Overview of Direct Detection Dark Matter Experiments

Jodi Cooley - CDMS II, SuperCDMS Southern Methodist University

DSU 2012 - Buzios, Brazil

Jodi Cooley - SMU

Outline

- Motivation and General Principles Shared by Experiments
 - Rates, backgrounds, detection principles
- Experiments
 - Those that see excess events over their predicted backgrounds
 - Those that do not see excess events over their predicted backgrounds
 - Solid state devices
 - Noble liquid detectors
- Concluding Remarks

Evidence from Gravitational Effects

DSU 2012 - Buzios, Brazil

Jodi Cooley - SMU

Properties of Dark Matter

WIMP Dark Matter

Weakly Interacting Massive Particle

- New stable, massive particle produced thermally in early universe
- Weak-scale cross-section gives observed relic density

WMAP $0.095 < \Omega h^2 < 0.129$

$$\sigma_{\chi} \approx 10^{-37} cm^2$$

WIMP Dark Matter

- New TeV physics is required to explain radiative stability of weak scale.
 - * SuperSymmetry
 - Extra Dimensions
- These theories give rise to convenient dark matter candidates.
 - * LSP, LKP

*

Happy Coincidence!

7

DSU 2012 - Buzios, Brazil

Jodi Cooley - SMU

How to Detect Dark Matter

- WIMP scattering on Earth

> WIMP production on Earth _____

DSU 2012 - Buzios, Brazil

← WIMP annihilation in the cosmos

Jodi Cooley - SMU

Direct Detection Event Rates

Halo Model

local density $(\varrho_o) = 0.3 \text{ GeV/cm}^3$, Maxwellian distribution, rms velocity $(v_o) = 220 \text{ km/s}$, $v_{esc} = 650 \text{ km/s}$

Interaction Details spin-independent, coherent scattering $\sigma_{\chi-N} \propto A^2$

D. Cline, Scientific American 2003

Direct Detection Event Rates

- Elastic scattering of a WIMP deposits small amounts of energy into recoiling nucleus (~ few 10s of keV)
- Featureless exponential spectrum
- Expected rate:
 < 5 interaction per ton per day
 (3.8 x 10⁻⁴⁴ cm² for m_x = 70 GeV)
- Radioactive background of most materials higher than this rate.

Challenges

- Clean materials
- shielding
- discrimination power
- Substantial Depth
 - neutrons look like WIMPS
- Long exposures
 - large masses, long term stablility

Courtesy: Scott Hertel

Courtesy: Scott Hertel

Direct Detection Principles

Phonons Charge Carriers Photons

Relative fractions depend on dE/dx

Courtesy: Scott Hertel

Jodi Cooley - SMU

- Many direct detection experiments have excellent discrimination between electron recoils (ER) and nuclear recoils (NR) from the simultaneous measurement of two types of energy in an event.
- Most backgrounds will produce electron recoils.
- * WIMPs and neutrons produce nuclear recoils.
 - * Need to keep neutrons away from the detectors.
 - Despite the excellent discrimination capability of these detectors, we still want to keep the backgrounds as small as possible.

Underground Facilities

DSU 2012 - Buzios, Brazil

Jodi Cooley - SMU

Depth is Important!

DSU 2012 - Buzios, Brazil

Jodi Cooley - SMU

Shielding

Active Muon Veto:

rejects events from cosmic rays

- * Scintillating panels
- Water Shield

CDMS active muon veto

Shielding - An Example

Active Muon Veto:

rejects events from cosmic rays

Pb: shielding from gammas resulting from radioactivity

Polyethyene: moderate neutrons produced from fission decays and from (α,n) interactions resulting from U/Th decays

CDMS - Layers of Polyethylene and Lead

Shielding

Active Muon Veto:

rejects events from cosmic rays

Pb: shielding from gammas resulting from radioactivity

Polyethylene: moderate neutrons produced from fission decays and from (α,n) interactions resulting from U/Th decays

CUE shielding from gammas

CDMS - Top view of inner most shield layer

CRESST-II

- Cryogenic CaWO₄ crystals are instrumented to readout phonon energy and scintillation.
 - operated at ~10 mK
 - each crystal ~ 300 g
- Located in Laboratori Nazionali del Gran Sasso, Italy
- Discrimination between ER and NR events via light yield (light/phonon energy)
 - Signal expected to produce nuclear recoils
 - Dominant background from radioactivity produces electron recoils.

DSU 2012 - Buzios, Brazil

Jodi Cooley - SMU

CRESST-II Data Analysis

*Net exposure: 730 kg-day (July 2009 -March 2011) from 8 detector modules.

*Observed 67 events in acceptance region (orange).

*Analysis used a maximum likelihood in which 2 regions favored a WIMP signal in addition to predict background.

*M1 is global best fit (4.7 σ)

*M2 slightly disfavored (4.2 σ)

*Excess events can not be explained by known backgrounds

*Large background contribution

CRESST-II

- Next data run (2012)

 aims to reduce
 background, increase
 detector mass.
 - Alphas new
 clamping design
 - Add additional shielding to reduce neutron background

DAMA/LIBRA - Modulation

- Baryons travel together in roughly circular orbits with small velocity dispersion
- Dark matter particles travel individually with no circular dependence and large velocity dispersion
- As a result, the flux of WIMPs passing through Earth modulate over the course of a year as Earth rotates around the sun.

DAMA/LIBRA

DAMA

- 100 kg NaI array operated from 1996 - 2002 in Laboratori Nazionali del Gran Sasso.
- Measures scintillation from particle interactions in detectors.
 - No discrimination between nuclear and electron recoils
 - Positive results reported in 1998.

LIBRA

 250 kg array operating since 2003 with first results in 2008.

DAMA/LIBRA Modulation Result

- * Modulation has been observed over 13 cycles.
- * Significance is 8.9σ .
- * Signal is observed only in lowest energy bin.

DAMA/LIBRA

DSU 2012 - Buzios, Brazil

Jodi Cooley - SMU

CoGeNT

- Location: Soudan Underground Laboratory, Minnesota, USA
- 440 g HPGe ionization spectrometer
- Data collection from Dec. 4, 2009
 Mar. 6, 2011 (442 live days)
 - Data collection interrupted due to fire.
- Data collection resumed July 2011.

DSU 2012 - Buzios, Brazil

CoGeNT Data Analysis

- Reject surface events using risetime cut.
- Peaks due to cosmogenic activation of Ge
- After subtraction of known background, an exponential excess of events remains
- Fits to a variety of light-WIMP masses and couplings shown in inset of lower figure.

CoGeNT Modulation Analysis

- Energy Range of fit:
 0.5 3.0 keV_{ee}
 - Period:
 347 ± 29 d
 - Modulation Amplitude: 16.6 ± 3.8%
 - Minimum:
 Oct. 16 ± 12 d
 - Modulation preferred over null at 2.8σ
 - 16% consistent with null hypothesis

Agreement?

- After application of surface event cut brings the CoGeNT spectral and modulation analyses into agreement.
- Q_{Na} = 0.4 is unlikely (arXiv 1007.1005)
- Modulation in CoGeNT would need to be an order of magnitude larger than expected from vanilla Maxwellian halo.

CDMS II and SuperCDMS

CDMS II and SuperCDMS

- Most backgrounds produce electron recoils and have yield ~1.
- * WIMPs and neutrons produce nuclear recoils and have yield ~0.3.
- Surface events can be identified using timing properties of the phonon and charge pulses.

DSU 2012 - Buzios, Brazil

CDMS II Results

First results from the final data taken at Soudan.

 Upper limit at 90% C.L. on the WIMP-nucleon cross section is 3.9 x 10⁻⁴⁴ cm² for WIMPs of mass 70 GeV/c².

DSU 2012 - Buzios, Brazil

CDMS II Low Mass Analysis

- * Reanalysis of CDMS II data
- Lower threshold (2 keV), increases sensitivity to WIMPs with mass below ~10 GeV/c2
- * Used 8 Ge detectors with the lowest trigger thresholds (1.5 2.5 keV)
- Data taken from Oct. 2006 Sept. 2008
 241 kg days "raw" exposure)
- No phonon timing cut was used as it is ineffective below ~5 keV

CDMS II Low Mass Results

 Limits set using the Yellin Optimum Interval Methoc

S. Yellin, PRD, 66, 032005 (2002); arXiv:0709.2701v1 (2007)

 90% CL limits are incompa with DAMA/LIBRA and CoGeNT for spin-independent elastic scattering.

WIMP.

CDMS II Modulation Results

amplitude greater than 0.07 [keV_{nr} kg day]⁻¹ .

DSU 2012 - Buzios, Brazil

Jodi Cooley - SMU

See Brink's talk later today!

SuperCDMS at Soudan

- Currently operating 5 towers of of advanced iZIP detectors (~10 kg Ge) in the existing cryostat at the Soudan Underground Laboratory.
- After 2 years of operation, expected to improve sensitivity to spin-independent WIMPnucleon interactions by a factor of 4 over existing CDMS II results.

SuperCDMS iZIPs

Bulk Events:

Equal but opposite ionization signal appears on both detectors sides (symmetric) **Surface Events:** Ionization signal appears on one detector side (asymmetric)

phonon timing pulse information still possible

DSU 2012 - Buzios, Brazil

EDELWEISS II

- Located in the Laboratoire
 Souterrain de Modane (LSM)
 between Italy and France.
- Similar to CDMS II, except phonon signal is measured by an NTD thermal sensor.
- 10 x 400 g Ge detectors
 operated from 2008 2010

EDELWEISS II

 Discrimination between nuclear recoils (signal) and electron recoils (background) by simultaneous measurement of charge and phonons.

DSU 2012 - Buzios, Brazil

EDELWEISS II Results

- * Final results from 427 kg days.
- 5 events observed in the nuclear recoil band, expected background 3 events
- Upper limit at 90% C.L. on the WIMP-nucleon cross section is 4.4 x 10⁻⁸ pb (4.4 x 10⁻⁴⁴ cm²) for WIMPs of mass 85 GeV/c².
- Assumes standard WIMP Halo model and spin independent interactions.

DSU 2012 - Buzios, Brazil

Jodi Cooley - SMU

EDELWEISS III

- Goal to obtain 3000 kg-days of exposure.
 - New interdigitized ZIPs
 - Increased detector mass (400 - 800 g)
- Explore low mass region
- Reduce background by factor of 10
 - Shielding, material selection
 - better surface rejection

CDMS II - EDELWEISS Joint Analysis

- Edelweiss and CDMS use similar detector technologies.
- Prior to combining the analyses, it was decided to add the candidate lists and exposures together.

XENON - Detection Principle

- Two phase TPC detector bottom PMTs immersed in LXe, detect S1
- Top PMTs in GXe detect S2
- Distribution of S2 give xy coordinates, drift time gives z coordinates
- Ratio of S2/S1 discriminates electron and nuclear recoils

XENON 100 Results

- 100.9 live days acquired from Jan -June 2010.
- * Fiducial mass 48 kg liquid Xe
- 3 events observed with a predicted background of 1.8 ± 0.6 gamma events and 0.1 ± 0.08 ± 0.04 neutron event
- Grey dots indicate nuclear recoil region measured by neutrons from ²⁴¹AmBe source

XENON100

- Upper limit at 90% C.L. on the WIMP-nucleon cross section is 7.0 x 10⁻⁴⁵ cm² for WIMPs of mass 50 GeV/c².
- XENON100 continues to acquire data!

More details: Talk by Alfonsi later today!

DSU 2012 - Buzios, Brazil

XENON 1T

- * 2.2 ton LXe TPC with 1 ton fiducial mass.
- * 10 m water shield (muon veto)
- Approved by INFN for installation at LNGS
- Majority of funding secured.

- * Construction start 2012
- Science data projected to start in 2015.
- Projected sensitivity 2 x 10⁻⁴⁷cm² after 2 years

XMASS

- Single phase LXe detector located in the Kamioka Underground Observatory, Japan. Construction finished in late 2010.
- Water tank acts as an active muon veto.
- Key concept to background discrimination is "self-shielding".
 Gamma particles are absorbed in the outer region of the liquid xenon.
- * WIMPs and neutrons are evenly distributed thoughout volume.
- Recent science run revealed unexpected alpha background DSU 2012 - Buzios, Brazil

DEAP/CLEAN

- Single phase LAr detector.
- * MiniCLEAN (150 kg fiducial)
 - * Construction (2012 2012)
 - * Science run (2012 2014)
 - * Sensitivity ~ $2 \times 10^{-45} \text{ cm}^2$
- * DEAP 3600 (1 tonne fiducial).
 - * Construction (2010 2013)
 - * Science run 2013 2017
 - * Sensitivity ~ $1 \times 10^{-46} \text{ cm}^2$
- DEAP/CLEAN (10 tonne fiducial)
 - * Sensitivity ~ $1 \times 10^{-47} \text{ cm}^2$

DEAP/CLEAN

- **Discrimination between** background and signal comes from pulse shape.
 - Excited atoms decay to ground * state through formation of single or triplet excimer states which have different decay times.
 - 70% of excimer states created by nuclear recoils are singlets
 - * 30% of excimer states created by electron recoils are triplets

Many Experiments -- Little Time

ObservatoriesFuture: Very Large Detectors

Summary and Outlook

- * Dark matter experimentalists have come up with clever techniques to suppress backgrounds in an attempt to extract a dark matter signal.
- * Three experiments have seen excess events. If these events are interpreted as dark matter it is difficult to reconcile their results.
- * Several experiments have excluded the dark matter interpretation under standard assumptions of the excess seen by these experiments at the 90% C.L. or better.
- * It is necessary to have several technologies in different locations.
- There are many experiments using different techniques currently running world wide. The techniques employed include solid-state devices, two-phase and singlephase noble liquid detectors, superheated detectors.
- There are many planned upgrades and extensions to existing experiments to achieve greater sensitivity.
- * It is an exciting time to be working in this field!