
1Physics 3340

Introduction to the gdb Debugger

When a bug in your program is hard to find, use the Linux Gnu
debugger gdb.

First start an interactive session in a terminal window with the
gdb command, then run your program executable file within
gdb. The debugger will trap segmentation faults, and allows you
to set breakpoints in your code and probe values of variables.

To make use of the debugger you must add the ‘-g’ argument to
your gcc command line to have the compiler include symbolic
debugging information, such as source code line numbers and
variable names, in the output executable file.

2Physics 3340

Example Segmentation Fault Program 1

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

double *x;

int main(int argc,char *argv[]) {
 x[0] = 42.0;
 exit(0);
}

Symbol x has been declared as pointer
to double, but has not been initialized
to any allocated memory before being
used as an array pointer. The default
value will be the NULL pointer, which
points to nonexistent memory. Using
this as an array pointer will result in a
memory segmentation fault and abort
the program.

$ gcc -Wall -Wshadow -o segfault1 segfault1.c -lm
$./segfault1
Segmentation fault (core dumped)
$

3Physics 3340

Example Debugging Session

$ gcc -Wall -Wshadow -g -o segfault1 segfault1.c -lm
$ gdb segfault1
GNU gdb (GDB) Fedora 8.2-7.fc29
Find the GDB manual and other documentation resources online at:
 <http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from ./segfault1...done.
(gdb) run
Starting program: segfault1
Program received signal SIGSEGV, Segmentation fault.
0x0000000000401144 in main (argc=1, argv=0x7fffffffdb78) at
segfault1.c:8
8 x[0] = 42.0;
(gdb) kill
Kill the program being debugged? (y or n) y
[Inferior 1 (process 30970) killed]
(gdb) quit
$

Recompile the
program with the ‘-g’
option to gcc

Run the debugger
with the executable
as an argument

Run the program
within gdb

gdb will trap the segfault
signal and report the line in
the source code file
responsible

4Physics 3340

Example Segmentation Fault Program 2

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

double *x;

int main(int argc,char *argv[]) {
 x = (double *) malloc(10 * sizeof(double));
 x[100000] = 42.0;
 free(x);
 exit(0);
}

Symbol x has been declared as
pointer to double, and has now
has been initialized to allocated
memory for an array of length
10. Trying to write into an array
element way out of bounds will
result in a memory segmentation
fault and abort the program.

$ gcc -Wall -Wshadow -o segfault2 segfault2.c -lm
$./segfault2
Segmentation fault (core dumped)
$

5Physics 3340

Example Debugging Session

$ gcc -Wall -Wshadow -g -o segfault2 segfault2.c -lm
$ gdb segfault2
GNU gdb (GDB) Fedora 8.2-7.fc29
Find the GDB manual and other documentation resources online at:
 <http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from ./segfault2...done.
(gdb) run
Starting program: segfault2
Program received signal SIGSEGV, Segmentation fault.
0x000000000040117b in main (argc=1, argv=0x7fffffffdb78) at
segfault2.c:9
9 x[100000] = 42.0;
(gdb) kill
Kill the program being debugged? (y or n) y
[Inferior 1 (process 31034) killed]
(gdb) quit
$

Recompile the
program with the ‘-g’
option to gcc

Run the debugger
with the executable
as an argument

Run the program
within gdb

gdb will trap the segfault
signal and report the line in
the source code file
responsible

6Physics 3340

Example Program For A Breakpoint

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

double *x;

int main(int argc,char *argv[]) {
 double a,b,c;

 a = atof(argv[1]);
 b = atof(argv[2]);
 c = atof(argv[3]);
 printf("sum = %f\n",a+b+c);
 exit(0);
}

This simple program takes three
command line arguments with
numerical values and displays
their sum to standard output.

$ gcc -Wall -Wshadow -o breakpoint1 breakpoint1.c -lm
$./breakpoint1 1 2 3
sum = 6.000000
$

Line 13 of this source code
file breakpoint1.c is this
printf() statement

7Physics 3340

Example Debugging Session

$ gcc -Wall -Wshadow -g -o breakpoint1 breakpoint1.c -lm
$ gdb ./breakpoint1
GNU gdb (GDB) Fedora 8.2-7.fc29
Find the GDB manual and other documentation resources online at:
 <http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from ./breakpoint1...done.
(gdb) set args 4 5 6
(gdb) break breakpoint1.c:13
Breakpoint 1 at 0x4011a9: file breakpoint1.c, line 13.
(gdb) run
Starting program: breakpoint1 4 5 6
Breakpoint 1, main (argc=4, argv=0x7fffffffdb48) at breakpoint1.c:13
13 printf("sum = %f\n",a+b+c);
(gdb) print a
$1 = 4
(gdb) print b
$2 = 5
(gdb) print c
$3 = 6
(gdb) print x
$4 = (double *) 0x0
(gdb) continue
Continuing.
sum = 15.000000
[Inferior 1 (process 31305) exited normally]
(gdb) quit
$

Recompile the
program with the ‘-g’
option to gcc

Run the debugger
with the executable
as an argument

After probing variable values, the
program can be continued until exit

gdb will pause before the breakpoint
statement and allow you to print
values of variables, including pointers
(a pointer value of hexadecimal 0 is
the NULL pointer value)

Set the command line
arguments to be passed
to the program within gdb

Set a breakpoint at the
source code line
number of the printf()
statement and start the
program

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

