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Chapter 1

• Page 14, Summary 1.1, 2nd bullet item, line 4: Change “A segment of” to “The” to read:

The pseudocode for doing this is:

• Page 20, Computer Exercise 1.1.29, last line of pseudocode: Change end to end for

• Page 25-26, Note: Example 5: The Taylor series ex =

∞∑
k=0

xk

k!
converges for all x with the interval of convergence

(−∞,∞) from the Ratio Test:

∣∣∣∣∣ xk+1

(k + 1)!

/
xk

k!

∣∣∣∣∣ =
|x|

(k + 1)
→ 0 as k →∞.

• Page 26, Note: Example 6: The Taylor series ln(1 + x) =

∞∑
k=1

(−1)k−1
xk

k
convergences for all −1 < x ≤ 1.

Let y = 1 + x. Note that the series ln y =

∞∑
k=1

(−1)k−1
(y − 1)k

k
converges for all 0 < y ≤ 2 from the Ratio Test:∣∣∣∣∣ (y − 1)k+1

k + 1

/
(y − 1)k

k

∣∣∣∣∣ = |y − 1| k

k + 1
< 1 when y = 1 or |y − 1| < 1 as k →∞.

• Page 39, Example 1, second displayed equation: Change exponent from ±k to ±m to read:

x = ±(0.1b2b3)2 × 2±m

• Page 40, line 10 reads: (0.111)2 × 2−1 =
7

16
, (0.111)2 × 20 =

7

8
, (0.111)2 × 21 =

7

4

• Page 40, Below Figure 1.6, Line 2: Change (b2 = 1) to (b1 = 1) to read:

Now allowing only normalized floating-point numbers (b1 = 1), we cannot represent

• Page 42, Line 6: Change “Appendix B” to “Appendix C” to read:

on these subjects are in Appendix C and in the references.)

• Page 44, Example 2, Solution, omit first line in displayed equation to read:

[11000010010100001111000000000000]2 = [C250F000]16

• Page 44, Example 2, Solution, omit first line in displayed equation to read:

[1100000001001010000111100000 · · · 0000]2 = [C04A1E0000000000]16

• Page 45, Line -4 above Table, should read and largest finite floating-point numbers in single precision and double
precision, respectively.

• Page 45, line 3 of in Table, last entry in line −3 should be: ≈ −2−1022

• Page 47, in Machine Epsilon Pseudocode: Change line 2 to

while (1.0 + epsi ≥ 1.0)

Change 4 to

end while

• Page 48, −9, should read: then ε ≈ 2−24. Sometimes ....

• Page 49, above Example 4, line −3: Change ∗ to ×:

· · · for the operations � = +,−,×, / and

• Page 49, above Example 4, line −1: Change ∗ to ×:

for operations � = +,×
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• Page 56, Insert new sentence after Significant Digits to read:

We first address the elusive concept of significant digits or significant figures in a number. They are the digits
in a decimal number that are warranted by the accuracy of the means of measurement. Suppose · · ·

• Page 59, Example 3: Change “how many” to “how much” to read:

In the subtraction of y = .6311 from x = .6353, how much significance is lost?

• Page 59, Example 3, Solution, last line: Change “figures” to “digits” to read:

significant digits in x and y. �

• Page 62, Line 6: Change ex − e−2x to e3x − 1 to read:

e3x − 1 when x > 0 and

• Page 62, Line 8: Change = to ≈ and change 5 to / to read:

This inequality is valid when x = 1
3 ln 2 ≈ 0.23105. Similar reasoning when x < 0 shows

• Page 62, Line 9: Change 5 to / to read:

that for x / −0.23105 and at most 1 bit is lost. Hence, the series should be used for

Chapter 2

• Page 76, pseudocode, line 1: Add , (bi)1:n

integer i, j, n; real sum; real array (aij)1:n×1:n, (xi)1:n, (bi)1:n

• Page 78, 2nd displayed equation: Change
1

n
to

1

i
on RHS to read:

p(1 + i) = · · · = · · · = 1

i
[(1 + i)n − 1]

• Page 79, Summary 2.1

• The basic elimination procedure overwrites the following values for 1 5 k 5 n− 1.

• Page 83, Insert before last paragraph:

Keep in mind that ε << 1 so that ε−1 >> 1.

Chapter 3

• Page, 143, Line 4, replace “overflow” with “underflow” to read:

If it is nearly zero, an underflow can occur in Equation (3).

Chapter 4

Chapter 5

• Page 229, Basic Simpson’s Rule∫ a+2h

a

f(x) dx ≈ h

3
[f(a) + 4f(a+ h) + f(a+ 2h)]

• Page 231, first two displayed equations:∫ b

a

f(x) dx =

n/2∑
i=1

∫ a+2ih

a+2(i−1)h
f(x) dx ≈ S(f, P )

Using the basic Simpson’s rule, we have the right-hand side

S(f, P ) =

n/2∑
i=1

h

3
f(a+ 2(i− 1)h) + 4f(a+ (2i− 1)h) + f(a+ 2ih)]
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• Page 236, Remarks, first paragraph, line 3:

a high-order Newton-Cotes rule over an entire interval, it is preferable to use a composite

• Page 236, Remarks, second paragraph, line 2:

only used quadrature rules, since they involve fractions that are easy to use in hand

• Page 240, Change of Intervals

Some numerical integration rules, such as Gaussian rules that we discuss in the next subsection, are usually given
on an interval such as [0, 1] or [−1, 1].

• Page 240, Bottom of page, omit “Gaussian”, to read:

With the transformation x = 1
2 (b− a)t+ (a+ b), a quadrature rule of the form

Chapter 6

Chapter 7

• Page 302, second displayed equation: Change x to x′ in LHS to read:∫ t+h

t

x′ dx =

∫ t+h

t

f(r, x(r)) dr

• Page 304, Theorem 1, line 1: Change ∂y to ∂x to read:

If f and ∂f/∂x are continuous · · ·

• Note: Page 312–331 To be consistent with the ODE system version of Runge-Kutta methods, one could move h’s
from K1, K2, etc. to the main formula such as x(t+ h) = x(t) + h

[
w1K1 + w2K2

]
.

• Page 325, end of second paragraph: Change to read:

This is a linear system Ac = b of equations in n unknowns. The elements of the matrix

A = (Aij) are Aij = (1− i)j , and the right-hand side b = (bi) is bi = 1/i.

• Page 328, Summary 7.3, before last bullet item:

The quantity ε = [x(t+ h)− x̃(t+ h)|

• Page 335, bottom displayed equations, use capital letters X and K1 and K2 on RHS:

where
K1 = F (t,X)

K2 = F
(
t+ 1

2h,X + 1
2hK1

)
K3 = F

(
t+ 1

2h,X + 1
2hK2

)
K4 = F (t+ h,X + hK3)

• Page 342, line 3: Change (12) to (13) to read:

As an example, the ordinary differential system is Equation (13) can be written

• Page 347, beginning of last paragraph, bottom of page: Change “mulitstep” to “multi-step” to read:

An example of a multi-step formula is known as the Adams-Bashforth formular (see

• Page 353, Stiff ODEs and an Example, line 3, omit “the” to read:

model physical phenomena. · · ·

• Page 354, end of first paragraph, replace “increased” with “increases”:

increases. (See Exercise 7.5.2.)
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• Page 354, after Euler’s Equation, line 5, insert “the” to read:

· · · For Xn to converge to 0 for any choice of the initial

• Page 354, line −4, bottom of page, omit extraneous “y” to read:

of the method. In such algorithms, the Jacobian matrix ∂F/∂X may play a role. Solving

• Page 354, line −2, insert “or singular” to read:

efficiency of the code. The Jacobian matrix may be sparse or singular, an indication that the function · · ·
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Chapter 8

• Page 365, Doolittle Factorization Pseudocode: Change end do to end for (3 times)

• Page 368, 2nd sentence: Change “Equivalently, we have” to “Consequently, we have”

• Page 370, Cholesky Factorization Pseudocode: Change end do to end for (2 times)

• Page 398, last line in pseudocode: Change end do to end for

• Page 399, last line in pseudocode: Change end do to end for

• Page 403, Exercise 2, last line in pseudocode: Change end do to end for

• Page 444, line −2: Change to add k-th and make fraction larger

In general, the k-th step is

zk = vk −
k−1∑
j=1

projvj
vk, qk =

zk
||zk||

• Page 445, Example 1: Change to subscripts to

Consider the vectors v1 = (1, ε, 0, 0), v2 = (1, 0, ε, 0), and v3 = (1, 0, 0, ε).

• Page 454, top displayed matrices change spacing to:

D =

[
5 0 0
0 2 0

]
D+ =


1
5 0

0 1
2

0 0


• Page, top displayed equation: Change spacing to:

A =


−85 −55 −115
−35 97 −167

79 56 102
63 57 69
45 −8 97.5
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Chapter 9

• Page 459, line 1 below Introduction: · · · function into a linear combination of sines and cosines. · · ·

• Page 460, Trigonometric Identities (bottom displayed equations):

cosmx cosnx =
1

2

[
cos[(m− n)x] + cos[(m+ n)x]

]
sinmx sinnx =

1

2

[
cos[(m− n)x]− cos[(m+ n)x]

]
sinmx cosnx =

1

2

[
sin[(m− n)x) + sin((m+ n)x)

]
• Page 461, Example 1, Solution, last two line:

=
1

2

∫ π

−π

[
cos[(m− n)x]− cos[(m+ n)x]

]
dx

=
1

2

[ 1

m− n
sin[(m− n)x]− 1

m+ n
sin[(m+ n)x]

]π
−π

= 0

x ≈ pN (x) = 2

N∑
n=1

(−1)n+1 1

n
sinnx (14)

f(x) =
1

2L
x on (0, 2L) with f(0) =

1

2
= f(2L)

• Page 468, Equation (18):

x

2L
≈ pN (x) =

1

2
− 1

π

N∑
n=1

1

n
sin
(nπ
L
x
)

(18)

• Page 468, line after subheading Fourier Series Examples:

Here are some common 2L-periodic Fourier series. (See Figures 9.7–9.9 over [0, 2π] with the partial sums using 2,
6, 10, or more terms.)

• Page 471, line −2 above the table, make boldface to read:
An n-th root of unity is primitive, if it is not a k-th root of unity for some smaller k: xk 6= 1, for k = 1, 2, . . . , n−1.

• Page 472, second margin note: Change from Vandermonde Matrix to Fourier Matrix and the sentence below
and to the right of it:

This is known as the Fourier matrix of the roots of unity ωkn.

• Page 475, line 5, lower limit on integral: Change from π to −π to read:

〈f, g〉 =

∫ π

−π
f(x)g(x) dx

• Page 476, third bullet item, equations for an and bn: Change
1

P
to

2

P
in both.

• Page 477, at the end of the third bullet item: change Vandermonde to Fourier so it read:

which is the Fourier matrix of the roots of unity.
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• Page 478, Exercise 9.4.5, Exercise 9.4.6, and Exercise 9.4.7: Change or modify to read:

5. For 2L-periodic functions f(x) = xk on [−L,L]
aa. k = 1, 3 ab. k = 2, 4

derive the Fourier coefficients and series.

Then simplify them by letting L = π.

6. Starting with the Fourier series for a 2π-periodic

function f over [−π, π] and Equations (6)–(9),

write out the details for using a change of variables

and the substitution rule to convert to the formulas

for the Fourier series of periodic functions over:

a. [−P/2, P/2], Equation (15)

b. [−L,L], Equation (16)

c. [0, 2L], Equation (17)

d. [x0, x0 + 2L]

7. Determine the Fourier series for these

2π-periodic functions:

a. f(x) =
{ x/L, 0 5 x 5 L

2− x/L, L 5 x 5 2L

b. g(x) =

{
x+ L/2, −L 5 x 5 0

−x+ L/2, 0 5 x 5 L

c. r(x) =

{
0, −π 5 x 5 0

sinx, 0 5 x 5 π

ad. s(x) =


−1, −π < x < −π2

0, −π2 < x < π
2

1, π
2 < x < π

• Page 478, Exercise 9.4.13a:

a. ei2π = 1, eiπ + 1 = 0

• Page 478, Exercise 9.4.14:

14. Derive these Fourier series for these

2π-periodic functions over [−π, π]:

a. x = −2

∞∑
n=1

(−1)n
1

n
sinnx

b. x2 =
π2

3
− 4

∞∑
n=1

(−1)n
1

n2
cosnx

c. x3 = −2

∞∑
n=1

(−1)n
1

n3
(
−6 + n2π2

)
sinnx

Find some interesting infinite series identities.

• Page 478, Exercise 9.4.15: Change to read:

15. Determine the complex conjugate of ωkn.
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• Page 479, Exercise 9.4.18: Change displayed equation to read:

f(x) =

{
0, −π < x 5 0

x, 0 5 x < π

• Page 479, Computer Exercise 9.4.2, Computer Exercise 9.4.3, Computer Exercise 9.4.4, and Computer Exercise
9.4.5: Replace or modify with the following:

Computer Exercises 9.4

1. [Leave as is.]

2. Use a mathematical software system or a program-
ming language to compute the first eight sets of the
n-th roots of unity based on the pseudocode

for n = 1 to N
for k = 0 to n− 1
ωkn = ei2π(k/n)

end for
end for

Numerically verify these properties:

a. ω0
n = 1, ωnn = −1

b.

n−1∑
k=0

ωkn = 0, (n = 2)

c.

n−1∏
k=0

ωkn = (−1)n−1

d. This a n× n normalized unitary matrix

1√
n



1 1 1 1 · 1

1 ω ω2 ω3 · · · ωn−1

1 ω2 ω4 ω6 · · · ω2(n−1)

1 ω3 ω6 ω9 · · · ω3(n−1)

...
...

...
...

. . .
...

1 ωn−1 ω2(n−1) ω3(n−1) · · · ω(n−1)2


where ω = ei(2π/n) = cos(2π/n) + i sin(2π/n)
is the twiddle factor.

3. Use mathematical software to compute the Fourier
matrices F2, F4, and F8 such as

F4 =


1 1 1 1
1 i i2 i3

1 i2 i4 i6

1 i3 i6 i9

 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 −i


For these cases, show that F2n can be written as a
product of n matrices each of which has only two
nonzero entries in each row.

4. (Continuation) Directly compute

a. F4, F−14 and F8, F−18

b. F8P8 =

[
F4 D4F4

F4 −D4F4

]
where D4 = Diag(1, ω, ω2, ω3) and permutation
matrix P8 permutes the columns of F8 so that
the odd-index columns come first.

5. Use mathematical software to plot these functions
and several of their Fourier series partial sums using
a variety of different amplitudes A, periods P = 2L,
and intervals such as [−π, π], [−L,L], or [0, 2L].

a. Sawtooth Wave, Equation (19)

b. Square Wave, Equation (20)

c. Triangle Wave, Equation (21)
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• Page 480, Computer Exercises 9.4.6, Computer Exercises 9.4.7, Computer Exercises 9.4.8, and Computer Exercises
9.4.9: Replace entire page 480 with the following:

6 (Continuation) Re-do the previous computer exer-
cise using complex Fourier series, which may have
an advantage in some situations.

7. Consider these periodic functions

a. f(x) = 2 + x, x ∈ (−2, 2)
ab. g(x) = x(x+ 1), x ∈ (−π, π)

c. s(x) =
∣∣∣sin x

2

∣∣∣, x ∈ (−π, π)

d. r(x) = 1
2 (π − x), x ∈ (0, 2π)

e. h(x) =
{
π + x, x ∈ (−π, 0)
π − x, x ∈ (0, π)

Use mathematical software to symbolically compute
the Fourier series partial sums with 2, 6, 10, or
more terms. Plot the function and the partial sums.
Compare the results with using any available built-
in Fourier series routines.

8. Consider the 2π-periodic functions xk over [−π, π]

a. k = 1 c. k = 3

b. k = 2 ad. k = 4

Use mathematical software to symbolically compute
the Fourier series partial sums, in simplified form.
Plot the function and the partial sums with 2, 6, 10,
or more terms. Find some infinite series identities

such as
π4

90
=

∞∑
n=1

1

n4
.

9. Consider these periodic functions

a. f(x) = ex/π, x ∈ [−π, π]

b. g(x) = sinx, x ∈ [−π, π]

c. h(x) =


0, x ∈ [−π,−π2 )

1, x ∈ (−π2 ,
π
2 )

0, x ∈ (π2 , π]

d. r(x) = cosh(x− π), x ∈ [−2π, 0]
(periodic extension)
(even periodic extension)
(odd periodic extension)

Use mathematical software to symbolically compute
the complex Fourier coefficients and their partial
sums, with 2, 6, 10, or more terms, as well as plot-
ting them. Compare the results to using any avail-
able built-in Fourier series functions or procedures.

10. Consider the 2π-periodic function f(x) = x2 over
[−1, 1]. Use symbolic mathematical software to
compute the complex Fourier series. Establish some

infinite series identities such as
π2

6
=

∞∑
n=1

1

n2

Hint: The Parseval’s Identity may be useful
∞∑

n=−∞
|cn|2 =

1

2π

∫ π

−π
|f(x)|2 dx
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Chapter 10

Chapter 11

• Page 516, pseudocode, line −12: Change end to end for

Chapter 12

• Page 550, pseudocode real function Norm, lines 4–8:

2nd for-statement and double indent t← t+ u2ij to read:

...

for i = 1 to nx − 1

for j = 1 to ny − 1

t← t+ u2ij

end for

end for

...

Chapter 13

Chapter 14

Answers

• Page 641, Replace answers to Exercise 2.1.7a and Exercise 2.1.7b:

Exercises 2.1
...

7a.


x1 = 1.6034 + 0.4165i

x2 = −0.4793− 1.5664i

x3 = 3.2039 + 1.2425i

7b.


x1 = 1.7915 + 0.1034i

x2 = 1.2743− 0.9389i

x3 = −1.0544− 3.517i

• Page 645, Modify answers to Exercises 5.1.2:

Exercises 5.1
...

22.
∣∣Error Term

∣∣ 5 0.3104

• Page 646, Modify answers to Exercise 5.4.13 and Exercise 6.2.7a:

Exercises 5.4
...

13. A =
h

3
, B =

4

3
h, C =

h

3
, D = 0

...

Exercises 6.2
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7a. S(x) is not continuous at x = −1,

S′′(x) is not continuous at x = −1, 1

...

8b. Should be n+ 1

8c. Should be m(n− 1)

• Page 647, Modify the answer to Exercise 6.3.2

Exercises 6.3

2. Chebyshev polynomials recurrence relation.

See Section 9.2, page 436.

...

• Page 650, Make χ boldface in both answers to Exercise 8.1.16a(also alignement of 2nd column) and Exercise 8.1.16b
to match those on page 377.

Exercises 8.1
...

16a. χ−1 =


1 0 0 −1
1 1 −1 −1
−1 0 1 −1

0 0 0 1



16b. χ−1 =


0 −1 −1 1
−1 0 −1 1
−1 −1 0 1

1 1 1 −1


• Page 651, Add to second line in answer for Computer Exercise 8.2.11 to read:

Computer Exercise 8.2

...

11. Eigenvalues/Eigenvectors: 1, (−1, 1, 0, 0); 2, (0, 0,−1, 1);
5, (−1, 1, 2, 2); 10, (2, 2, 1, 1)

• Page 651, Modify the answer to Exercise 9.2 to read:

Exercises 9.2
...

5. By Exercise 9.2.4, the recurrence relation is the

same as (2): Tn(x) = fn(x) = cos(n arccosx)

• Page 652, Replace answers to Exercise 9.4.5 and Exercise 9.4.7d with the following:

Exercises 9.4

5a. x: bn = −(−1)n
2L

nπ
5b. x2:

{ 1

2
a0 =

1

3
L2

an = (−1)n
4L

n2π2

7d. s(x) =
2

π

∞∑
n=1

[
cos

nπ

2
− cosnπ

]
sinnπ
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• Page 652, Replace answers to Computer Exercise 9.4.6 and Computer Exercise 9.4.8a with the following:

Computer Exercises 9.4

7b. x(x+ 1) =
π3

3
+

∞∑
n=1

(−1)n
[ 4

n2
cosnx− 2

n
sinnx

]

8d. x4 =
π4

5
+ 8

∞∑
n=1

(−1)n
1

n4
(
−6 + n2π2

)
cosnx

• Page 653, Move the table in Answer for Computer Exercise 11.1.1 to be the Answer for Computer Exercise 11.2.1
and insert the following as the new Answer for Computer Exercise 11.1.1:

Computer Exercises 11.1

1. General solution: x(t) = ln(8π2)− 2 ln(cos 2πt)

Exercises 11.2
...

Computer Exercises 11.2

1. (table from old answer to Computer Exercise 11.1.1)

2a. x = 1/(1 + t) 2b. x = log(1 + t)
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