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Dr. John Fattaruso
Background

● Ph.D. Electrical Engineering, U. C. Berkeley; 
minors Electromagnetic theory, Statistics

● ~22 years at Texas Instruments; Analog circuit and 
solid state device design; Distinguished Member of 
the Technical Staff

● ~40 years of numerical programming in machine 
languages, Fortran, C, C++, Java
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What Type of Course is Physics 3340?

Numerical 
Analysis

Computer 
Programming

Physics

Computational 
Physics
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Contributors to Early Numerical Analysis

● Newton
● Gauss
● Lagrange
● Euler
● Legendre
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Where Does Numerical Analysis Fit In?

Mathematical model

Computer program

Numerical Algorithm

Numerical or graphical solution

Physics principles

Computer hardware
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Solving Physics Problems Numerically

Numerical 
Algorithm

Computer 
Hardware

Each of these tools has its own properties and limitations 
that must be understood
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Why Study Numerical Analysis Down at C Level?

● Prepackaged tools like octave or prepackaged libraries 
like gsl don't always do just what you want

● All numerical solutions involve tradeoffs between 
accuracy, convergence, computation speed; these 
tradeoffs should be understood with the fundamental 
algorithms before using prepackaged tools

● “Never in the history of mankind has it been possible to 
produce so many wrong answers so quickly” - Carl Erik 
Fröberg

● Computational speed is like closet space; you'll always 
need more than you have
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Why Program Numerical Code in C?

● C is a ubiquitous language, compiled for any processor 
and universally understood by programmers

● Languages such as Java, Tcl/Tk or Perl, and higher level 
analysis tools such at Matlab or Octave can link to low 
level functions coded in C

● Numerical programs tend to be predominantly 
computation intensive around iterative loops, rather than 
having to deal with large scale data structures or inherited 
object hierarchies

● Data file formats tend to be predominantly columnar 
numerical data, appropriate for standard I/O routines in C
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Class Outline
● Introduction to Linux and numerical programming in C
● Visualization of numerical data with gnuplot
● Roots of nonlinear equations
● Solutions of systems of linear equations
● Solutions of systems of nonlinear equations
● Monte Carlo simulation with pseudorandom numbers
● Interpolation of sparse data points
● Numerical integration
● Solutions of ordinary differential equations
● Boundary value problems
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Class Grading

● Weekly assignments 30%
● Two midterms 20% each
● Final project 30%

● Homework assignments posted on Canvas on 
Mondays, due the following Monday on Canvas by 
date and time deadline

● All source code must be strictly authored by each 
student
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Class Standards

● You may:
○ Collaborate with fellow students deciding on general 

approaches to assignment problems
○ Help debug each other's programs

● You may not:
○ Copy lines of code directly from another student's 

programs
○ Copy another student's assignment file
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History of Computational Economy

(Time magazine, 
17 Feb 2014)
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Historical Computing Devices

(Displayed at the Deutches 
Museum of Science and 
Technology, Munich, Germany)
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Babbage “Difference Engine” (circa 1850)

(Reconstruction, displayed at the 
Computer History Museum, San Jose, CA)
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The Zuse ZI (circa 1935)

(Reconstruction, displayed at the 
German Museum of Technology, 
Berlin, Germany)
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The Colossus (circa 1940)

(Reconstruction, displayed at the 
National Museum of Computing, 
Bletchley Park, England)
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The ENIAC (circa 1943)

(Displayed at the University of Pennsylvania and 
at the Smithsonian Museum, Washington D.C.)
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The UNIVAC I (circa 1950)

(Displayed at the Deutches 
Museum of Science and 
Technology, Munich, Germany)
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The IBM 1620 (circa 1960)
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The Control Data Corporation 6600
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Traditional Computer Terminal - the ASR33



22Physics 3340 - Fall 2017

CRT Computer Terminal - the ADM3A
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Some Remnants of Mainframe/Terminal 
Technology in the C Language and the 

Windows and Unix/Linux OSs

Separate “Carriage Return” and “Newline” characters for EOL in 
Windows date back to driving separate motors in teletype terminals; 
Unix uses single “Newline”

Pseudo terminals can be started and run in separate windows, 
resembling CRT terminal screens

'Print working directory' command  pwd displays on a terminal, as if it 
were a teletype

Tape archive command tar is used to bundle and compress any 
number of files

Formatted print library function named printf displays on a terminal, 
as if it were a teletype

'Break' key on keyboards traces back to a 'Break' key on the teletype 
that would open serial terminal line and signal for attention
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Programming Learning Curve

Time (years)

Number of bugs 
introduced per 100 lines 

of new code written

100

10

1

Spikes occur when a new 
programming language is learned

Lesson: Minimize the 
number of new lines of code 
needed to solve problems
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Reusing Program Code

Program for problem solution

Function 
describing 

equations to solve

Function for 
solving equations

(Reused from 
problem to 
problem)

(Different for each 
problem)

Interface
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Use of Fonts in Class Slides

● Descriptive text is in Arial font
● Text intended for program code or example 

computer output is in Courier font

● A symbolic label intended to have an actual name 
substituted for it is in Times Roman Italic font

● Examples:
○ This is a slide
○ x = 42.0 * sin(theta);
○ Read file file_name
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Employing Computational Physics

● Beyond basic problems, many problems in the real 
world do not admit analytic solution

● Nonlinearities in physical system, described by 
transcendental or other strongly nonlinear 
equations that do not admit analytic solution

● Complexity that gives systems of simultaneous 
equations of too high an order for analytic solution

● Visualization of mathematical dependencies, even 
for linear or simple systems

● Verification of complex analytic solutions
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Class Progress

Basics of Linux, gnuplot, C
Visualization of numerical data
Roots of nonlinear equations
  (Midterm 1)
Solutions of systems of linear equations
Solutions of systems of nonlinear equations
Monte Carlo simulation
Interpolation of sparse data points
Numerical integration
  (Midterm 2)
Solutions of ordinary differential equations
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“Pseudocode” in Cheney and Kincaid

integer i , n ;  real x , y ;  real array (ai)0: n

⋮
for i=0  to n  do
⋮

end for
⋮
x←1.0
⋮
while x>0.0  do
⋮

end while

Declare variables and their types

Iterative 'while' loop: body of loop is 
executed iteratively while the condition 
is true

← is the 'assignment' operator:
the value of the expression on the right is assigned to the variable on the left.

Array notation 
means n+1 real 
values indexed as 
a

0
 through a

n

Iterative 'for' loop: body of loop is 
executed iteratively n+1 times with the 
variable i assigned the values 0, 1, 
2 , ... , n-2, n-1, n in sequence
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“Pseudocode” in Cheney and Kincaid

if i=0  then 
⋮

⋮

else if i=1  then 
⋮

⋮

else
⋮

⋮

end if
⋮
output i , x

Code to execute if the value of i is 1

Code to execute if the value of i is 0

Output the values of i and x

Code to execute otherwise
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Example: Numerical Evaluation of Polynomials

p(x)=a0+ a1 x+ a2 x2
+ ⋯+ an−1 xn−1

+ an xn
=∑

i=0

n

ai x i

multiplications

Naive method of computation would be to evaluate the ith term 
separately as

0+ 1+ 2+ 3+ ⋯+ (n−1)+ n =
n(n+ 1)

2

ai⋅x⋅x⋅x⋅ ⋯ ⋅x

And then sum all n+1 terms. This requires n additions and



32Physics 3340 - Fall 2017

Polynomial Evaluation in Pseudocode

integer i , n ;  real p , x ;  real array (ai)0 :n

p ←0.0
for i=0  to n  do

p ← p+ ai x i

end for

Declare variables and their types
n, x and a

i
 are assumed to have 

assigned values

Code 
statements 
to execute 

in sequence
Iterative 'for' loop: body of loop is 
executed iteratively n times with the 
variable i assigned the values 0, 1, 
2 , ... , n-2, n-1, n in sequence

← is the 'assignment' operator:
the value of the expression on the right is assigned to the variable on the left.

The value that is accumulated in the variable p after n+1 iterations will be the value of the 
polynomial p(x)

Array notation 
means n+1 real 
values indexed as 
a

0
 through a

n
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Image for Algorithmic Variables
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Expanding the for Loop

initialize: p=0
i=0 : p=a0

i=1: p=a0+ a1 x

i=2: p=a0+ a1 x+ a2 x2

i=3: p=a0+ a1 x+ a2 x2
+ a3 x3

⋮

Result: p=∑
i=0

n

ai x i
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More Detailed Pseudocode

integer i , j , n ;  real p , q , x ;  real array (ai)0 : n

p ←0.0
for i=0  to n  do

q ← ai

for j=0  to i−1  do
q ← q∗x

end for
p ← p+ q

end for

Outer 'for' 
loop Inner 'for' loop

Now include detailed pseudocode for evaluating xi
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Nested Evaluation of Polynomials

From section 1.1 of Cheney and Kincaid

p( x)=a0+ x (a1+ x (a2+ ⋯+ x (an−1+ x (an))⋯))

p(x)=a0+ a1 x+ a2 x 2
+ ⋯+ an−1 xn−1

+ an xn

is much more efficiently computed as

Requiring just n multiplications and n additions
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Pseudocode for Nested Algorithm

integer i , n ;  real p , x ;  real array (ai)0 :n

p ←an

for i=n−1  to 0  do
p ←ai+ xp

end for
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Expanding the for Loop

initialize: p=an

i=n−1: p=an−1+ an x

i=n−2: p=an−2+ an−1 x+ an x2

i=n−3: p=an−3+ an−2 x+ an−1 x2
+ an x3

i=n−4 : p=an−4+ an−3 x+ an−2 x2
+ an−1 x3

+ an x4

⋮

Result: p=∑
i=0

n

ai x i
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Synthetic Division of Polynomials

Find q(x)=b0+ b1 x+ b2 x2
+ ⋯+ bn−2 xn−2

+ bn−1 xn−1

such that p(x)=(x−r )q(x)+ p(r ) for some r

Let p(x)=a0+ a1 x+ a2 x2
+ ⋯+ an−1 xn−1

+ an xn

Equate coefficients of xi in both expressions of p(x)
The algorithm for finding b

i
 recursively from b

i+1
 and a

i+1
 appears

It is the same algorithm as nested evaluation of the polynomial p(x) except that 
intermediate terms are stored in an array and are the b

i
 coefficients
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Pseudocode for Synthetic Division Algorithm

After n  iterations
bi  contain coefficients of q(x)

b−1 contains p(r )

integer i , n ;  real p , r ;  real array (a i)0 : n ,(bi)−1 :n−1

bn−1←an

for i=n−1  to 0  do
bi−1←ai+rbi

end for

See
http://en.wikipedia.org/wiki/Horner%27s_method
http://en.wikipedia.org/wiki/Polynomial_remainder_theorem



41Physics 3340 - Fall 2017

Taylor's Theorem with Remainder for f(x)

where ξ  is between c  and x

The error term En+ 1=
f (n+ 1)

(ξ)

(n+ 1)!
(x−c)

n+ 1

f (x)=∑
k=0

n f (k )
(c)

k !
(x−c)k

+ E n+ 1

for a≤x≤b  and a≤c≤b
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Taylor's Theorem with Remainder for f(x+h)

where ξ  is between x  and x+ h

The error term E n+ 1=
f (n+ 1)

(ξ)

(n+ 1)!
hn+ 1

f (x+ h)=∑
k=0

n f (k )
(x)

k !
hk

+ En+ 1

for a≤x≤b  and a≤x+ h≤b
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Example Taylor Series for 

where ξ  is between 1 and 1+ h

Four terms: √(1+ h) ≈ 1+
h
2
−

h2

8
+

h3

16
−()ξ

−
7
2 h4

√(1+ h)

Two terms: √(1+ h) ≈ 1+
h
2
−

1
8
ξ

−
3
2 h2

Three terms: √(1+ h) ≈ 1+
h
2
−

h2

8
+

1
16

ξ
−

5
2 h3
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Pseudocode for Series Approximations

 real h , f ,e , d ;
h ←0.001
while h⩽0.1 do

f ←1+ x /2−h2
/8+ h3

/16
e ←∣ f −√1+ h∣
output h ,e
h ← h⋅101/d

end while

 real h , f ,e , d ;
h ← 0.001
while h⩽0.1 do

f ← 1+ x /2
e ←∣ f −√1+ h∣
output h , e
h ← h⋅101/d

end while

 real h , f ,e , d ;
h ←0.001
while h⩽0.1 do

f ← 1+ x /2−h2
/8

e ←∣ f −√1+ h∣
output h ,e
h ← h⋅101/d

end while

3 terms: 4 terms:2 terms:
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Actual Error in Series Approximation
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Estimated Error in Series Approximation
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Pseudocode for Series Error Estimates

 real h , e ,d ;
h ←0.001
while h⩽0.1 do

e ←()h4

output h , e
h← h⋅101/d

end while

 real h , e , d ;
h ←0.001
while h⩽0.1 do

e ← h2
/8

output h ,e
h ← h⋅101/d

end while

 real h , e ,d ;
h ←0.001
while h⩽0.1do

e ← h3
/16

output h , e
h ← h⋅101/d

end while

3 terms: 4 terms:2 terms:
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Stirling Approximation

From Cheney and Kincaid, problem 1.2.47

Very handy when calculating upper bounds of Taylor series error terms!

n! ⩾ √2π n⋅nn
⋅e−n
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Accuracy of the Stirling Approximation
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