
1Physics 3340 - Fall 2017

Physics 3340
Computational Physics

Fall 2017
Dr. John Fattaruso

http://www.physics.smu.edu/fattarus/

2Physics 3340 - Fall 2017

Dr. John Fattaruso
Background

● Ph.D. Electrical Engineering, U. C. Berkeley;
minors Electromagnetic theory, Statistics

● ~22 years at Texas Instruments; Analog circuit and
solid state device design; Distinguished Member of
the Technical Staff

● ~40 years of numerical programming in machine
languages, Fortran, C, C++, Java

3Physics 3340 - Fall 2017

What Type of Course is Physics 3340?

Numerical
Analysis

Computer
Programming

Physics

Computational
Physics

4Physics 3340 - Fall 2017

Contributors to Early Numerical Analysis

● Newton
● Gauss
● Lagrange
● Euler
● Legendre

5Physics 3340 - Fall 2017

Where Does Numerical Analysis Fit In?

Mathematical model

Computer program

Numerical Algorithm

Numerical or graphical solution

Physics principles

Computer hardware

6Physics 3340 - Fall 2017

Solving Physics Problems Numerically

Numerical
Algorithm

Computer
Hardware

Each of these tools has its own properties and limitations
that must be understood

7Physics 3340 - Fall 2017

Why Study Numerical Analysis Down at C Level?

● Prepackaged tools like octave or prepackaged libraries
like gsl don't always do just what you want

● All numerical solutions involve tradeoffs between
accuracy, convergence, computation speed; these
tradeoffs should be understood with the fundamental
algorithms before using prepackaged tools

● “Never in the history of mankind has it been possible to
produce so many wrong answers so quickly” - Carl Erik
Fröberg

● Computational speed is like closet space; you'll always
need more than you have

8Physics 3340 - Fall 2017

Why Program Numerical Code in C?

● C is a ubiquitous language, compiled for any processor
and universally understood by programmers

● Languages such as Java, Tcl/Tk or Perl, and higher level
analysis tools such at Matlab or Octave can link to low
level functions coded in C

● Numerical programs tend to be predominantly
computation intensive around iterative loops, rather than
having to deal with large scale data structures or inherited
object hierarchies

● Data file formats tend to be predominantly columnar
numerical data, appropriate for standard I/O routines in C

9Physics 3340 - Fall 2017

Class Outline
● Introduction to Linux and numerical programming in C
● Visualization of numerical data with gnuplot
● Roots of nonlinear equations
● Solutions of systems of linear equations
● Solutions of systems of nonlinear equations
● Monte Carlo simulation with pseudorandom numbers
● Interpolation of sparse data points
● Numerical integration
● Solutions of ordinary differential equations
● Boundary value problems

10Physics 3340 - Fall 2017

Class Grading

● Weekly assignments 30%
● Two midterms 20% each
● Final project 30%

● Homework assignments posted on Canvas on
Mondays, due the following Monday on Canvas by
date and time deadline

● All source code must be strictly authored by each
student

11Physics 3340 - Fall 2017

Class Standards

● You may:
○ Collaborate with fellow students deciding on general

approaches to assignment problems
○ Help debug each other's programs

● You may not:
○ Copy lines of code directly from another student's

programs
○ Copy another student's assignment file

12Physics 3340 - Fall 2017

History of Computational Economy

(Time magazine,
17 Feb 2014)

100

10-5

1010

1015

105

Calculations
per second
per $1,000

1900 1920 1940 1960 1980 2000 2014

13Physics 3340 - Fall 2017

Historical Computing Devices

(Displayed at the Deutches
Museum of Science and
Technology, Munich, Germany)

14Physics 3340 - Fall 2017

Babbage “Difference Engine” (circa 1850)

(Reconstruction, displayed at the
Computer History Museum, San Jose, CA)

15Physics 3340 - Fall 2017

The Zuse ZI (circa 1935)

(Reconstruction, displayed at the
German Museum of Technology,
Berlin, Germany)

16Physics 3340 - Fall 2017

The Colossus (circa 1940)

(Reconstruction, displayed at the
National Museum of Computing,
Bletchley Park, England)

17Physics 3340 - Fall 2017

The ENIAC (circa 1943)

(Displayed at the University of Pennsylvania and
at the Smithsonian Museum, Washington D.C.)

18Physics 3340 - Fall 2017

The UNIVAC I (circa 1950)

(Displayed at the Deutches
Museum of Science and
Technology, Munich, Germany)

19Physics 3340 - Fall 2017

The IBM 1620 (circa 1960)

20Physics 3340 - Fall 2017

The Control Data Corporation 6600

21Physics 3340 - Fall 2017

Traditional Computer Terminal - the ASR33

22Physics 3340 - Fall 2017

CRT Computer Terminal - the ADM3A

23Physics 3340 - Fall 2017

Some Remnants of Mainframe/Terminal
Technology in the C Language and the

Windows and Unix/Linux OSs

Separate “Carriage Return” and “Newline” characters for EOL in
Windows date back to driving separate motors in teletype terminals;
Unix uses single “Newline”

Pseudo terminals can be started and run in separate windows,
resembling CRT terminal screens

'Print working directory' command pwd displays on a terminal, as if it
were a teletype

Tape archive command tar is used to bundle and compress any
number of files

Formatted print library function named printf displays on a terminal,
as if it were a teletype

'Break' key on keyboards traces back to a 'Break' key on the teletype
that would open serial terminal line and signal for attention

24Physics 3340 - Fall 2017

Programming Learning Curve

Time (years)

Number of bugs
introduced per 100 lines

of new code written

100

10

1

Spikes occur when a new
programming language is learned

Lesson: Minimize the
number of new lines of code
needed to solve problems

25Physics 3340 - Fall 2017

Reusing Program Code

Program for problem solution

Function
describing

equations to solve

Function for
solving equations

(Reused from
problem to
problem)

(Different for each
problem)

Interface

26Physics 3340 - Fall 2017

Use of Fonts in Class Slides

● Descriptive text is in Arial font
● Text intended for program code or example

computer output is in Courier font

● A symbolic label intended to have an actual name
substituted for it is in Times Roman Italic font

● Examples:
○ This is a slide
○ x = 42.0 * sin(theta);
○ Read file file_name

27Physics 3340 - Fall 2017

Employing Computational Physics

● Beyond basic problems, many problems in the real
world do not admit analytic solution

● Nonlinearities in physical system, described by
transcendental or other strongly nonlinear
equations that do not admit analytic solution

● Complexity that gives systems of simultaneous
equations of too high an order for analytic solution

● Visualization of mathematical dependencies, even
for linear or simple systems

● Verification of complex analytic solutions

28Physics 3340 - Fall 2017

Class Progress

Basics of Linux, gnuplot, C
Visualization of numerical data
Roots of nonlinear equations
 (Midterm 1)
Solutions of systems of linear equations
Solutions of systems of nonlinear equations
Monte Carlo simulation
Interpolation of sparse data points
Numerical integration
 (Midterm 2)
Solutions of ordinary differential equations

29Physics 3340 - Fall 2017

“Pseudocode” in Cheney and Kincaid

integer i , n ; real x , y ; real array (ai)0: n

⋮
for i=0 to n do
⋮

end for
⋮
x←1.0
⋮
while x>0.0 do
⋮

end while

Declare variables and their types

Iterative 'while' loop: body of loop is
executed iteratively while the condition
is true

← is the 'assignment' operator:
the value of the expression on the right is assigned to the variable on the left.

Array notation
means n+1 real
values indexed as
a

0
 through a

n

Iterative 'for' loop: body of loop is
executed iteratively n+1 times with the
variable i assigned the values 0, 1,
2 , ... , n-2, n-1, n in sequence

30Physics 3340 - Fall 2017

“Pseudocode” in Cheney and Kincaid

if i=0 then
⋮

⋮

else if i=1 then
⋮

⋮

else
⋮

⋮

end if
⋮
output i , x

Code to execute if the value of i is 1

Code to execute if the value of i is 0

Output the values of i and x

Code to execute otherwise

31Physics 3340 - Fall 2017

Example: Numerical Evaluation of Polynomials

p(x)=a0+ a1 x+ a2 x2
+ ⋯+ an−1 xn−1

+ an xn
=∑

i=0

n

ai x i

multiplications

Naive method of computation would be to evaluate the ith term
separately as

0+ 1+ 2+ 3+ ⋯+ (n−1)+ n =
n(n+ 1)

2

ai⋅x⋅x⋅x⋅ ⋯ ⋅x

And then sum all n+1 terms. This requires n additions and

32Physics 3340 - Fall 2017

Polynomial Evaluation in Pseudocode

integer i , n ; real p , x ; real array (ai)0 :n

p ←0.0
for i=0 to n do

p ← p+ ai x i

end for

Declare variables and their types
n, x and a

i
 are assumed to have

assigned values

Code
statements
to execute

in sequence
Iterative 'for' loop: body of loop is
executed iteratively n times with the
variable i assigned the values 0, 1,
2 , ... , n-2, n-1, n in sequence

← is the 'assignment' operator:
the value of the expression on the right is assigned to the variable on the left.

The value that is accumulated in the variable p after n+1 iterations will be the value of the
polynomial p(x)

Array notation
means n+1 real
values indexed as
a

0
 through a

n

33Physics 3340 - Fall 2017

Image for Algorithmic Variables

34Physics 3340 - Fall 2017

Expanding the for Loop

initialize: p=0
i=0 : p=a0

i=1: p=a0+ a1 x

i=2: p=a0+ a1 x+ a2 x2

i=3: p=a0+ a1 x+ a2 x2
+ a3 x3

⋮

Result: p=∑
i=0

n

ai x i

35Physics 3340 - Fall 2017

More Detailed Pseudocode

integer i , j , n ; real p , q , x ; real array (ai)0 : n

p ←0.0
for i=0 to n do

q ← ai

for j=0 to i−1 do
q ← q∗x

end for
p ← p+ q

end for

Outer 'for'
loop Inner 'for' loop

Now include detailed pseudocode for evaluating xi

36Physics 3340 - Fall 2017

Nested Evaluation of Polynomials

From section 1.1 of Cheney and Kincaid

p(x)=a0+ x (a1+ x (a2+ ⋯+ x (an−1+ x (an))⋯))

p(x)=a0+ a1 x+ a2 x 2
+ ⋯+ an−1 xn−1

+ an xn

is much more efficiently computed as

Requiring just n multiplications and n additions

37Physics 3340 - Fall 2017

Pseudocode for Nested Algorithm

integer i , n ; real p , x ; real array (ai)0 :n

p ←an

for i=n−1 to 0 do
p ←ai+ xp

end for

38Physics 3340 - Fall 2017

Expanding the for Loop

initialize: p=an

i=n−1: p=an−1+ an x

i=n−2: p=an−2+ an−1 x+ an x2

i=n−3: p=an−3+ an−2 x+ an−1 x2
+ an x3

i=n−4 : p=an−4+ an−3 x+ an−2 x2
+ an−1 x3

+ an x4

⋮

Result: p=∑
i=0

n

ai x i

39Physics 3340 - Fall 2017

Synthetic Division of Polynomials

Find q(x)=b0+ b1 x+ b2 x2
+ ⋯+ bn−2 xn−2

+ bn−1 xn−1

such that p(x)=(x−r)q(x)+ p(r) for some r

Let p(x)=a0+ a1 x+ a2 x2
+ ⋯+ an−1 xn−1

+ an xn

Equate coefficients of xi in both expressions of p(x)
The algorithm for finding b

i
 recursively from b

i+1
 and a

i+1
 appears

It is the same algorithm as nested evaluation of the polynomial p(x) except that
intermediate terms are stored in an array and are the b

i
 coefficients

40Physics 3340 - Fall 2017

Pseudocode for Synthetic Division Algorithm

After n iterations
bi contain coefficients of q(x)

b−1 contains p(r)

integer i , n ; real p , r ; real array (a i)0 : n ,(bi)−1 :n−1

bn−1←an

for i=n−1 to 0 do
bi−1←ai+rbi

end for

See
http://en.wikipedia.org/wiki/Horner%27s_method
http://en.wikipedia.org/wiki/Polynomial_remainder_theorem

41Physics 3340 - Fall 2017

Taylor's Theorem with Remainder for f(x)

where ξ is between c and x

The error term En+ 1=
f (n+ 1)

(ξ)

(n+ 1)!
(x−c)

n+ 1

f (x)=∑
k=0

n f (k)
(c)

k !
(x−c)k

+ E n+ 1

for a≤x≤b and a≤c≤b

42Physics 3340 - Fall 2017

Taylor's Theorem with Remainder for f(x+h)

where ξ is between x and x+ h

The error term E n+ 1=
f (n+ 1)

(ξ)

(n+ 1)!
hn+ 1

f (x+ h)=∑
k=0

n f (k)
(x)

k !
hk

+ En+ 1

for a≤x≤b and a≤x+ h≤b

43Physics 3340 - Fall 2017

Example Taylor Series for

where ξ is between 1 and 1+ h

Four terms: √(1+ h) ≈ 1+
h
2
−

h2

8
+

h3

16
−()ξ

−
7
2 h4

√(1+ h)

Two terms: √(1+ h) ≈ 1+
h
2
−

1
8
ξ

−
3
2 h2

Three terms: √(1+ h) ≈ 1+
h
2
−

h2

8
+

1
16

ξ
−

5
2 h3

44Physics 3340 - Fall 2017

Pseudocode for Series Approximations

 real h , f ,e , d ;
h ←0.001
while h⩽0.1 do

f ←1+ x /2−h2
/8+ h3

/16
e ←∣ f −√1+ h∣
output h ,e
h ← h⋅101/d

end while

 real h , f ,e , d ;
h ← 0.001
while h⩽0.1 do

f ← 1+ x /2
e ←∣ f −√1+ h∣
output h , e
h ← h⋅101/d

end while

 real h , f ,e , d ;
h ←0.001
while h⩽0.1 do

f ← 1+ x /2−h2
/8

e ←∣ f −√1+ h∣
output h ,e
h ← h⋅101/d

end while

3 terms: 4 terms:2 terms:

45Physics 3340 - Fall 2017

Actual Error in Series Approximation

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 0.001 0.01 0.1

A
b

so
lu

te
 e

rr
o

r
in

 s
e

ri
e

s
a

p
p

ro
xi

m
a

tio
n

 o
f s

q
rt

(1
 +

 h
)

h

2 terms
3 terms
4 terms

46Physics 3340 - Fall 2017

Estimated Error in Series Approximation

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 0.001 0.01 0.1

A
b

so
lu

te
 e

rr
o

r
in

 s
e

ri
e

s
a

p
p

ro
xi

m
a

tio
n

 o
f s

q
rt

(1
 +

 h
)

h

2 terms
3 terms
4 terms

47Physics 3340 - Fall 2017

Pseudocode for Series Error Estimates

 real h , e ,d ;
h ←0.001
while h⩽0.1 do

e ←()h4

output h , e
h← h⋅101/d

end while

 real h , e , d ;
h ←0.001
while h⩽0.1 do

e ← h2
/8

output h ,e
h ← h⋅101/d

end while

 real h , e ,d ;
h ←0.001
while h⩽0.1do

e ← h3
/16

output h , e
h ← h⋅101/d

end while

3 terms: 4 terms:2 terms:

48Physics 3340 - Fall 2017

Stirling Approximation

From Cheney and Kincaid, problem 1.2.47

Very handy when calculating upper bounds of Taylor series error terms!

n! ⩾ √2π n⋅nn
⋅e−n

49Physics 3340 - Fall 2017

Accuracy of the Stirling Approximation

 0.1

 1

 10

 100

 1000

 1 10 100

n

Stirling Approximation

log(n!)
log(Stirling Approximation)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

