AC generator produces emf:
\[E = 100 \sin(376.99 t) \] \hspace{0.5cm} (1)

General formula for AC generator's emf is Eq. (20.7)
\[E = NABw \sin(\omega t) \] \hspace{0.5cm} (2)

if you draw a graphic then

\[E \]

\[NABw \]

\[-NABw \]

\[\Rightarrow E_{\text{max}} = NABw \]

comparing (1) and (2):

(a) \[E_{\text{max}} = NABw = 100 \]

\[\Rightarrow \boxed{E_{\text{max}} = 100 \text{ V}} \] (i.e. maximal voltage)

(b) \[\omega t = 376.99 t \]

\[\omega = 376.99 \]

but \ \[\omega = 2\pi f \] where \(f \) - frequency

\[\Rightarrow f = \frac{376.99}{2\pi} \approx 60 \text{ Hz} \]

\[\Rightarrow \boxed{f = 60 \text{ Hz}} \]
Strip OA for time Δt moves to position OB and covers area ΔS. (covers angle $\Delta \varphi$)

We need to find e.g. for $\Delta S = \Delta S(\Delta t)$
(i.e. $\Delta S \sim \Delta t$)

It's important to notice that

\[
\frac{\Delta S}{S} = \frac{\Delta \varphi}{2\pi}
\]

(S - circle's area) (2π - circle's angle)

(you can see this, for ex.:)

\[
\frac{\Delta S}{S} = \frac{\frac{\pi}{2}}{2\pi} = \frac{1}{4}
\]

But by definition:

\[
\omega \equiv \frac{\Delta \varphi}{\Delta t} \Rightarrow \Delta \varphi = \omega \Delta t
\]

Therefore

\[
\frac{\Delta S}{S} = \frac{\omega \Delta t}{2\pi}
\]

Note that S for circle is:

\[
S = \pi r^2
\]

\[
\Rightarrow \frac{\Delta S}{\pi r^2} = \frac{\omega \Delta t}{2\pi}
\]
\[\Delta S = \frac{\pi r^2 w \Delta t}{2 \pi} = \frac{1}{2} r^2 w \Delta t \]

\[\Delta S = \frac{1}{2} r^2 w \Delta t \] \((*) \)

EMF can be calculated by:

\[E = -\frac{\Delta \Phi}{\Delta t} \] \(\text{ (see Eq. 20.2 for example)} \)

but \(\Delta \Phi = B \Delta S \) (by definition)

\[\Rightarrow E = -\frac{B \Delta S}{\Delta t} \]

plug in \((*) \):

\[E = -\frac{B}{\Delta t} \left(\frac{1}{2} r^2 w \Delta t \right) = -\frac{1}{2} r^2 w B \]

\[\Rightarrow E = -\frac{1}{2} r^2 w B \] \((1) \)

From other side Ohm's law says:

\[I = \frac{E}{R}, \text{ i.e. } E = IR \] \((2) \)

therefore \((1) \) and \((2) \) give us:

\[IR = -\frac{1}{2} r^2 w B \]

\[\Rightarrow B = -\frac{2IR}{r^2 w} \] \((3) \)

Note that we have \(w \) in rpm's and we have to convert it to rad/s to plug in \((3) \):

\[w = 360 \text{ rpm} = \frac{360 \cdot 2\pi}{60} = 37.7 \text{ rad/s} \]

(since 1 rotation = \(2\pi \) radians)

(1 minute = 60 seconds)

\[w = 37.7 \text{ rad/s} \]
So plug in all #’s to (3) we can get

\[B = 21 \times 10^{-3} \, T \]

20.67

Simple AC generator’s coil is

\[\text{rotation} \]
\[\text{axis of rotation} \]

To calculate area of coil:

\[A = (2r) \cdot l \]

plug in #’s: \[A = 2 \times 10^{-2} \, m^2 \]

We need to convert \(\omega \) which is in rpm to rad/s:

\[\omega = 6000 \, \text{rpm} = \frac{6000 \cdot 2\pi}{60} = 628.3 \, \text{rad/s} \]

Use Eq. (20.7) to calculate EMF:

\[\epsilon = N A B \omega \sin \omega t \]
\[(N - \# \text{ of turns}) \]

\[\Rightarrow \]

\[\epsilon = 1.3 \times 10^3 \sin (628.3 t) \]
Current after switch is closed:

\[I = \frac{V}{R} \]
(Note \(R_b = 0 \))

Use Ohm's law

\[I = 2 \text{ A} \]