large density inhomogeneities we see today – stars, galaxies, and clusters,

formed from the growth of the initial small fluctuations, the traces of which are ob-
served in the CMB. The gravitational pull of small density enhancements attracted
additional mass, at the expense of neighboring underdense regions. The growing
clumps of dense matter merged with other clumps to form larger clumps. This
growth of structure by means of “gravitational instability” operated at first only on
the non-baryonic dark matter fluctuations, but not the baryons, which were sup-
ported against gravitational collapse by radiation pressure. Once the expansion
of the Universe became matter-dominated, the dark matter density perturbations
could begin to grow at a significant rate. Finally, after recombination, the baryons
became decoupled from the photons and their supporting radiation pressure, and
the perturbations in the baryon density field could also begin to grow. The details
and specific path according to which structure formation proceeds is still the sub-
ject of active research. Nevertheless, it is clear that, once the first massive stars
formed (ending the period sometimes called the “Dark Ages”), they reionized most
of the gas in the Universe. Based again on analysis of the CMB, current evidence
is that this occurred during some redshift in the range between ∼ 6 and 20, when
the Universe was 150-750 Myr old.
By this time, the mean matter density was low enough that the newly liberated

electrons were a negligible source of opacity, and hence the Universe remained
transparent (see Problem 2). Direct evidence that most of the gas in the Universe
is, at z ∼ 6 and below, almost completely ionized, comes from the fact that objects
at those redshifts are visible at UV wavelengths shorter than Lyman-α; even a tiny
number of neutral hydrogen atoms along the line of sight would suffice to com-
pletely absorb such UV radiation, due to the very large cross section for absorption
from the ground state of hydrogen (often called “resonant absorption”). Most of the
gas in the intergalactic medium (which is the main current repository of baryons)
remains in a low-density, hot, ionized phase. The density of this gas is low enough
that the recombination time is longer than the age of the Universe, and hence the
atoms will never recombine.
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Implications:

- The existence of the acoustic peaks in the power spectrum means 
that density perturbations existed long before the time of 
recombination “primordial”.  Inflation predicts these perturbations.

- The structure we see today formed from the growth of the initial 
small fluctuations.

- Once the first massive stars formed, they reionized most of the gas 
in the Universe.  (150 - 750 Myr)
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Nucleosynthesis
During the earliest times in the Universe, the temperatures were high 
enough that electrons, protons, positrons and neutrons were in thermo 
equilibrium.
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9.4 NUCLEOSYNTHESIS OF THE LIGHT ELEMENTS

Looking back in time to even earlier epochs than those discussed so far, the temper-
ature of the Universe must have been high enough that electrons, protons, positrons,
and neutrons were in thermodynamical equilibrium. Since the rest-mass energy dif-
ference between a neutron and a proton is

(mn −mp)c2 = 1.3 MeV, (9.45)
at a time t� 1 s, when the temperature was T � 1MeV (1010 K), the reactions

e− + p + 0.8 MeV �� νe + n (9.46)
and

ν̄e + p + 1.8 MeV �� e+ + n (9.47)
could easily proceed in both directions. The ratio between neutrons and protons as
a function of temperature can be obtained from statistical mechanics considerations
via the Saha equation. For the case at hand, it takes the form

Nn

Np
=

µ
mn

mp

∂3/2

exp
∑
− (mn −mp)c2

kT

∏
. (9.48)

When T � 1 MeV, the ratio is obviously very close to 1. As the temperature de-
creases, the ratio also decreases, and protons outnumber the heavier neutrons. This
decrease in the ratio could continue indefinitely, but when T < 0.8MeV, the mean
time for reaction 9.46 becomes longer than the age of the Universe at that epoch,
t = 2 s. The reaction time can be calculated from knowledge of the densities of
the different particles, the temperature, and the cross section, as outlined for stel-
lar nuclear reactions in Eqns. 3.123-3.127. The long reaction timescale that the
neutrons and protons, which are converted from one to the other via this reaction
are no longer in thermodynamic equilibrium7. This time is called neutron freeze-
out, since neutrons can no longer be created. The neutron-to-proton ratio therefore
“freezes” at a value of exp(−1.3/0.8) = 0.20. In the following few minutes, most
of the neutrons become integrated into helium nuclei. This occurs through the re-
actions

n + p→ d + γ (9.49)

p + d→3 He + γ (9.50)

d + d→3 He + n (9.51)

n +3He→4 He + γ (9.52)

d +3He→4 He + p. (9.53)
Some of the neutrons undergo beta decay into a proton and an electron before mak-
ing it into a helium nucleus (the mean lifetime of a free neutron is about 15 min),

7At about the same time, neutrinos also “decouple” (i.e., cease to be in thermal equilibrium with the
rest of the matter and the radiation), and the cosmic neutrino background is formed; see Problem 9.

Question:  What is the difference in the rest mass of the proton and 
neutron?

At t << 1 s, the temperature was T >> 1 MeV, thus 
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The ratio of neutrons and protons can be obtain from statistical 
mechanics and described by the Saha Equation.
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Looking back in time to even earlier epochs than those discussed so far, the temper-
ature of the Universe must have been high enough that electrons, protons, positrons,
and neutrons were in thermodynamical equilibrium. Since the rest-mass energy dif-
ference between a neutron and a proton is

(mn −mp)c2 = 1.3 MeV, (9.45)
at a time t� 1 s, when the temperature was T � 1MeV (1010 K), the reactions

e− + p + 0.8 MeV �� νe + n (9.46)
and

ν̄e + p + 1.8 MeV �� e+ + n (9.47)
could easily proceed in both directions. The ratio between neutrons and protons as
a function of temperature can be obtained from statistical mechanics considerations
via the Saha equation. For the case at hand, it takes the form

Nn

Np
=

µ
mn

mp

∂3/2

exp
∑
− (mn −mp)c2

kT

∏
. (9.48)

When T � 1 MeV, the ratio is obviously very close to 1. As the temperature de-
creases, the ratio also decreases, and protons outnumber the heavier neutrons. This
decrease in the ratio could continue indefinitely, but when T < 0.8MeV, the mean
time for reaction 9.46 becomes longer than the age of the Universe at that epoch,
t = 2 s. The reaction time can be calculated from knowledge of the densities of
the different particles, the temperature, and the cross section, as outlined for stel-
lar nuclear reactions in Eqns. 3.123-3.127. The long reaction timescale that the
neutrons and protons, which are converted from one to the other via this reaction
are no longer in thermodynamic equilibrium7. This time is called neutron freeze-
out, since neutrons can no longer be created. The neutron-to-proton ratio therefore
“freezes” at a value of exp(−1.3/0.8) = 0.20. In the following few minutes, most
of the neutrons become integrated into helium nuclei. This occurs through the re-
actions

n + p→ d + γ (9.49)

p + d→3 He + γ (9.50)

d + d→3 He + n (9.51)

n +3He→4 He + γ (9.52)

d +3He→4 He + p. (9.53)
Some of the neutrons undergo beta decay into a proton and an electron before mak-
ing it into a helium nucleus (the mean lifetime of a free neutron is about 15 min),

7At about the same time, neutrinos also “decouple” (i.e., cease to be in thermal equilibrium with the
rest of the matter and the radiation), and the cosmic neutrino background is formed; see Problem 9.

- What happens when T >> 1 MeV?

The ratio is very close to 1.  

- What happens as the temperature decreases?

The ratio also decreases.  Protons outnumber neutrons.

- Does this trend continue forever?
No, when T < 0.8 MeV, the mean reaction time 
becomes longer than the age of the Universe at that 
epoch (t = 2 s).

This time is called neutron freeze-out since neutrons 
can no longer be created.
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For a few minutes after neutrons freeze-out, most of the neutrons 
become incorporated into helium nuclei
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ference between a neutron and a proton is
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When T � 1 MeV, the ratio is obviously very close to 1. As the temperature de-
creases, the ratio also decreases, and protons outnumber the heavier neutrons. This
decrease in the ratio could continue indefinitely, but when T < 0.8MeV, the mean
time for reaction 9.46 becomes longer than the age of the Universe at that epoch,
t = 2 s. The reaction time can be calculated from knowledge of the densities of
the different particles, the temperature, and the cross section, as outlined for stel-
lar nuclear reactions in Eqns. 3.123-3.127. The long reaction timescale that the
neutrons and protons, which are converted from one to the other via this reaction
are no longer in thermodynamic equilibrium7. This time is called neutron freeze-
out, since neutrons can no longer be created. The neutron-to-proton ratio therefore
“freezes” at a value of exp(−1.3/0.8) = 0.20. In the following few minutes, most
of the neutrons become integrated into helium nuclei. This occurs through the re-
actions

n + p→ d + γ (9.49)

p + d→3 He + γ (9.50)

d + d→3 He + n (9.51)

n +3He→4 He + γ (9.52)

d +3He→4 He + p. (9.53)
Some of the neutrons undergo beta decay into a proton and an electron before mak-
ing it into a helium nucleus (the mean lifetime of a free neutron is about 15 min),

7At about the same time, neutrinos also “decouple” (i.e., cease to be in thermal equilibrium with the
rest of the matter and the radiation), and the cosmic neutrino background is formed; see Problem 9.

- Numerical computation show that the ratio of neutrons inside 
4He to protons is 1/7.

- Each 4He nucleus has 2 protons, 2 neutrons and there are 12 free 
protons for each 4He nucleus. 

- Thus, the ratio of helium to hydrogen atoms is 1/12.
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and a small fraction is integrated into other elements. Numerical computation of
the results of all the parallel nuclear reactions that occur as the Universe expands,
and as the density and the temperature decrease, shows that, in the end, the ratio
between neutrons inside 4He and protons is about 1/7. Thus, for every 2 neutrons
there are 14 protons. Since every 4He nucleus has 2 neutrons and 2 protons, there
are 12 free protons for every 4He nucleus, or the ratio of helium to hydrogen atoms
is 1/12. The mass fraction of 4He will then be

Y4 =
4N(4He)

N(H) + 4N(4He)
=

4 1
12

1 + 4 1
12

=
1
4
. (9.54)

A central prediction of Big Bang cosmology is therefore that a quarter of the mass
in baryons was synthesized into helium in the first few minutes.
Measurements of helium abundance in many different astronomical settings (stars,

H II regions, planetary nebulae) indeed reveal a helium mass abundance that is con-
sistent with this prediction. This large amount of helium could not plausibly have
been produced in stars. On the other hand, the fact that the helium abundance is
nowhere observed to be lower than ≈ 0.25 is evidence for the unavoidability of
primordial helium synthesis, at this level, among all baryons during the first few
minutes.
Apart from 4He, trace amounts of the following elements are produced during

the first minutes: deuterium (10−5), 3He (10−5), 7Li (10−9), 7Be (10−9), and al-
most nothing else. The precise abundances of these elements depend on the baryon
density, nB , at the time of nucleosynthesis. As we have seen (Eqns. 8.40, 9.13), the
the radiation energy density declines as R−4, but the temperature appearing in the
Planck spectrum also declines as T ∝ 1/R, both before and after recombination.
Since the energy of the photons scales with kT , the photon number density de-
clines as R−3. Because baryons are conserved, their density also declines as R−3

when the Universe expands, and therefore the baryon-to-photon ratio (Eq. 9.25),
η ≈ 5 × 10−10, does not change with time. Since we know the CMB photon
density today, nγ , measurements of the abundances of the light elements in astro-
nomical systems that are believed to be pristine, i.e., that have undergone minimal
additional processing in stars (which can also produce or destroy these elements)
lead to an estimate of the baryon density today. In units of the critical closure
density, ρc,

ΩB =
nBmp

ρc
=

η nγmp

ρc
. (9.55)

The baryon density based on these measurements is
0.01 < ΩB < 0.05. (9.56)

As already mentioned, a completely independent estimate of ΩB comes from ana-
lyzing the fluctuation spectrum of CMB anisotropies. The relative amplitudes of the
acoustic peaks in the spectrum depend on the baryon density and hence constrain it
to

ΩB = 0.044± 0.004, (9.57)
in excellent agreement with the value based on element abundances. Note that both
of these measurements tell us that, even though the mass density of the Universe is
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and a small fraction is integrated into other elements. Numerical computation of
the results of all the parallel nuclear reactions that occur as the Universe expands,
and as the density and the temperature decrease, shows that, in the end, the ratio
between neutrons inside 4He and protons is about 1/7. Thus, for every 2 neutrons
there are 14 protons. Since every 4He nucleus has 2 neutrons and 2 protons, there
are 12 free protons for every 4He nucleus, or the ratio of helium to hydrogen atoms
is 1/12. The mass fraction of 4He will then be
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4N(4He)

N(H) + 4N(4He)
=
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1 + 4 1
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=
1
4
. (9.54)

A central prediction of Big Bang cosmology is therefore that a quarter of the mass
in baryons was synthesized into helium in the first few minutes.
Measurements of helium abundance in many different astronomical settings (stars,

H II regions, planetary nebulae) indeed reveal a helium mass abundance that is con-
sistent with this prediction. This large amount of helium could not plausibly have
been produced in stars. On the other hand, the fact that the helium abundance is
nowhere observed to be lower than ≈ 0.25 is evidence for the unavoidability of
primordial helium synthesis, at this level, among all baryons during the first few
minutes.
Apart from 4He, trace amounts of the following elements are produced during

the first minutes: deuterium (10−5), 3He (10−5), 7Li (10−9), 7Be (10−9), and al-
most nothing else. The precise abundances of these elements depend on the baryon
density, nB , at the time of nucleosynthesis. As we have seen (Eqns. 8.40, 9.13), the
the radiation energy density declines as R−4, but the temperature appearing in the
Planck spectrum also declines as T ∝ 1/R, both before and after recombination.
Since the energy of the photons scales with kT , the photon number density de-
clines as R−3. Because baryons are conserved, their density also declines as R−3

when the Universe expands, and therefore the baryon-to-photon ratio (Eq. 9.25),
η ≈ 5 × 10−10, does not change with time. Since we know the CMB photon
density today, nγ , measurements of the abundances of the light elements in astro-
nomical systems that are believed to be pristine, i.e., that have undergone minimal
additional processing in stars (which can also produce or destroy these elements)
lead to an estimate of the baryon density today. In units of the critical closure
density, ρc,

ΩB =
nBmp

ρc
=

η nγmp

ρc
. (9.55)

The baryon density based on these measurements is
0.01 < ΩB < 0.05. (9.56)

As already mentioned, a completely independent estimate of ΩB comes from ana-
lyzing the fluctuation spectrum of CMB anisotropies. The relative amplitudes of the
acoustic peaks in the spectrum depend on the baryon density and hence constrain it
to

ΩB = 0.044± 0.004, (9.57)
in excellent agreement with the value based on element abundances. Note that both
of these measurements tell us that, even though the mass density of the Universe is
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and a small fraction is integrated into other elements. Numerical computation of
the results of all the parallel nuclear reactions that occur as the Universe expands,
and as the density and the temperature decrease, shows that, in the end, the ratio
between neutrons inside 4He and protons is about 1/7. Thus, for every 2 neutrons
there are 14 protons. Since every 4He nucleus has 2 neutrons and 2 protons, there
are 12 free protons for every 4He nucleus, or the ratio of helium to hydrogen atoms
is 1/12. The mass fraction of 4He will then be

Y4 =
4N(4He)

N(H) + 4N(4He)
=

4 1
12

1 + 4 1
12

=
1
4
. (9.54)

A central prediction of Big Bang cosmology is therefore that a quarter of the mass
in baryons was synthesized into helium in the first few minutes.
Measurements of helium abundance in many different astronomical settings (stars,

H II regions, planetary nebulae) indeed reveal a helium mass abundance that is con-
sistent with this prediction. This large amount of helium could not plausibly have
been produced in stars. On the other hand, the fact that the helium abundance is
nowhere observed to be lower than ≈ 0.25 is evidence for the unavoidability of
primordial helium synthesis, at this level, among all baryons during the first few
minutes.
Apart from 4He, trace amounts of the following elements are produced during

the first minutes: deuterium (10−5), 3He (10−5), 7Li (10−9), 7Be (10−9), and al-
most nothing else. The precise abundances of these elements depend on the baryon
density, nB , at the time of nucleosynthesis. As we have seen (Eqns. 8.40, 9.13), the
the radiation energy density declines as R−4, but the temperature appearing in the
Planck spectrum also declines as T ∝ 1/R, both before and after recombination.
Since the energy of the photons scales with kT , the photon number density de-
clines as R−3. Because baryons are conserved, their density also declines as R−3

when the Universe expands, and therefore the baryon-to-photon ratio (Eq. 9.25),
η ≈ 5 × 10−10, does not change with time. Since we know the CMB photon
density today, nγ , measurements of the abundances of the light elements in astro-
nomical systems that are believed to be pristine, i.e., that have undergone minimal
additional processing in stars (which can also produce or destroy these elements)
lead to an estimate of the baryon density today. In units of the critical closure
density, ρc,

ΩB =
nBmp

ρc
=

η nγmp

ρc
. (9.55)

The baryon density based on these measurements is
0.01 < ΩB < 0.05. (9.56)

As already mentioned, a completely independent estimate of ΩB comes from ana-
lyzing the fluctuation spectrum of CMB anisotropies. The relative amplitudes of the
acoustic peaks in the spectrum depend on the baryon density and hence constrain it
to

ΩB = 0.044± 0.004, (9.57)
in excellent agreement with the value based on element abundances. Note that both
of these measurements tell us that, even though the mass density of the Universe is

Measurements of He abundance in astronomical settings (stars, H II 
regions, planetary nebulae) indicate the mass abundance is consistant 
with this number.

Where other elements also produced in the first few minutes?
deuterium (10-5) 
3He (10-5) 

7Li (10-9) 
7Be (10-9)
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As the Universe expands, the baryon-to-photon ratio does not 
change.
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and a small fraction is integrated into other elements. Numerical computation of
the results of all the parallel nuclear reactions that occur as the Universe expands,
and as the density and the temperature decrease, shows that, in the end, the ratio
between neutrons inside 4He and protons is about 1/7. Thus, for every 2 neutrons
there are 14 protons. Since every 4He nucleus has 2 neutrons and 2 protons, there
are 12 free protons for every 4He nucleus, or the ratio of helium to hydrogen atoms
is 1/12. The mass fraction of 4He will then be

Y4 =
4N(4He)

N(H) + 4N(4He)
=

4 1
12

1 + 4 1
12

=
1
4
. (9.54)

A central prediction of Big Bang cosmology is therefore that a quarter of the mass
in baryons was synthesized into helium in the first few minutes.
Measurements of helium abundance in many different astronomical settings (stars,

H II regions, planetary nebulae) indeed reveal a helium mass abundance that is con-
sistent with this prediction. This large amount of helium could not plausibly have
been produced in stars. On the other hand, the fact that the helium abundance is
nowhere observed to be lower than ≈ 0.25 is evidence for the unavoidability of
primordial helium synthesis, at this level, among all baryons during the first few
minutes.
Apart from 4He, trace amounts of the following elements are produced during

the first minutes: deuterium (10−5), 3He (10−5), 7Li (10−9), 7Be (10−9), and al-
most nothing else. The precise abundances of these elements depend on the baryon
density, nB , at the time of nucleosynthesis. As we have seen (Eqns. 8.40, 9.13), the
the radiation energy density declines as R−4, but the temperature appearing in the
Planck spectrum also declines as T ∝ 1/R, both before and after recombination.
Since the energy of the photons scales with kT , the photon number density de-
clines as R−3. Because baryons are conserved, their density also declines as R−3

when the Universe expands, and therefore the baryon-to-photon ratio (Eq. 9.25),
η ≈ 5 × 10−10, does not change with time. Since we know the CMB photon
density today, nγ , measurements of the abundances of the light elements in astro-
nomical systems that are believed to be pristine, i.e., that have undergone minimal
additional processing in stars (which can also produce or destroy these elements)
lead to an estimate of the baryon density today. In units of the critical closure
density, ρc,

ΩB =
nBmp

ρc
=

η nγmp

ρc
. (9.55)

The baryon density based on these measurements is
0.01 < ΩB < 0.05. (9.56)

As already mentioned, a completely independent estimate of ΩB comes from ana-
lyzing the fluctuation spectrum of CMB anisotropies. The relative amplitudes of the
acoustic peaks in the spectrum depend on the baryon density and hence constrain it
to

ΩB = 0.044± 0.004, (9.57)
in excellent agreement with the value based on element abundances. Note that both
of these measurements tell us that, even though the mass density of the Universe is

Why?

We know the radiation density declines as R-4. 
The Planck spectrum also declines as T α 1/R, before and 
after recombination. 
The energy of photons scales with kT.  Thus, the photon 
number density declines as R-3. 
Baryons are conserved, so their density also declines as R-3.

Thus, we can write the baryon-to-photon ratio (in terms of 
critical closer density) as

basicastro4 October 26, 2006

TESTS AND PROBES OF BIG BANG COSMOLOGY 225

and a small fraction is integrated into other elements. Numerical computation of
the results of all the parallel nuclear reactions that occur as the Universe expands,
and as the density and the temperature decrease, shows that, in the end, the ratio
between neutrons inside 4He and protons is about 1/7. Thus, for every 2 neutrons
there are 14 protons. Since every 4He nucleus has 2 neutrons and 2 protons, there
are 12 free protons for every 4He nucleus, or the ratio of helium to hydrogen atoms
is 1/12. The mass fraction of 4He will then be

Y4 =
4N(4He)

N(H) + 4N(4He)
=

4 1
12

1 + 4 1
12

=
1
4
. (9.54)

A central prediction of Big Bang cosmology is therefore that a quarter of the mass
in baryons was synthesized into helium in the first few minutes.
Measurements of helium abundance in many different astronomical settings (stars,

H II regions, planetary nebulae) indeed reveal a helium mass abundance that is con-
sistent with this prediction. This large amount of helium could not plausibly have
been produced in stars. On the other hand, the fact that the helium abundance is
nowhere observed to be lower than ≈ 0.25 is evidence for the unavoidability of
primordial helium synthesis, at this level, among all baryons during the first few
minutes.
Apart from 4He, trace amounts of the following elements are produced during

the first minutes: deuterium (10−5), 3He (10−5), 7Li (10−9), 7Be (10−9), and al-
most nothing else. The precise abundances of these elements depend on the baryon
density, nB , at the time of nucleosynthesis. As we have seen (Eqns. 8.40, 9.13), the
the radiation energy density declines as R−4, but the temperature appearing in the
Planck spectrum also declines as T ∝ 1/R, both before and after recombination.
Since the energy of the photons scales with kT , the photon number density de-
clines as R−3. Because baryons are conserved, their density also declines as R−3

when the Universe expands, and therefore the baryon-to-photon ratio (Eq. 9.25),
η ≈ 5 × 10−10, does not change with time. Since we know the CMB photon
density today, nγ , measurements of the abundances of the light elements in astro-
nomical systems that are believed to be pristine, i.e., that have undergone minimal
additional processing in stars (which can also produce or destroy these elements)
lead to an estimate of the baryon density today. In units of the critical closure
density, ρc,

ΩB =
nBmp

ρc
=

η nγmp

ρc
. (9.55)

The baryon density based on these measurements is
0.01 < ΩB < 0.05. (9.56)

As already mentioned, a completely independent estimate of ΩB comes from ana-
lyzing the fluctuation spectrum of CMB anisotropies. The relative amplitudes of the
acoustic peaks in the spectrum depend on the baryon density and hence constrain it
to

ΩB = 0.044± 0.004, (9.57)
in excellent agreement with the value based on element abundances. Note that both
of these measurements tell us that, even though the mass density of the Universe is

CMB photon 
density today
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and a small fraction is integrated into other elements. Numerical computation of
the results of all the parallel nuclear reactions that occur as the Universe expands,
and as the density and the temperature decrease, shows that, in the end, the ratio
between neutrons inside 4He and protons is about 1/7. Thus, for every 2 neutrons
there are 14 protons. Since every 4He nucleus has 2 neutrons and 2 protons, there
are 12 free protons for every 4He nucleus, or the ratio of helium to hydrogen atoms
is 1/12. The mass fraction of 4He will then be

Y4 =
4N(4He)

N(H) + 4N(4He)
=

4 1
12

1 + 4 1
12

=
1
4
. (9.54)

A central prediction of Big Bang cosmology is therefore that a quarter of the mass
in baryons was synthesized into helium in the first few minutes.
Measurements of helium abundance in many different astronomical settings (stars,

H II regions, planetary nebulae) indeed reveal a helium mass abundance that is con-
sistent with this prediction. This large amount of helium could not plausibly have
been produced in stars. On the other hand, the fact that the helium abundance is
nowhere observed to be lower than ≈ 0.25 is evidence for the unavoidability of
primordial helium synthesis, at this level, among all baryons during the first few
minutes.
Apart from 4He, trace amounts of the following elements are produced during

the first minutes: deuterium (10−5), 3He (10−5), 7Li (10−9), 7Be (10−9), and al-
most nothing else. The precise abundances of these elements depend on the baryon
density, nB , at the time of nucleosynthesis. As we have seen (Eqns. 8.40, 9.13), the
the radiation energy density declines as R−4, but the temperature appearing in the
Planck spectrum also declines as T ∝ 1/R, both before and after recombination.
Since the energy of the photons scales with kT , the photon number density de-
clines as R−3. Because baryons are conserved, their density also declines as R−3

when the Universe expands, and therefore the baryon-to-photon ratio (Eq. 9.25),
η ≈ 5 × 10−10, does not change with time. Since we know the CMB photon
density today, nγ , measurements of the abundances of the light elements in astro-
nomical systems that are believed to be pristine, i.e., that have undergone minimal
additional processing in stars (which can also produce or destroy these elements)
lead to an estimate of the baryon density today. In units of the critical closure
density, ρc,

ΩB =
nBmp

ρc
=

η nγmp

ρc
. (9.55)

The baryon density based on these measurements is
0.01 < ΩB < 0.05. (9.56)

As already mentioned, a completely independent estimate of ΩB comes from ana-
lyzing the fluctuation spectrum of CMB anisotropies. The relative amplitudes of the
acoustic peaks in the spectrum depend on the baryon density and hence constrain it
to

ΩB = 0.044± 0.004, (9.57)
in excellent agreement with the value based on element abundances. Note that both
of these measurements tell us that, even though the mass density of the Universe is
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An analysis of the CMB power spectrum (based on relative amplitudes 
of the acoustic peaks) yields
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and a small fraction is integrated into other elements. Numerical computation of
the results of all the parallel nuclear reactions that occur as the Universe expands,
and as the density and the temperature decrease, shows that, in the end, the ratio
between neutrons inside 4He and protons is about 1/7. Thus, for every 2 neutrons
there are 14 protons. Since every 4He nucleus has 2 neutrons and 2 protons, there
are 12 free protons for every 4He nucleus, or the ratio of helium to hydrogen atoms
is 1/12. The mass fraction of 4He will then be

Y4 =
4N(4He)

N(H) + 4N(4He)
=

4 1
12

1 + 4 1
12

=
1
4
. (9.54)

A central prediction of Big Bang cosmology is therefore that a quarter of the mass
in baryons was synthesized into helium in the first few minutes.
Measurements of helium abundance in many different astronomical settings (stars,

H II regions, planetary nebulae) indeed reveal a helium mass abundance that is con-
sistent with this prediction. This large amount of helium could not plausibly have
been produced in stars. On the other hand, the fact that the helium abundance is
nowhere observed to be lower than ≈ 0.25 is evidence for the unavoidability of
primordial helium synthesis, at this level, among all baryons during the first few
minutes.
Apart from 4He, trace amounts of the following elements are produced during

the first minutes: deuterium (10−5), 3He (10−5), 7Li (10−9), 7Be (10−9), and al-
most nothing else. The precise abundances of these elements depend on the baryon
density, nB , at the time of nucleosynthesis. As we have seen (Eqns. 8.40, 9.13), the
the radiation energy density declines as R−4, but the temperature appearing in the
Planck spectrum also declines as T ∝ 1/R, both before and after recombination.
Since the energy of the photons scales with kT , the photon number density de-
clines as R−3. Because baryons are conserved, their density also declines as R−3

when the Universe expands, and therefore the baryon-to-photon ratio (Eq. 9.25),
η ≈ 5 × 10−10, does not change with time. Since we know the CMB photon
density today, nγ , measurements of the abundances of the light elements in astro-
nomical systems that are believed to be pristine, i.e., that have undergone minimal
additional processing in stars (which can also produce or destroy these elements)
lead to an estimate of the baryon density today. In units of the critical closure
density, ρc,

ΩB =
nBmp

ρc
=

η nγmp

ρc
. (9.55)

The baryon density based on these measurements is
0.01 < ΩB < 0.05. (9.56)

As already mentioned, a completely independent estimate of ΩB comes from ana-
lyzing the fluctuation spectrum of CMB anisotropies. The relative amplitudes of the
acoustic peaks in the spectrum depend on the baryon density and hence constrain it
to

ΩB = 0.044± 0.004, (9.57)
in excellent agreement with the value based on element abundances. Note that both
of these measurements tell us that, even though the mass density of the Universe isBoth the elemental abundance and CMB analysis tells us that 

baryons make up only a small fraction of the mass in the universe.
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a good fraction of the closure value (Ωm ≈ 0.3), only about a tenth of this mass is
in baryons, while the rest must be in a dark matter component of unknown nature.
Furthermore, less than 1/10 of the baryons are in stars inside galaxies. The bulk
of the baryons are apparently in a tenuous, hot, and ionized intergalactic gas – the
large reservoir of raw material out of which galaxies formed. A small fraction of
this gas is neutral, and can be observed by the absorption it produces in the spectra
of distant quasars. This will be discussed briefly in Section 9.5.
Table 1 summarizes the current view of the cosmological parameters and the

history of the Universe.

The remaining dark matter component is unknown to nature.

In addition, less than 1/10 of the baryons are in the form of stars.  
The majority is in the form of hot, dense intergalactic gas.
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Table 1: History and Parameters of the Universe
Curvature: Ωm + ΩΛ = 1.02± 0.02.
Mass density: Ωm,0 ≈ 0.3, consisting of

ΩB,0 = 0.044± 0.004 in baryons, and
ΩDM,0 ≈ 0.25 in dark matter.

Dark energy: ΩΛ ≈ 0.7.

time redshift temperature event
z T (K)

∼ 10−34 s ∼ 1027 ∼ 1027 Inflation ends, Ωm + ΩΛ → 1,
causally connected regions have ex-
panded exponentially, initial fluctu-
ation spectrum determined.

2 s 4× 109 1010 Neutron freezeout, no more neu-
trons formed.

3 min 4× 108 109 Primordial nucleosynthesis over –
light element abundances set.

65,000 yr 3500 104 Radiation domination → mass
domination, R ∼ t1/2 → R ∼
t2/3, dark-matter structures start
growing at a significant rate.

400,000 yr 1100 3000 Hydrogen atoms recombine, matter
and radiation decouple, Universe
becomes transparent to radiation of
wavelengths longer than Lyα, CMB
fluctuation pattern frozen in space,
baryon perturbations start growing.

∼ 108 − 109 yr ∼ 6− 20 ∼ 20− 60 First stars form and reionize the
Universe, ending the “Dark Ages”.
The Universe becomes transparent
also to radiation with wavelengths
shorter than Lyα.

∼6 Gyr ∼ 1 ∼ 5 Transition from deceleration to ac-
celeration under the influence of
dark energy.

14 Gyr 0 2.725± 0.002 Today.
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Quasars as Cosmological Probes
- Quasars are supermassive black holes accreting at rates that 

produce luminosities near the Eddington limit (101 - 104Lsun).

- Recall, the Eddington limit is the maximum luminosity possible 
in a system powered by accretion (chapter 4).

- Quasars are easily visible to large cosmological distances.  
Allows us to probe the assembly and accretion history of the 
central black holes in galaxies.

- Very luminous quasars are now rare.  Most galaxies are now 
accreting at low or moderate rates.  Most dense at z ~2 (10 Gyr).

- The most distant quasars are at z ~ 6 (1 Gyr) — also time of 
galaxy formation.
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Review:  Lyman Series:
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Figure 2.5 Energy levels of the hydrogen atom. Arrows indicate excitation from the ground
state (n = 1) to the first excited energy level (n = 2), and de-excitation back
to the ground state. Such excitation and de-excitation could be caused by, e.g.,
absorption by the atom of a Lyman-α photon, and subsequent spontaneous emis-
sion of a Lyman-α photon.

It is customary to group the different energy transitions of atomic hydrogen by a
name identifying the lower energy level involved in the transition, combined with a
greek letter that indicates the upper level of the transition. Thus the Lyman series
consists of all transitions to the n = 1 ground level:
Lyα: 2↔ 1, 1216 Å;
Lyβ: 3↔ 1, 1025 Å;
Lyγ: 4↔ 1, 972 Å;
etc.,
up until the “Lyman continuum”,
Lycon: ∞↔ 1, < 911.5 Å.
Similarly, the Balmer series includes all transitions between the n = 2 state

and higher states:
Hα: 3↔ 2, 6563 Å
Hβ: 4↔ 2, 4861 Å
Hγ: 5↔ 2, 4340 Å
etc.,
up until the “Balmer continuum”,
Bacon: ∞↔ 2, < 3646 Å.
In the same way, the Paschen series, Brackett series, and Pfund series designate

transitions where n = 3, n = 4, and n = 5, respectively, are the lower levels.

All transitions of atomic 
hydrogen to the n = 1 ground 
state.
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In the same way, the Paschen series, Brackett series, and Pfund series designate

transitions where n = 3, n = 4, and n = 5, respectively, are the lower levels.

basicastro4 October 26, 2006

STARS: BASIC OBSERVATIONS 19

Figure 2.5 Energy levels of the hydrogen atom. Arrows indicate excitation from the ground
state (n = 1) to the first excited energy level (n = 2), and de-excitation back
to the ground state. Such excitation and de-excitation could be caused by, e.g.,
absorption by the atom of a Lyman-α photon, and subsequent spontaneous emis-
sion of a Lyman-α photon.

It is customary to group the different energy transitions of atomic hydrogen by a
name identifying the lower energy level involved in the transition, combined with a
greek letter that indicates the upper level of the transition. Thus the Lyman series
consists of all transitions to the n = 1 ground level:
Lyα: 2↔ 1, 1216 Å;
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Lyman-α Forest
- Studying the absorption lines from distant quasars gives us 

information about the clouds of gas along the line of site between 
us and the quasar.

- Each Lyα line is redshifted according to the distance between us 
and the particular absorbing cloud (neutral hydrogen).
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Uses of the Lyα Forests:
Neutral Hydrogen:  Since we see light at all, we can limit the amount of 
neutral hydrogen between us and the quasar and learn about its 
distribution.
Structure Formation: Lyα simulations produce structure (filaments and 
voids) by starting with small fluctuations in the matter density and letting 
gravity and other know forces act.
Hot Dark Matter:  Numerical simulations also show that one can not 
have too much hot dark matter in order to get agreement with 
observations.  Too much hot dark matter erases structure on small scales.
Dark Matter Tracers: Lyα regions are formed by gas falling into 
gravitational wells of matter (luminous and dark).
Nucleosynthesis:  Deuterium is produced in the first 3 minutes and 
afterwards is thought to be destroyed.  Lyα systems have deuterium in 
them.  Provides constraints on primordial deuterium.
Cosmological Constant: By comparing the redshift due to expansion of 
the universe to the angular extent of an object one can constrain the 
expansion history of the universe.
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Simulation of Lyman alpha forest clouds at z=5.
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We have explored a variety of techniques for studying the universe.  
Scientist hope that by using these techniques along with others, we 
will be able to construct a consistent picture of the cosmic history.

Questions still exist: 

1. What is the origin of cosmic rays? 
2. What is the dark matter? 
3. What can compact objects teach us? 
4. How were galaxies formed and how do they evolve? 
5. How do we deal with the complexity of big data? 
6. What is dark energy? 
7. How will we ever understand inflation?

https://www6.slac.stanford.edu/news/2013-11-27-kipac-seven-mysteries.aspx

https://www6.slac.stanford.edu/news/2013-11-27-kipac-seven-mysteries.aspx
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The End!  And Thank you!


