
Reference Frames 
 
To describe a physical event, we need to establish a 3-dimensional coordinate system associated with 
measurement. 
 
Let’s consider two reference frames.  One, called S, is shown at left.  The other, called S’, is shown at right.  
Let’s imagine a meatball which is moving with velocity ‘v’ within reference frame S.  Reference frame S’ may 
be moving with respect to frame S, so the perceived velocity of the meatball in S’ may be different than an 
observer in S would measure.  In fact, v’ could be zero.  So the value of the y’ coordinate may also differ in the 
two reference frames.  However, as drawn, the x (x’) and z (z’) coordinates would be the same in the two 
reference frames. 
 

 
 

Inertial Reference Frames 
 
Inertia: An object moves at constant velocity unless acted upon by an external force. 
 
Given the concept of inertia, we find it useful to talk about 'inertial reference frames' which are three-
dimensional coordinate systems which travel at constant velocity.  In such a frame, an object is observed to 
have no acceleration when no forces are acting on it.  If a reference frame moves with constant velocity relative 
to an inertial reference frame, it also is an inertial reference frame.  There is no absolute inertial reference frame, 
meaning that there is no state of velocity which is special in the universe.  All inertial reference frames are 
equivalent.  One can only detect the relative motion of one inertial reference frame to another. 
 

Principle of Galilean Relativity 
"Laws of mechanics must be same in all inertial frames of reference" 
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Galilean Transformations 
 
Consider a meatball in frame S moving with velocity, v, within that frame, and S' is moving with velocity V' 
relative to frame S.  This is shown in the following Figure. 

 
 
We want to know how to determine the coordinates in S’ when we know them in frame S.  In the picture above, 
in the S frame the meatball is moving and the {x,y,z} axes are fixed.  When we transform to the S’ coordinate 
system (so that {x’,y’,z’} are at rest), it now looks like the meatball has velocity v’ & that the old axes {x,y,z} 
are moving with velocity v in the NEGATIVE x’ direction.  "v" then appears as the relative velocity of the 
PRIMED coordinate system {x’,y’,z’}, S’, compared to the UNPRIMED coordinate system {x,y,z} or S. 
 
To determine the coordinates of the meatball in one frame, S’, when we know it's coordinates in another frame, 
S, we employ the Galilean space and time transformations. 

Galilean space-time transformations: 
 
If S’ has a velocity relative to S so that v’ = 0, then we have 
 
x' = x+vt 
y'=y 
z'=z 
t'=t 
 
(Note: remember, v or v’ are vectors, so they have a sign.) 
The time interval between any two events is the same in any frame of reference. 

Galilean velocity transformation 
 
We also want to know the velocity of the meatball in frame S’.  From the above situation, frame S’ is moving 
with V’ relative to S, and the meatball has velocity v in frame S.  So the velocity within frame S’ would be v’ = 
V’ + v.  This is the Galilean velocity transformation.   
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Energy & Momentum 
 
Classically, several forms of energy are recognized. 
 
 - energy of motion (‘kinetic energy’)  KE 
 - energy from forces (‘potential energy’) PE or binding energy 
 - heat 
 
It was recognized that energy can change form from one to the another.  Kinetic energy can be converted into 
heat, for instance.  If one considers a swing, then when the swing is at the bottom of its trajectory, it has a 
maximum velocity (and so maximum KE), and a minimum potential energy.  At the highest points of its path, 
its velocity goes to zero (no KE), but its potential energy is a maximum.  However, it was always observed that 
the total amount of energy (=KE+PE+heat) in a closed system was constant.  This is known as ‘conservation of 
energy’: Energy may not be created nor destroyed in a closed system. 
 
A related concept concerns the momentum of a particle, or series of particles in a closed system.  In general, 
momentum (p) = mv and it preserves the direction of the velocity (unlike energy).  As is indicated by the Law 
of inertia, the magnitude and direction of an object’s velocity does not change unless it is acted upon by an 
external force.  This is what F = ma means.  Since acceleration is a change in velocity per time, it equals Δv/Δt.  
This means that force can also be expressed as a change in momentum per time, F = Δp/Δt.  The net momentum 
of a closed system cannot change, so when two particles collide in the same way, the sum of their outgoing 
momenta will equal the sum of their incoming momenta. 
 



light 

Observer O 
Observer O’ Traveling with some 
velocity (v) relative to Observer O. 

Speed of Light 
 

Recall that the speed of light was predicted by Maxwell’s equations to be the 

enormous value of c=3x108 m/s.  Questions immediately arise about what this 

velocity is to be measured with respect to.  Also, recall that Galilean 

relativity only encompassed mechanical phenomena.  Does Galilean relativity apply 

to electricy, magnetism, & optics?   

 

First, we need to establish what light is.  From Maxwell’s equations, we know 

that it is an electromagnetic wave.  But what is waving?  It turns out something 

called electric and magnetic fields are waving.  These fields are related to the 

electrical and magnetic forces associated with particular charged objects.  But 

in general, there is always a medium that a wave phenomenon is waving ‘in’.  So 

what is light waving ‘in’?  Maxwell postulated that there is an omnipresent 

‘ether’ which is the medium of propagation.  The ether would represent a special, 

absolute reference frame.  We on Earth, in our laboratory, can have a net 

velocity relative to this ether. 

 

Observers with different motion should observe different apparent values of c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If reference frame O corresponds to the ether reference frame, then the velocity 

of light within this frame is ‘c’.  The Galilean velocity tranformations should 

hold for observers of light in any frame moving at a speed v relative to absolute 

ether.  If an observer O’ moves at a velocity v (as pictured), then she should 

measure vlight in her rreference frame to be c-v. 
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Michelson-Morley Experiment 
 

So how do we detect the unique ether reference frame?  We can’t know, for instance, what the velocity of any 
particular inertial reference frame is  relative to the ether.  Taking our cue from the above, we should measure 
the speed of light in several different states of motion and comparing our measured speeds for light will show 
differences due to the motion of the ether.  However, we run into the problem that the velocities that we are 
usually dealing with on Earth (10s of mph) are incredibly small compared to the speed of light. 
 
One way to attain somewhat higher velocities is to utilize the motion of a point on the surface of the Earth.  The 
Earth rotates on its axis and it revolves around the Sun.  Let’s consider a particular location on the Earth, say 
Cleveland, Ohio ;)  Let’s also assume, for the sake of argument, that the motion of a lab in Cleveland in June is 
such that the ether reference frame has zero relative velocity with respect to our lab.  Call this point A in Earth’s 
orbit.   In this case, our measurement of the velocity of light in this situation would give us vmeasured = c.  Now 
consider the scenario 6 months later (call this point B).  Earth is now moving in the opposite direction with a 
velocity v relative to the ether rest frame.  In this situation, we should measure that vobserved ≠ c.  It turns out that, 
although the orbital velocity of the Earth is still small compared to c, an experiment could be devised in the late 
1800s to detect the expected shift in light’s velocity.  
 
The Michelson-Morley experiment sought to measure the speed of light in two different reference frames and 
thereby determine the motion of the observer thru the absolute ether reference frame.  As mentioned, it used the 
Earth’s orbital motion to produce a measurable effect. Instead of waiting 6 months for Earth to reverse it’s 
motion, the scientists chose to compare the measured speed of light parallel to the Earth’s orbital motion (c1) 
and perpendicular to Earth’s orbital motion (c2) at a given point.  This orientation maximizes the velocity 
difference for a particular point on Earth’s orbit.  If at point A, Earth’s orbital motion is not causing it to be at 
rest (stationary, or zero velocity) in the ether reference frame, then we should observe c1 not to equal c2.   
 

 

 

 
 
 
 
 
 
 
 
The specific apparatus looked like: 
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where L1=L2=L.  A velocity difference in light’s travel thru L1 & L2 cause  

beams to arrive at the observer at different times.  (Note: in practice, the two 

lengths are not precisely equal and it is necessary to rotate the apparatus by 90 

degrees and make measurements at other times of day or year to make sure this 

difference is corrected for.)  The difference in arrival times is given by 
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If you plug in the value for Earth’s orbital velocity, you get a relative 

difference in time of 5x10-9.  This is too small to measure directly. 

 
The experiment therefore used interference of two beams of light which were split into L1 and L2 and then 
recombined.   If the velocity of light in one of the directions was greater with respect to the Earth's motion 
because of the relative motion of the ether reference frame, then this would result in a different number of 
wavelengths being traveled by that light.  The intensity of the recombined light at the observer would be subject 
to interference of the light traveling the two paths.  If there was an absolute ether reference frame, then one 
would expect to see a change in the observed light intensity with the orientation of the apparatus with respect to 
the relative motion of the ether reference frame.  The precision of the experiment is aided by the tiny 
wavelength of visible light, which is less than a millionth of a meter.   
 
No variation in light intensity was observed, meaning that the light 
traveling L1 was arriving at the observer with the same time relative to 
light going in path L2, irrespective of the motion of the laboratory.  
This means c1=c2!  In general, no change in the velocity of  light was 
observed for the different reference frames tested.  A lot of effort was 
expended to explain this, but no luck.  The velocity of light is always c, 
regardless of your motion relative to the source of the light! 
 

 



Lecture 5: Special Relativity 
 
Maxwell's Eq's 

• imply speed of light (electromagnetic waves) is a constant, 'c' 
o contradicts Galilean transformation 

 rests on idea of absolute space & absolute time 
 
Michelson-Morley Experiment 

• refutes Galilean transformation as applies to light 
• impossible to measure absolute velocities of light with respect to "ether" frame 

o idea of ether looses any relevance 
 
light (EM waves) convey electromagnetic forces 

• for these to be same in all inertial reference frames, c=constant 
 
Conclusions drawn from electromagnetic theory (Maxwell's Equations): 

Einsteinian Relativity 
 
Einstein Principle of Relativity 
 

1) The laws of physics (=mechanics AND electromagnetism) must be the same in all inertial reference frames (a 
generalization of Galilean relativity.) 
 
2) The speed of light in a vacuum (c=3x108 m/s) has same value in all inertial reference frames, regardless of velocity of the 
observer or velocity of the light emitting source 
 
2) is required by 1) 
 
1) means: no preferred inertial reference frames 

o impossible to detect "absolute motion" 
o experiments  (like measuring 'c') must get same result in all inertial frames 
o explains Michelson-Morley result (Einstein may not have known experiment). 

 
 
 



Classical Time & Simultaneity 

Classically, consider an event ‘A’ 

 
• same event, different coordinates 
• length in xyz same as in S & S' 
• length in t same in S & S' 

 
independent of motion of observer 

 
• a universal time scale exists that is the same for all observers 

 
 simultaneous events are simultaneous for everybody 

 

Relativistic Time 
 
Let's say S sees lightning strike at A & B simultaneously 
 

 
S is midway between A & B so the distances to A & B are equal (so S sees simultaneous strikes) 

• when S sees strikes, S' has already seen B', but has not seen A' 
• therefore S' does not see simultaneous events 

o because c is not dependent on motion of observer 
even if correct for transit time, S' sees non-simultaneous events. 
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Time Dilation 
 

 
 
For observer O, light travels distance , D=2d, so Δtp=2d/c  (This is the proper time, the time measured when at rest with respect to the 
clock). 
 
For observer O', light travels distance D>2d since the mirror moves during transit of light 
 
since c=constant 
Δt=D/C > 2d/c  It takes longer! 
 
Specifically Δt=γ Δtp 
 

γ ≡ 1/ √(1 – v2/c2)   ≠ 1 only when v is similar to c. 
 
The time measured by an observer moving with respect to a clock is > time measured if at rest relative to a clock 
 

Time Dilation Calc. 
 
if v=25mph = 0.01 km/s 
γ =  1/ √(1 – (.01 km/s)2/(3x105 km/s)2) = 1.000 000 000 000 001 
 
if v=30 km/s  γ = 1.000 000 005 
if v=10,000 km/s  γ=1.0006 
if v=100,000 km/s γ=1.06 
 
if v=290,000 km/s γ=3.9 
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Length Contraction 
• measured distance depends on frame of reference 
• let's define "proper length" 

o proper length is length of an object measured by someone at rest relative to that object 
 i.e. observer for whom endponts of object remain fixed in position 

 
Example 

• observer on Earth 
• i.e. at rest relative to 2 stars measure distance between stars=Lp 
• Δt is the time ship takes to travel between the stars (according 

to O on Earth) 
 
space traveller 
stars cross at same position to her 
see Δtp=Δt/γ 
 
therefore the space traveler must measure distance between stars, L=Lp/γ 
 
since the space traveler sees a shorter time, she measures a shorter 
distance. 
 

Pole in the Barn 

 
 

• Pole-vaulter runs into barn 
o is there a moment when front & back gates can close & open simultaneously and not hit the pole? 
o in frame of barn, doors close simultaneously 

 see length L (=Lp/γ) since γ ≥1.0, then L <Lp 
 if v=c/3, γ = 1.06 and 
 L will be 19.7m! 

 
Okay, what about in frame of runner? 
 - she doesn't see pole shrink, but the barn, which was already to small, shrinks by 6%! 

o the doors don't close simultaneously 
Leading end of pole exits rear door before the trailing end comes to front door 

Pole, Proper Length: 
L’p=21 m 

Barn, Proper Length: 
Lp = 20 m 

v 

Lp 



Lorentz Transformations 
 

• Newtonian mechanics predicated on Galilean transformations 
 

• Galilean transformations need to be replaced with new ones: 
 
 

x'=γ(x-vt) 
y'=y 
z'=z 
t'=g(t-v x/c2) 

Lorentz 
Transformations 

 
vx'=(vx-v)/(1-vx v/c2) 

 
Recall Galilean transformation 

x'=x-vt 
y'=y 
z'=z 
t'=t 
vx'=vx-v 

 

Relativistic Momentum & Energy 

Momentum: 
(recall Newtons' F=ma) �  not correct in Relativity. 
 

Force = change in momentum per unit of time 
 

• at low velocity: twice the change in velocity=2x the momentum 
• at high velocity: "γ" factor means small change in velocity produces larger changes in momentum 

o as v approaches c then γ → ∞ 
 

takes infinite force to accelerate to v=c 
Therefore, a massive particle can never attain v=c 

 

Energy 
• classically:  different forms of energy (heat, "kinetic energy" of motion) 
• relativistically:  E=γmc2 (Total Energy: This what's conserved) 

o when v=0; E=mc2 = rest energy of particle 
 
mass is a form of energy 
 
Total Energy - This what's conserved 
 

Special Relativity (summary): 
 
Given the predictions of Maxwell's equations that the speed of light was a constant, and it's inconsistency with 
the Galilean statement of the Principle of Relativity, Einstein postulated a new concept of relativity to bring 
mechanical and electromagnetic phenomena under one roof.  In this statement, he hypothesized that all physical 
phenomena, including electromagnetic, should proceed regardless of the intertial reference frame they in which 
they occur.  This modification had the result that it stipulated the speed of light to be constant irrespective of 
inertial reference frame, and so 'explained' the Michelson-Morley experimental result. 
 



The results of this hypothesis were a number of predications of how space and time would behave in cases 
where velocities approached the speed of light.  The first impact was the removal of the concepts of an absolute 
space and an absolute time.  For time, this may be most clearly seen in a discussion of simultaneity.  Classically, 
if two events are observed to occur simultaneously by one observer, then all other observers will see them as 
simultaneous.  Relativistically, however, the speed of light is constant.  As a result,  
 
Another manifestation of the relativity of time concerns the phenomenon of 'time dilation'.  If an object is 
moving in a particular inertial reference frame, O, with a velocity approaching the speed of light in frame O, 
then a clock attached to that object will appear to run slower to an object stationary in frame O.  We discussed 
an illustration of this using a flashlight and a mirror mounted on a train.  In this illustration, the light takes 
longer to return to the flashlight as observed by a stationary observer in O when compared to the time measured 
by an observer on the train.   This is because it must travel a longer  distance in the O reference frame than just 
twice the distance from the flashlight to the mirror.   
 
Space also becomes relative because as objects move faster, their apparent lengths appear to shrink.  We 
discussed this issue with a description of the Pole in the Barn 'paradox'.  In this situation, a pole-vaulter runs 
toward a barn with a pole which is longer than the size of the barn.  Doors are set such that they momentarily 
close and open simultaneously (in the frame of the barn) when the pole-vaulter is at the center of the barn.  
Since the length of the pole shrinks with increased velocity, there is a velocity for which the pole will fit within 
the barn in the barn's reference frame and will clear the doors when they close.  The 'paradox' arises when we 
consider that the pole-vaulter measures the proper length of her pole and sees the barn length contracted to be 
even smaller than its proper length.  Since it's proper length is smaller than the pole's proper length, the pole 
cannot possible fit within the barn.  However, we are saved by the fact that the doors which close 
simultaneously in the barn's reference frame, do not close simultaneously in the runner's reference frame.  The 
back door closes and opens first, then the front door, thus allowing the runner thru without breaker her pole.   
 
Finally, we described some of the implications of relativity on our concepts of energy.  In classical physics, 
energy can come in several forms.  For a moving particle, one form of energy is that of motion, i.e. its kinetic 
energy.  An unheated particle at rest (velocity = 0) has no energy in the classical scheme.  In relativity, it was 
realized that total energy of a particle is the sum of a kinetic term and a 'rest energy'.  The rest energy is usually 
expressed as E = mc2  and expresses the idea that energy and mass are equivalent. 
 
These ideas of relativistic physics have been observed in some terrestrial situations (eg. time dilation with GPS 
satellite measurements). 
 



Lecture 7: Relativity & Gravitation 

Special relativity has a limitation 
 - we can only discuss physics which is happening in inertial reference frames.  This is a fairly limiting 
criterion.  What happens if we want to understand physics in an accelerating frame, or a frame in a gravitational 
field?  Einstein wanted to understand this question when he worked out the theory of ‘general’ relativity. 

Classical Mechanics 

Newton’s force law:   F = mi a 
 
 Here we are dealing with an ‘inertial mass’, which is the property of a body which indicates how hard it 
is to accelerate that body for a given force.  If a body is twice as massive as another, it will require twice the 
force to acclerate it to a specific acceleration. 
 
Newton's Law of Gravity:   F = -G m1 m2/r

2  = m2g 
 
 Here, m1 and m2 are ‘gravitational masses’.  They are like gravitational ‘charges’ in that they indicate 
how strongly a body generates a gravitational pull.  We can simplify the above equation for a body on the 
surface of the earth (m1 is for Earth) to be in terms of a gravitational mass, m2, and a constant gravitational 
acceleration, g = 9.8 m/s2.   There is no reason to suppose that this gravitational mass ‘charge’ has any 
relationship to the inertial mass, and Newton was aware of this.  He found, however, that an appropriate choice 
of constant, G, would permit one to use the same value in both of the above two equations.  What is surprising 
is that this single constant, G, works for all masses.  This has been tested over 12 orders of magnitude in mass.  
So the gravitational mass property of a body is always exactly proportional to the inertial mass property.  Why 
is this possible? 
 

- Depends completely on the notion of universal time. 
- The Forces that the sun & planets exert on each other are determined by respective distances 
from each other at the same time. 

 
- “Action at a distance” is at the heart of Newtonian Gravity. 

 
But in Special Relativity, there is a relative space & time which depends on the observer.  As a result, 
ambiguities arise 
 



Generalizing Relativity L7p3 
 
In the Special Theory of relativity: Go to a frame where there are no accelerations. 

o ∴far from other masses (i.e. Gravity) 
Acceleration seems special because we can feel it.   Is this true? 

 
First, can we detect gravity.  Consider: 

1. you are in elevator in otherwise empty space accelerated upward by “a”=9.8 m/s2. 
2. You are standing on the surface of Earth and so being accelerated towards its center by ‘g’ = 9.8 

m/s2 
You can’t distinguish 1) from 2).  Therefore they are equivalent. 

Free Falling Reference Frame L7p4 
 
Now consider you are in an elevator which is in free-fall in the gravity of the Earth.  There is an apple 

sitting on the floor next to you.  During your free-fall, you will not feel the floor pushing up on you since you 
have the same velocity and acceleration as the elevator.  You will also see the apple is stationary with respect to 
you.  In other words, it has no acceleration within the local reference frame associated with your motion.  In 
other words, your local reference frame (the elevator) shows no evidence of forces acting.  So gravity is 
undetectable by observing relative motion of these two bodies.  Acceleration due do gravity is undetectable by a 
frame that is accelerated in time with physical objects subject to gravity & no other forces. 
 

“free fall reference frame”:  cannot, however, be extended arbitrarily far thru space & time since the 
strength of gravity will change. 

•  “With respect to a free-falling frame of reference, material bodies will be unaccelerated if they are free 
from  non-gravitational forces.” 

• This is the same as inertial frames of reference when there is no gravity present 
o When there is NO gravity present, a frame of reference is extensible (can be extended in space) 

• But when gravity is present, we only can construct a local frame of reference.  The reference frame 
cannot be extended arbitrarily far thru space and time since the strength of gravity will change with 
position. 

∴the presence of gravity is tantamount to the non-extensibility of local free falling frames of 
reference 

o The study of gravity is replaced with the study of inhomogeneities of motion in space. 
 

Postulates of General Relativity  L7p5 
All local frames of reference are equally valid – there is no way to choose a class of preferred frames of 
reference with which to formulate the laws of nature. 
 
Principle of Covariance 
All laws of nature have the same form for observers in any frame of reference, whether that frame is accelerated 
or not. 
 
Principle of Equivalence 
“In the vicinity of any point, a gravitational field is equivalent to an accelerated frame of reference in the 
absence of gravitational effects.” 



Spacetime L8p1 
 
4 dimensional geometry : x, y, z, time, 

o Frame of reference is a 4D coordinate system 
 
 Consider a more easily visualized lower number of dimensions.  We are familiar with 3 spatial 
 dimensions, x,y,z.  Now, think of your perspective if you were confined to two dimensions.  A flat 2 
 dimensional geometry would correspond to a tabletop, for instance.  A curved 2 dimensional geometry 
 would correspond, for instance, to the surface of a sphere, say a ball.  A person confined to the surface 
 of the ball can only move in two possible ways: left-right, or forward-backward.  They cannot move up 
 or down.  The interesting thing is, this geometry can be ‘curved’ whereas the tabletop ‘flat’ geometry is 
 not curved.  This shape of the geometry will affect motion observed. 
 
 Consider two people walking parallel to each other in a flat geometry.  They will never approach or 
 recede from each other.  In other words, their relative motion will be constant and there will be no 
 accelerations between them.  So there is no apparent force being exerted on either of them from each 
 other’s vantage point. 

 
 
 
Now consider the same two people on the surface of a sphere.  Let’s say 
that they are on the equator and  they both start walking north (i.e. parallel 
to each other).  Their paths will converge at the pole.  Their relative 
velocity will change from the time they start at the equator to the time 
they get to the pole.  This is interpreted as a force being exerted of 
attraction between the two people. 
 
  
 

Now we want to consider the motion of light in spacetime.  The shortest 
distance between any two points in spacetime is a ‘geodesic’.  This is a 
‘straight line’ on a curved surface or in a curved space.  Light, by virtue of 
it’s having the maximum velocity in nature, travels along a geodesic in 
spacetime.   
 
We can consider these geodesics in our sphereical geometry case.  For a 
sphere, geodesics are segments of ‘great circles’ which have a diamater 
which is the same as the diameter of the sphere.  Lines of constant latitude 
are not great circules – their segments are not the shortest paths.  This is 
why airplanes do not travel along lines of constant latitute, but tend to bow 
northward (in the northern hemisphere) to take the shortest path. 
 
 
 
 
 
 
 
 
 

Lines of latitude are not the 
shortest path 

Great Circles are the shortest! 

Equator 

Line of constant latitude 



Relativistic Gravity L8p2 
 
It turns out the geometry of curved spacetime can have many possibilities 
How can we figure out which possibility is true? 
 

 
 
Geometry affects motion 

o Acceleration in this case 
 
 

 
• Gravity is interpreted as a curvature of a 4D spacetime geometry 

 
• We need to find geometry which presents accelerations we see 

o The combination of the Principle of Covariance & Newton’s Gravitational Law gives a unique 
Theory of General Relativity.  The curvature is such that it causes masses to attract one another, as 
shown above, rather than repel each other.  The amount of attraction is set by the kind and degree of 
curvature. 

 

Bending of Light L7p6 
 
 
To extend an inertial frame through space & time 

• Must compare distant clocks & straight rulers 
o Requires light to carry information 

 
If we are in the presence of gravity, the shape of space-time is changed from flat to curved.   Light has energy, 
& by Special Relativity and Principle of Equivalence, it is subject to gravity. 
The speed of light cannot change, but it’s direction can, according to the curvature of spacetime.   
 

 
 
Solar Eclipse 1919 – Starlight observed bent by gravity of the sun!



 
 
1) Consider two inertial reference frames, S and S’.  S’ is moving with velocity, v, relative to S.  When an 

object is moved with velocity V’ in frame S’, state the Galilean velocity transformation which will allow 
you to aclculate the object’s velocity in frame S.  [4 pts] 

 
2) Diagram the Michelson-Morley experiment and explain the measurement obtained.  [8 pts] 
 
3) Why did the Michelson-Morley experiment call classical mechanics into question? [10 pts] 
 
4) What is the difference between Galileo’s and Einstein’s statement of the Principle of Relativity?  [3 pts]  In 

what way does Einstein’s formulation reconcile mechanics and electromagnetism, or account for the result 
of the Michelson-Morley experiment?  [7 pts] 

 
5) Describe the way Special Relativity changes our conception of time by referring to how it effects the 

observation of simultaneous events in different inertial reference frames.  [10 pts] 
 
6) An object moving at velocities approaching the speed of light will appear longer than if that object were 

stationary.  (T or F)  [2 pts] 
 
7) Clocks moving at velocities approaching the speed of light will appear to register time fore slowly than if 

they were stationary.  (T or F)  [2 pts] 
 
8) Describe the ‘Pole-in-the-Barn’ paradox.  [10 pts] 
 
9) In special relativity, the total energy of a particle includes a term which is based on the particle mass, E = 

mc2.  (T or F)  [2 pts] 
 
---------------- General Relativity Questions 
 

1) State the Principle of Covariance.  How does this relate to the Principle of Relativity as expressed in 
Einstein’s Special Theory of Relativity?  [10 pts] 

2) State the Principle of Equivalence.  Discuss how this follows from thinking about free-falling reference 
frames.  [10 pts] 

3) Motion of bodies is directly tied to the curvature of the geometry of space and time in General 
Relativity.  (T or F) [2 pts] 

4) Explain the concepts of inertial mass and gravitational mass.  Why are they related?  [10 pts] 

5) Describe, possibly with a 2-dimensional spatial geometry analogy, how geometry can influence motion.  
[10 pts] 

6) A free falling reference frame is not extensible to large distances.  (T or F)  [2 pts] 
 


