Class Progress

Basics of Linux, gnuplot, C Visualization of numerical data Roots of nonlinear equations (Midterm 1) Solutions of systems of linear equations **Solutions of systems of nonlinear equations** Monte Carlo simulation Interpolation of sparse data points Numerical integration (Midterm 2) Solutions of ordinary differential equations

General Problem of Systems of Nonlinear Equation Roots

Find
$$x_1, x_2, x_3, ..., x_n$$
 for which
 $f_1(x_1, x_2, x_3, ..., x_n) = 0$ and
 $f_2(x_1, x_2, x_3, ..., x_n) = 0$ and
 \vdots
 $f_n(x_1, x_2, x_3, ..., x_n) = 0$

Example:

$$x^{4} + 14y^{3} - 23x^{2} + 7z - 3 = 0$$
$$\frac{e^{k_{1}x} + e^{-k_{2}y}}{8} = 0$$
$$\sin(3x) - \cos(5y) - \sqrt{7z} + 13 = 0$$

Graphical Two-Dimensional Example

Newton-Raphson Algorithm in One Dimension

given f(x) and x_0 , form Taylor approximation

$$f(x_{i+1}) = f(x_i) + f'(x_i) \cdot (x_{i+1} - x_i)$$

set $f(x_{i+1})=0$ and solve for x_{i+1}

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Extend Newton-Raphson Algorithm to Multiple Dimensions

First define the column vector
$$\vec{x}$$
 as $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$

Then define the column vector
$$\vec{f}(\vec{x})$$
 as $\begin{cases} f_1(\vec{x}) \\ f_2(\vec{x}) \\ \vdots \\ f_n(\vec{x}) \end{cases}$

Extend Newton-Raphson Algorithm to Multiple Dimensions

Now define the Jacobian matrix
$$\boldsymbol{J}(\vec{x})$$
 as
$$\begin{vmatrix} \frac{\partial f_1(\vec{x})}{\partial x_1} & \frac{\partial f_1(\vec{x})}{\partial x_2} & \cdots & \frac{\partial f_1(\vec{x})}{\partial x_n} \\ \frac{\partial f_2(\vec{x})}{\partial x_1} & \frac{\partial f_2(\vec{x})}{\partial x_2} & \cdots & \frac{\partial f_2(\vec{x})}{\partial x_n} \\ \vdots \\ \frac{\partial f_n(\vec{x})}{\partial x_1} & \frac{\partial f_n(\vec{x})}{\partial x_2} & \cdots & \frac{\partial f_n(\vec{x})}{\partial x_n} \end{vmatrix}$$

Physics 3340 - Fall 2017

Extend Newton-Raphson Algorithm to Multiple Dimensions

given $\vec{f}(\vec{x})$ and \vec{x}_0 , form multidimensional Taylor approximation

$$\vec{f}(\vec{x}_{i+1}) = \vec{f}(\vec{x}_i) + J(\vec{x}_i) \cdot (\vec{x}_{i+1} - \vec{x}_i)$$

set $\vec{f}(\vec{x}_{i+1}) = 0$ and solve for \vec{x}_{i+1}

$$\vec{x}_{i+1} = \vec{x}_i - J^{-1}(\vec{x}_i) \cdot \vec{f}(\vec{x}_i)$$

Note: $J^{-1}(\vec{x}_i) \cdot \vec{f}(\vec{x}_i)$ is just the solution of a system of linear equations with $J(\vec{x}_i)$ as the coefficient matrix and $\vec{f}(\vec{x}_i)$ as the right hand side vector

Multidimensional Newton-Raphson Algorithm

- Requires coding of both the functions being solved and its partial derivatives
- Requires any single vector close to a root to start
- Even more important that starting vector is sufficiently close to root than with one-dimensional case
- Fast convergence rate

C Code for Newton-Raphson Algorithm

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "sys_roots.h"
#include "lineg.h"
```

```
int sys_newton_raphson(int n,void (*func)(int n,double *x,double
*f),void (*jacobian)(int n,double *x,double **coeff),double
*init,double *tol,int n_iters) {
   double **a,*d,*xcurrent,*rhs;
   int *rindex,i,i iter,done;
```

```
a = alloc_matrix(n,n);
d = malloc(n * sizeof(double));
xcurrent = malloc(n * sizeof(double));
rhs = malloc(n * sizeof(double));
rindex = (int *) malloc(n * sizeof(int));
i = 0;
while (i < n) {
    xcurrent[i] = init[i];
    i++;
}
```


C Code for Newton-Raphson Algorithm (cont'd)

```
i iter = 0;
  while (i iter < n iters) {</pre>
    (*jacobian) (n,xcurrent,a); /*fill current Newton-Raphson A matrix and RHS
vector*/
    (*func) (n, xcurrent, rhs);
    if (gauss pivotmax(n,a,rhs,d,rindex,1.0e-12)) {
      fprintf(stderr, "Singular Jacobian matrix\n");
      free matrix(n,a);
      free(d);
      free(xcurrent);
      free(rhs);
      free(rindex);
      return(1);
    }
    done = 1;
    i = 0; /*test if all x values are within convergence tolerance*/
    while (i < n) {
      xcurrent[i] -= d[rindex[i]]; /*update current x vector*/
      printf("%.12g ",xcurrent[i]);
      if (fabs(d[rindex[i]]) > tol[i]) done = 0;
      i++;
    putchar(' \ );
    if (done) break;
    i iter++;
```

C Code for Newton-Raphson Algorithm (cont'd)

```
free_matrix(n,a);
free(matrix(n,a);
free(d);
free(xcurrent);
free(rhs);
free(rhs);
if (i_iter == n_iters) {
   fprintf(stderr,"sys_newton_raphson: Iteration limit of %d
reached\n",n_iters);
   return(1);
  }
return(0);
}
```


C Function Dependencies

Numerically Calculating Jacobian Entries

Start with simple one-sided numerical approximation to the first derivative

$$f(x+h) = f(x) + h f'(x) + \frac{f''(\xi)}{2}h^2$$

Solve for f'(x)

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{f''(\xi)}{2}h$$

Error term is of order *h*

Numerically Calculating Jacobian Entries

Improve error order with two-sided numerical approximation to the first derivative

$$f(x+h) = f(x) + h f'(x) + \frac{h^2 f''(x)}{2} + \frac{f''(\xi_1)}{6} h^3$$
$$f(x-h) = f(x) - h f'(x) + \frac{h^2 f''(x)}{2} - \frac{f'''(\xi_2)}{6} h^3$$

Subtract these two equations, then solve for f'(x)

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{f''(\xi)}{6}h^2$$

Now error term is of order h^2 !

Numerically Calculating Jacobian Entries

Use two-sided numerical approximation to the partial derivatives in the Jacobian as well

$$\frac{\partial f_i(\vec{x})}{\partial x_j} \approx \frac{f_i(\vec{x} + \vec{h}_j) - f_i(\vec{x} - \vec{h}_j)}{2h_j}$$

where

$$\vec{h}_{j} = \begin{vmatrix} 0 \\ 0 \\ \vdots \\ h_{j} \\ \vdots \\ 0 \end{vmatrix}$$

is a vector incrementing only the *j*th argument component

Example Code for 2-D Numerical Jacobian

```
void jacobian_numerical(int n,double *x,double **a) {
   double f1[2],f2[2],xtest[2];
```

```
xtest[0] = x[0] - inc[0];
xtest[1] = x[1];
func(n,xtest,f1);
xtest[0] = x[0] + inc[0];
func(n,xtest,f2);
a[0][0] = (f2[0] - f1[0]) / (2.0 * inc[0]);
a[1][0] = (f2[1] - f1[1]) / (2.0 * inc[0]);
xtest[0] = x[0];
xtest[1] = x[1] - inc[1];
func(n, xtest, f1);
xtest[1] = x[1] + inc[1];
func(n,xtest,f2);
a[0][1] = (f2[0] - f1[0]) / (2.0 * inc[1]);
a[1][1] = (f2[1] - f1[1]) / (2.0 * inc[1]);
return;
```

Code with while or for loops for more than two dimensions

}

General Code for Numerical Jacobian

```
void jacobian numerical(int n,double *x,double **a) {
  double *f1,*f2,*xtest;
  int i, j;
  f1 = (double *) malloc(n * sizeof(double));
  f2 = (double *) malloc(n * sizeof(double));
  xtest = (double *) malloc(n * sizeof(double));
  for (j = 0; j < n; j++) {
/* initialize xtest vector */
    for (i = 0; i < n; i++) {
      xtest[i] = x[i];
    }
/* find partial derivative with respect to x[j] */
    xtest[j] = x[j] - inc[j];
    func(n,xtest,f1);
    xtest[j] = x[j] + inc[j];
    func(n,xtest,f2);
    for (i = 0; i < n; i++) {
      a[i][j] = (f2[i] - f1[i]) / (2.0 * inc[j]);
  free(f1);
  free(f2);
  free(xtest);
  return;
                            Works for any dimension, passed as argument n
}
```

SMU.

Map of Initial Points to Converged Roots

Map of Initial Points to Converged Roots

Add Relaxation Factor to Multi-dimensional N-R Algorithm

$$\vec{x}_{i+1} = \vec{x}_i - \alpha J^{-1}(\vec{x}_i) \cdot \vec{f}(\vec{x}_i)$$

where α <1 is the "relaxation" factor. This tends to be an empirically determined "fudge factor", typically in the range of 0.1 to 0.25. The value of α trades off between convergence speed and convergence reliability.

As before, $J^{-1}(\vec{x}_i) \vec{f}(\vec{x}_i)$ is the displacement from the current \vec{x}_i to the next \vec{x}_i and is just the solution of a system of linear equations with $J(\vec{x}_i)$ as the coefficient matrix and $\vec{f}(\vec{x}_i)$ as the right hand side vector

Map of Initial Points to Converged Roots

Root Finding Algorithms

Statics Problem with No Analytical Solution

Given the four lengths L_1 through L_4 and the three weights W_1 through W_3 , solve for four tensions T_1 through T_4 and four variable angles θ_1 through θ_4 . The angles θ_1 are the angles *below* the horizontal.

Hypothetical "Transistor" Device

Gate Function of Hypothetical Device

 V_{T} =2.5V V_{X} =0.5V

Analyze a Flip-Flop Bit Storage Circuit with KCL

Electron Energies in Rectangular Quantum Wells

For special case of constant potential regions

$$\frac{d^2\psi(x)}{dx^2} = \frac{2m}{\hbar^2}(V-E)\psi(x)$$

In regions where $E \le V$ general solution is $\psi(x) = A e^{k_1 x} + B e^{-k_1 x}$ where $k_1 = \frac{\sqrt{2m(V-E)}}{\hbar}$

In regions where E > V general solution is $\psi(x) = C \sin(k_2 x) + D \cos(k_2 x)$ where $k_2 = \frac{\sqrt{2m(E-V)}}{\hbar}$

Solving for Electron Energies Analytically

Stitch together solutions in each potential region under normalization and continuity constraints

Example Rectangular Potential Well

Solving for Eigenvalues

Solving for Eigenvalues for Even Parity

Assume A = B and D = 0

Apply continuity of $\Psi(x)$ at x=a/2:

Apply continuity of $\Psi'(x)$ at x=a/2:

$$Ae^{\frac{-k_1a}{2}} = C\cos(\frac{k_2a}{2})$$

$$k_1 A e^{\frac{-k_1 a}{2}} = k_2 C \sin(\frac{k_2 a}{2})$$

Take ratio of these two equations

$$k_2 \sin(\frac{k_2 a}{2}) = k_1 \cos(\frac{k_2 a}{2})$$

So define a function for root finding

$$f_{even} = k_2 \sin(\frac{k_2 a}{2}) - k_1 \cos(\frac{k_2 a}{2})$$

Solving for Eigenvalues for Odd Parity

Assume A = -B and C = 0

Apply continuity of $\Psi(x)$ at x=a/2:

Apply continuity of $\Psi'(x)$ at x=a/2:

$$Be^{\frac{-k_1a}{2}} = D\sin(\frac{k_2a}{2})$$

$$k_1 B e^{\frac{-k_1 a}{2}} = -k_2 D \cos(\frac{k_2 a}{2})$$

Take ratio of these two equations

$$k_2 \cos(\frac{k_2 a}{2}) = -k_1 \sin(\frac{k_2 a}{2})$$

So define a function for root finding

$$f_{odd} = k_2 \cos(\frac{k_2 a}{2}) + k_1 \sin(\frac{k_2 a}{2})$$

Functions for Even and Odd Eigenvalues

Function value

Numerical Solutions for Eigenvalues

Found with sweep_secant() routine calling the two nonlinear functions:

Even wave function: -9.70239519946 -7.34810530302 -2.85536474272 Odd wave function: -8.81372210451 -5.33690334777 -0.230628910536

Electron in a rectangular potential well, E=-9.70239519946eV

Electron in a rectangular potential well, E=-8.81372210451eV

Verify for Case of Infinite Well Depth

Found with sweep_secant() routine calling the two nonlinear functions for the case of $V_0 = 100 \text{eV}$:

Even wave function: -99.6517063762 -96.8664678478 -91.3021469481 -82.9723028236 Odd wave function: -98.607009151 -94.4310434277 -87.4817113328

 $E_{n} = \frac{\pi^{2} \hbar^{2} n^{2}}{2 m a^{2}} - V_{0}$

n=1 :	-99.623997eV
n=3:	-96.615975 eV
n=5 :	-90.59993 eV
n=7 :	-81.575863 eV
n=2 :	-98.495989 eV
n=4 :	-93.983955 eV
n=6:	-86.4639 eV

Example Double Rectangular Potential Well

Physics 3340 - Fall 2017

Solving for Eigenvalues

Solving for Energies of Even Parity States

For a symmetric wave function: F = D

Apply continuity of
$$\Psi(x)$$
 at x=a/2: $A = B\cos k_2 (\frac{a-b}{4}) + C\sin k_2 (\frac{a-b}{4})$

Apply continuity of $\Psi'(x)$ at x=a/2: $-k_1A = -k_2B\sin k_2(\frac{a-b}{4}) + k_2C\cos k_2(\frac{a-b}{4})$

Apply continuity of $\Psi(x)$ at x=b/2:

$$De^{\frac{k_1b}{2}} + De^{\frac{-k_1b}{2}} = B\cos k_2(-\frac{a-b}{4}) + C\sin k_2(-\frac{a-b}{4})$$

Apply continuity of $\Psi'(x)$ at x=b/2:

$$k_1 D e^{\frac{k_1 b}{2}} - k_1 D e^{\frac{-k_1 b}{2}} = -k_2 B \sin k_2 \left(-\frac{a-b}{4}\right) + k_2 C \cos k_2 \left(-\frac{a-b}{4}\right)$$

Solving for Energies of Even Parity States

Arbitrarily set A=1 and use four dimensional solution of system of four nonlinear equations to find coefficients B, C, D, and energy level E:

$$f_1(B, C, D, E) = A - B\cos k_2(\frac{a-b}{4}) - C\sin k_2(\frac{a-b}{4}) = 0$$

$$f_2(B, C, D, E) = -k_1 A + k_2 B \sin k_2 (\frac{a-b}{4}) - k_2 C \cos k_2 (\frac{a-b}{4}) = 0$$

$$f_3(B, C, D, E) = De^{\frac{k_1b}{2}} + De^{\frac{-k_1b}{2}} - B\cos k_2(-\frac{a-b}{4}) - C\sin k_2(-\frac{a-b}{4}) = 0$$

$$f_4(B, C, D, E) = k_1 D e^{\frac{k_1 b}{2}} - k_1 D e^{\frac{-k_1 b}{2}} + k_2 B \sin k_2 \left(-\frac{a-b}{4}\right) - k_2 C \cos k_2 \left(-\frac{a-b}{4}\right) = 0$$

Solving for Energies of Odd Parity States

For an anti- symmetric wave function: F = -D

Apply continuity of
$$\Psi(x)$$
 at x=a/2: $A = B\cos k_2(\frac{a-b}{4}) + C\sin k_2(\frac{a-b}{4})$

Apply continuity of
$$\Psi'(x)$$
 at x=a/2: $-k_1A = -k_2B\sin k_2(\frac{a-b}{4}) + k_2C\cos k_2(\frac{a-b}{4})$

Apply continuity of $\Psi(x)$ at x=b/2:

$$De^{\frac{k_1b}{2}} - De^{\frac{-k_1b}{2}} = B\cos k_2 \left(-\frac{a-b}{4}\right) + C\sin k_2 \left(-\frac{a-b}{4}\right)$$

Apply continuity of $\Psi'(x)$ at x=b/2:

$$k_1 D e^{\frac{k_1 b}{2}} + k_1 D e^{\frac{-k_1 b}{2}} = -k_2 B \sin k_2 \left(-\frac{a-b}{4}\right) + k_2 C \cos k_2 \left(-\frac{a-b}{4}\right)$$

Solving for Energies of Odd Parity States

Arbitrarily set A=1 and use four dimensional solution of system of four nonlinear equations to find coefficients B, C, D, and energy level E:

$$f_1(B, C, D, E) = A - B\cos k_2(\frac{a-b}{4}) - C\sin k_2(\frac{a-b}{4}) = 0$$

$$f_2(B, C, D, E) = -k_1 A + k_2 B \sin k_2 (\frac{a-b}{4}) - k_2 C \cos k_2 (\frac{a-b}{4}) = 0$$

$$f_3(B, C, D, E) = De^{\frac{k_1b}{2}} - De^{\frac{-k_1b}{2}} - B\cos k_2(-\frac{a-b}{4}) - C\sin k_2(-\frac{a-b}{4}) = 0$$

$$f_4(B, C, D, E) = k_1 D e^{\frac{k_1 b}{2}} + k_1 D e^{\frac{-k_1 b}{2}} + k_2 B \sin k_2 \left(-\frac{a-b}{4}\right) - k_2 C \cos k_2 \left(-\frac{a-b}{4}\right) = 0$$

Lowest Energy States with 1µm Well Separation

Lowest Energy States with 0.25µm Well Separation

Physics 3340 - Fall 2017

Next Energy States with 1µm Well Separation

Physics 3340 - Fall 2017

Next Energy States with 0.25µm Well Separation

SMU SMU

Physics 3340 - Fall 2017

Higher Energy States with 1µm Well Separation

Higher Energy States with 0.25µm Well Separation

Physics 3340 - Fall 2017

Splitting of Energy States

Electron in a rectangular double potential well, allowed energy states

Physics 3340 - Fall 2017