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Class Progress

Basics of Linux, gnuplot, C
Visualization of numerical data
Roots of nonlinear equations
  (Midterm 1)
Solutions of systems of linear equations
Solutions of systems of nonlinear equations
Monte Carlo simulation
Interpolation of sparse data points
Numerical integration
  (Midterm 2)
Solutions of ordinary differential equations
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Imagine throwing “random” darts at a real number line. The sequence of x-
coordinates represents an ideal random variable. We would expect the sequence of 
x values to exhibit:

Uniform sampling - all x values within a given range are equally likely

Uncorrelated - past values have no affect on the next value

Unpredictability - no way to predict the likelihood of a given value

Random vs. Pseudorandom

x

0

}
Only having these 
two properties is 
called 
“pseudorandom”
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Modulus Operator

Is the remainder left over when a is divided by b as integers
Examples:

a  mod b

7 mod 3=1
3 mod 16=3

16  mod 16=0
17  mod 16=1

In C code, get the integer dividend with the '/' operator, but the modulus with the '%' operator:

int i,j,k;
i = 7;
j = 3;
k = i / j;   /* assigns 2 to k */
k = i % j;   /* assigns 1 to k */
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Generation of Pseudorandom Numbers

Examples:

r i+ 1=(a⋅r i+ c) mod M

a=69069 c=1 M=232=4294967296
r i+ 1=((69069⋅r i)+ 1)  mod 4294967296

a=11 c=0 M=25−1=31
r i+ 1=(11⋅ri) mod 31

a=16807 c=0 M=231−1=2147483647
r i+ 1=(16807⋅r i) mod 2147483647

Note: Don't seed this type of generator with c=0 with 0 !!
Select a, c and M so that M-1 unique numbers generated, excluding one disallowed 
value, and period = M-1
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Example for M=31, seed=1
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Period = 30, that is, in 30 cycles the seed will occur again

Sequence cycles 
through the seed 
number with a 
period of 30 
numbers
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Example for M=231-1, seed=1, 1000 samples
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Seeding Pseudorandom Number Generators

Line segment represents the 
generation sequence of 
pseudorandom numbers, the 
length represents the period

Periodic 
wraparound

seed=23

Portion of total 
generation period 
used by program

seed=2seed=1
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Pseudorandom Generator C Code

#include <stdio.h>
#include <stdlib.h>
#include "random.h"

static unsigned long int random_state = 1;

void random_seed(unsigned long int seed) {
  random_state = seed;
  return;
}

double random_gen(void) {
  unsigned long long int temp_state;

  temp_state = random_state;
  temp_state = (16807ULL * temp_state) % 2147483647ULL;
  random_state = temp_state;
  return(((double) random_state) * 4.6566128752459e-10);
}

Instead of returning an integer, return a floating point number between 0.0 and 1.0, 
which is more useful for numerical work
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Graphical Correlation Test
10,000 points with x=r2i  and y=r 2i+ 1



10Physics 3340 - Fall 2017

What Is This Building?
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Hint: Its Location...
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Monte Carlo Simulation of the Value of π

Generate N points (where N is 
large) with random x and y 
coordinates within the range
-1 < x < +1 ,  -1 < y < +1

x

y

Count m points that land 
inside circle of radius 1, with

√ x 2+ y2⩽1

1

-1 1

-1 So π≈4
m
N

m
N

≈Area of circle
Area of square

=π
4
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Monte Carlo Simulation of the Value of π
green points are within circle, red points are outside
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Generating Random Points on a Unit Circle

set x  to a uniform random variable between −1 and 1
set y  to a uniform random variable between −1 and 1
this sample is a point (x , y) somewhere in the unit square

calculate R sample=√ x2+ y2

if Rsample> 1 discard this sample and start over with a different sample
otherwise extend sample onto unit circle with

x← x
Rsample

y← y
R sample
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Two-Dimensional Random Walk

Initialize x0=0, y0=0
Generate Δ x  and Δ y  on unit circle
Update x i=x i−1+ Δ x  and y i= y i−1+ Δ y

x
i
,y

i

x
i-2

,y
i-2

x
i-3

,y
i-3

x
i-4

,y
i-4

x
i-1

,y
i-1

Δx,Δy
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Two-Dimensional Random Walk
D  = Total distance traveled 

D2=(Δ x1+ Δ x2+ Δ x3+⋯+ Δ xn)
2+ (Δ y1+ Δ y2+ Δ y3+ ⋯+ Δ yn)

2

=Δ x1
2+ Δ x2

2+ Δ x3
2+ ⋯+ Δ xn

2

+ 2 Δ x1 Δ x2+ 2 Δ x1 Δ x3+ ⋯
+ Δ y1

2+ Δ y2
2+ Δ y3

2+ ⋯+ Δ yn
2

+ 2 Δ y1 Δ y2+ 2 Δ y1 Δ y3+ ⋯

For large n , cross terms will cancel out, and on average

D2≈〈Δ x1
2+ Δ x2

2+ Δ x3
2+ ⋯+ Δ xn

2+ Δ y1
2+ Δ y2

2+ Δ y3
2+ ⋯+ Δ yn

2 〉

=n⋅〈r2 〉

So D≈√nr rms
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Random Walk C Code in Lab Exercise
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "random.h"

int main(int argc,char *argv[]) {
  double x,y,dx,dy,radius;
  int n_steps,i_step;
  FILE *position,*distance;
  if (argc != 3) {
    fprintf(stderr,"%s <N steps> <seed>\n",argv[0]);
    exit(1);
  }
  position = fopen("walk_position.dat","w");
  distance = fopen("walk_distance.dat","w");
  n_steps = atoi(argv[1]);
  random_seed(atoi(argv[2]));
  fprintf(position,"0 0\n");
  fprintf(distance,"0 0\n");
  i_step = 0;
  x = 0.0;
  y = 0.0;
  while (i_step < n_steps) {
    dx = ... ;
    dy = ... ;
    radius = ... ;
    if (radius > 1.0) continue;
    dx = ... ;
    dy = ... ;
    x += dx;
    y += dy;
    fprintf(position,"%.8f %.8f\n",x,y);
    fprintf(distance,"%d %.8f\n",i_step + 1,sqrt((x*x) + (y*y)));
    i_step++;
  }
  fclose(position);
  fclose(distance);
  exit(0);
}
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Random Walk
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Random Walk
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100 Particles in Random Walks
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100 Particles in Random Walks



25Physics 3340 - Fall 2017

100 Particles in Random Walks
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Using Floating Point Variables with Comparison Operators

Sequence of real values intended 
for an iterative loop, roundoff error 
bands subject to random walk

real 
number 
line

Discrete values allowed in double precision standard

See http://www.physics.smu.edu/fattarus/rounding_error.html 
for an interactive demonstration

Where actual arithmetic operations land on the real 
number line, and then get rounded up or down to the 
nearest allowed floating point binary value, is similar to 
a pseudorandom variable. A large number of arithmetic 
operations is similar to a pseudorandom walk.
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Example Numerical Random Walks

#include <stdio.h>
#include <stdlib.h>

int main() {
  double x;

  x = 0.0;
  while (x <= 1.0) {
    printf("%.16f\n",x);
    x = x + 0.01;
  }
  exit(0);
}

Output:

0.0000000000000000
0.0100000000000000
0.0200000000000000
  . . .
0.3500000000000001
0.3600000000000002
0.3700000000000002
  . . .
0.7500000000000004
0.7600000000000005
0.7700000000000005
  . . .
0.9700000000000006
0.9800000000000006
0.9900000000000007

This walk with rounding 
errors ended up on the 

high side, so no final 
iteration at the 1.00 value 

coder intended!
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Example Numerical Random Walks

#include <stdio.h>
#include <stdlib.h>

int main() {
  double x;

  x = 0.0;
  while (x <= 1.0) {
    printf("%.16f\n",x);
    x = x + 0.0025;
  }
  exit(0);
}

Output:
0.0000000000000000
0.0025000000000000
0.0050000000000000
  . . .
0.2300000000000001
0.2325000000000002
0.2350000000000002
  . . .
0.4800000000000004
  . . .
0.5025000000000003
0.5050000000000002
0.5075000000000002
0.5100000000000001
0.5125000000000001
0.5150000000000000
0.5175000000000000
0.5199999999999999
0.5224999999999999
  . . .
0.9949999999999898
0.9974999999999897
0.9999999999999897

This walk starts off running over the 
expected value, but then staggers 
back to well under value at the end
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Radioactive Decay
Start with a sample of material with N

0
 radioactive nuclei at time t = 0.

At a given time in the future, the population of radioactive nuclei is N(t).

Assume the probability of radioactive decay is such that the decay rate is

−dN
dt

= λ N

dN
N

= −λ dt

∫
N 0

N
dN
N

= −λ∫
0

t

dt

ln(N )−ln (N 0) = −λ t

N (t ) = N 0 e
−λ t
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Radioactive Decay
But the measured quantity in a lab, for example with a Geiger counter, is the decay rate 
R(t).

T 1/2 =
ln(2)

λ

Usually a decay rate is specified as the “half-life” of a species, that is, the time for half 
the population to decay.

ln R(t) = ln R0−λ t

where R
0
 is the measured decay rate at time t=0. We can experimentally find λ by 

taking regular measurements of the decay rate R(t) and performing a best linear fit 
with the logarithmic relationship

R (t ) = −
dN (t )
dt

= λ N 0e
−λ t

R(t ) = R0 e
−λ t
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Discrete Approximation to Radioactive Decay

−dN
N

= λ dtInterpret

as meaning “the probability of a given nucleus decaying in a time interval dt is λ”
Pseudocode for a discrete approximation algorithm:

integer time,left,decay,i; real test,lambda;

time ← 0
left ← initial population;
while left > 0 do
  decay ← 0;
  for i = 1 to left do
    test ← random number between 0.0 and 1.0
    if test <= lambda then
      decay ← decay + 1
    end if
  end for
  output time,decay,left
  left ← left - decay
  time ← time + 1
end while
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Why is the Night Sky Dark?

Perseids meteor 
shower, August 2016

Aurora Borealis, 
January 2016
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Olbers’ Paradox

If the universe were of static size and infinitely old, why is the night sky dark, instead of 
filled with a uniform brightness equivalent to the average star?

The light intensity from a star a distance R from earth decreases as 1/R2, but the circular 
disc of area obscured by the star also decreases as 1/R2

R
2

R
1

Do the observed discs from the stars distributed with uniform average density 
throughout the volume of a large universe cover all the observed sky area? This is 
equivalent to the problem of shooting arrows in Sherwood Forest. Is it possible for 
any arrows to emerge from the forest without getting stuck in a tree?
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Assign random x and y 
coordinates of trees, 
assumed to have circular 
cross sections of radius=1
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Testing for an Arrow Hit

y

θ (randomly assigned)

x

Equation of the line:

Arrow flight

Tree centered at (x
0
,y

0
)

Equation of the circle:

To test if this arrow hits this tree, 
algebraically test if we can find real 
solutions to points common to both 
the line and the circle at unknown 
coordinates (x,y)

(x−x0)
2+( y− y0)

2=r2

y=mx
where m=tan(θ)



40Physics 3340 - Fall 2017

Testing for an Arrow Hit

y

x

Set (x−x0)
2+(mx− y0)

2=r2

Rearrange into a quadratic equation in x :
ax2+bx+c=0

If solutions exist, x=−b±√b2−4 ac
2a

Simply test for b2−4 ac>0

If this inequality is true, then two real solutions exist for x, and 
the arrow will hit the tree

y=mx
(x−x0)

2+( y− y0)
2=r2
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Generating Random Points on a Sphere

set x  to a uniform random variable between −1 and 1
set y  to a uniform random variable between −1 and 1
set z  to a uniform random variable between −1  and 1
this sample is a point (x , y , z) somewhere in the unit cube

calculate R sample=√ x2+ y2+ z2

if Rsample> 1 discard this sample and start over with a different sample
otherwise extend sample onto unit sphere with

x← x
Rsample

y← y
R sample

z← z
Rsample
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Generating Random Points on a Unit Sphere
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Example: Gauss' Law

E⃗

With a single charge at the center of a sphere, Gauss' Law is equivalent to 
Coulomb's Law, but with multiple charges off center, Monte Carlo sampling can give 
a surface integral without the complexity of spherical coordinates

d A⃗

q=ϵ0∮ E⃗⋅d A⃗
q  is the charge enclosed in a Gaussian surface,

E⃗  is the electric field vector at a surface element, and
d A⃗  is the outward unit vector from the surface element
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Example: Gauss' Law

E⃗ 2

Pick n pseudorandom points on unit sphere. At each surface point, sum the electric 
field vector from m point charges to get a total electric field vector. Form the dot 
product of the total E field vector with the surface area element vector as the sum of 
the products of the x,y and z vector components. The surface area associated with 
each pseudorandom point is 4π / n. Approximate the surface integral as the sum of 
all the dot products. The total turns out to be equal to the sum of the charges inside 
the sphere.

d A⃗

total E⃗
q

2 E⃗3

q
3

E⃗1
q

1

Pseudorandom surface point
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Example: Multidimensional Integration

Suppose you have a 12 element integration to perform over 3 dimensions for 
each element, resulting in a 36 dimensional integral to evaluate, as in:

∫ dx1∫ dx2∫ dx3⋯∫ dx36 f (x1, x2, x3⋯x36)

Suppose you try Simpson's rule or some other discrete interpolation method. 
Say for example, use 64 points for each dimension of integration. This would 
require 6436 evaluations of the integrand function. This is 6436 = 2216 ~ 1065 
evaluations. Suppose on a supercomputer you could evaluate the function in 1 
nanosecond = 10-9 seconds. Evaluation of the integral would take 1065 * 10-9 = 
1056 seconds. The age of the universe is about 1017 seconds.

A practical, but still quite time consuming, method is sampling the 36-
dimensional space with pseudorandom sampling, but is beyond the scope 
of this course.
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Generating Normal Distributions

The Central Limit Theorem from statistics:

Let X
1
, X

2
, ... be identically distributed random variables with mean μ 

and standard deviation σ2.

Form the sum S
n
 = X

1
 + X

2
 + X

3
 + ... + X

n

Then with large n the distribution of

S n−nμ
σ √n

approaches a standard normal distribution
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Generating Normal Distributions
The class pseudorandom number generator gives floating point numbers uniformly 
distributed between 0 and 1:

10

X

Variance σ2=E [ X 2]−μ2=1
3
−1

4
= 1

12

Mean μ=E [ X ]=1
2

Y=S 12−6

So just summing n numbers returned from the generator as S
n
 and calculating:

for a modest value of n will give a very good approximation to a normally distributed variable. 
For simplicity, choose n = 12:

Y=(S n−n2 )⋅√ 12
n
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Additional C Function for Normal Distribution

double random_normal_gen(double mu,double sigma) {
  int i;
  double sum;
  
  sum = random_gen();
  for (i = 1; i < 12; i++) sum += random_gen();
  sum -= 6.0;
  return (mu + (sigma * sum));
}
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Test With 10,000 Samples
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Generating True Random Numbers
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What's Inside?

Arduino Nano Microcontroller 
with ADC and USB interface Analog Amplifier

P-N Diode in Avalanche Mode12.5V generator
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Snow Avalanche Triggered by Skier
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Avalanche Ionization in P-N Diodes

+

V
rev

-

Apply a large reverse-bias voltage, and a large internal electric field will be 
established. If the field reaches a critical level, impact ionization will occur. The 
current can reach large levels with ionization avalanching through the junction.

E⃗
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Ionization of Inert Gasses
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True Random Voltage Waveform

1 msec

1 V
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Testing Random Bits vs. Binomial Distribution
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Testing Correlation of Numerical Stream
10,000 points
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Testing Correlation of Numerical Stream
100,000 points
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Fourier Transform of Numerical Stream
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Test Results from Linux rngtest Tool

$ Random2_Linux -n2500004 | rngtest 

rngtest: starting FIPS tests...
rngtest: entropy source drained
rngtest: bits received from input: 20000032
rngtest: FIPS 140-2 successes: 1000
rngtest: FIPS 140-2 failures: 0
rngtest: FIPS 140-2(2001-10-10) Monobit: 0
rngtest: FIPS 140-2(2001-10-10) Poker: 0
rngtest: FIPS 140-2(2001-10-10) Runs: 0
rngtest: FIPS 140-2(2001-10-10) Long run: 0
rngtest: FIPS 140-2(2001-10-10) Continuous run: 0
rngtest: input channel speed: (min=2.688; avg=4.489; 
max=9765625.000)Kibits/s
rngtest: FIPS tests speed: (min=86.305; avg=98.716; 
max=143.410)Mibits/s
rngtest: Program run time: 4360659098 microseconds

Analyses performed on blocks of 20,000 bits from any random source, after 32 
initialization bits...
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