L19: PARTICLE PHYSICS

FUNDAMENAL PARTICLES - VERSION 1.0

- All matter composed of atoms
 - Nucleus composed of 'nucleons', I.e. protons and neutrons
 - Feel strong nuclear force which keeps them in the nucleus
 - Both have very similar mass
 - Nucleus surrounded by electron 'shells' or 'clouds' which reflect the energy levels of the electrons in that atom
- Beta decay of some atoms
 - Leads to idea of a 'neutrino'

	charge	Mass	Strong	electroma gnetic	weak
Proton	+1	m _{proton}	Y	Y	Y
neutron	0	∼m _{proton}	Y	Ν	Υ
electron	-1	m _{proton} /200	N	Υ	Υ
Neutrino	0	~0		_	Υ

ANTIMATTER

- Dirac, 1930
 - Produced a relativistic model of quantum mechanics
 - Includes special, not general, relativity
- Noticed a 'symmetry' about equations
 - Negatively charged electron moving forward in time same as positively charged electron ('positron') moving backwards in time
 - So nature requires existence of 'anti-electron', what we call a positron
- Positrons
 - Observed in cosmic ray experiments
 - A particle created by another particle from space and which interacts with a detector
 - Produces a particle with the same mass as an electron, but opposite charge
 - Whenever near ordinary matter
 - It interacts with atoms by annihilating an electron and producing photons
- Hypothesize anti-proton and anti-neutron: they have been observed

MESONS

- Meson theory: Yukawa, 1931
 - Think of strong force as exchange of mediating particle ('meson')
 - Reason strong force is restricted in distance it can reach
 - Meson has mass: by uncertainty principle (ΔEΔt>h/2), a virtual meson can only exist for a length of time, Δt
 - By observing range of strong force, can estimate mass of 'meson' to be ~m_{proton}/7
- 'mu meson' or 'muon' discovered: birth of particle physics
 - Mass ~ m_{proton}/9
 - Looks like a heavy electron it doesn't feel the strong force!
 - So can't answer the problem of the strong force's range
- Pi mesons discovered 1947 and 1950
 - Feel strong force, mass ~ m_{proton}/7
- Many mesons discovered since 1950

DECAYS

- Almost all particles decay to two or more daughter particles
 - Neutrons, pions, muons, all other mesons
 - Exceptions: proton, electron, neutrino
- Reaction rules
 - Conserve charge, total energy, momentum
 - Also observe that 'lepton number', L is conserved
 - E.g. if one muon (L = +1) decays, then the sum of L for the daughters must still be +1
 - Also observe heavier versions of proton and neutron
 - Called 'baryons' since they are heavy
 - Observe that reactions conserve 'baryon number', B
 - Eg. if one neutron decays (B=+1), then the daughters must sum to B=+1

Note: mesons have L = 0, B = 0, antiparticles have opposite sign L and B

Decay	Lifetime (half-life)	
$\mu^+ \rightarrow e^+ + \nu_e^- + \nu_\mu^-$ (weak)	10 ⁻⁶ s	
$\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ (weak)	10 ⁻⁸ s	
$\pi^0 \rightarrow \gamma + \gamma$ (strong)	10 ⁻¹⁶ s —	Much faster because it's a strong interaction

INTERACTIONS AS MOMENTUM EXCHANGE

> conservation of momentum

> think of forces as interactions

- two particles interact by exchanging a messenger particle
 - eg. electronmagnetism uses the photon

Think of two skaters

- one throws heavy ball to another
- thrower looses momentum
- receiver gains momentum

• transfers momentum from one interacting particle to another

FOUR FUNDAMENTAL INTERACTIONS

- Four forces generalized to 'interactions'
- gravity MUCH weaker than others, but
 - it's long-range, there's lots of matter, and most matter charge neutral

<u>force</u> strong	<u>coupling</u> color	range _(cm) 10 ¹⁸	<u>strength</u> 1
electromagnetic	charge	∞	0.01
weak	flavor	10 ¹⁵	10 ⁻⁵
gravity	mass	Ø	10 ⁻³⁸

STRANGE PARTICLES AND QUARKS

- In 1950s, observed a new class of particles
 - K meson, 'kaon' was first, but new baryons also found
 - always made in pairs
 - Some might have a proton or neutron as end product of decay
 - So they have a different 'flavor' than a proton or neutron
 - Called 'strange' particles
- Quark model
 - A pattern in the charge, mass and flavor properties of mesons and baryons was observed
 - Suggested these particles were composed of smaller, more fundamental pieces: 'quarks'
- Further evidence
 - Collide electrons onto protons
 - Like Rutherford experiment
 - See large deflections of electrons
 - Therefore, proton has substructure

quarks	Charge	Strangeness	particles
Uud	+1	0	proton, Δ +
Udd	0	0	Neutron, Δ^0
Uus	+1	-1	Σ+

STRONG INTERACTIONS

- strength of strong interaction
 - increases with increasing distance
 - opposite to gravity and electromagnetism

- nature does not permit 'naked' color
- energy in strong interaction
 - grows as particles move apart
- when energy greater than masses of fundamental particles
 - a 'jet' of particles 'pulled' out of the virtual sea or vacuum
 - extremely messy and poorly understood process

WEAK INTERACTIONS

- gluons (strong interaction) and photons (electromagnetic interaction) are massless
 - By uncertainty principle (∆E∆t > h/2), they can exist out of the quantum sea for infinite amount of time
- Weak force carried by W and Z particles
 - Very massive
 - Can only exist briefly, so travel only very short distances
 - This is why weak force is 'weak',
 - and why it is restricted to short distances

ELECTROWEAK UNIFICATION

- electromagnetic and weak interactions
 - different manifestations of same, more fundamental force
 - why so different in strength?
 - due to mass of exchange particle (W and Z)
 - restricts distance over which weak interactions can occur
 - only different in strength at low energies
 - at higher energies, W and Z massless
- so how do the W and Z acquire mass?

the Higgs

- analogy: iron atoms will align themselves at low temperatures
 - despite no direction preferred in interaction between atoms
 - therefore atoms acquire a certain energy
 - ie. must add heat to break the alignment
- lowest energy state of universe
 - nonzero Higgs field
 - generates mass for W and Z

NEW PARTICLES

- Problems with electroweak model
 - If only three quarks (up, down, strange)
 - get infinities in calculations: Not physical
 - If hypothesize a fourth quark ('charm'), problems resolved
 - Discovered 1973!
- In 1976 and 1977
 - Tau lepton and b ('bottom') quarks discovered
 - Again, seemed to require an even number of quarks
 - Predict existence of 'top quark'

DZERO EXPERIMENT

ELEMENTARY PARTICLES

QUESTIONS

- Explain why the weak force has a restricted distance range over which it can be felt. [10 pts]
- Quarks do not feel the electromagnetic force. (T or F) [2 pts]
- What quantum number of particles are conserved? [10 pts]
- What problem does having even numbers of quarks solve in the theory of electroweak interactions? [10 pts]