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Introduction

Physics makes both general and detailed statements about the physical
universe. These statements are organized in such a way that they provide a model or a
kind of coherent picture about how and why the universe works the way it does.
These sets of statements are called “theories” and are much more than a simple list of
“facts and figures” like you might find in an almanac or a telephone book. (Even
though almanacs and telephone books are quite useful!) A good physics theory is far
more interested in principles than simple “facts.” Noting that the moon appears
regularly in the night sky is far less interesting than understanding why it does so.

We have confidence that a particular physics theory is telling us something
interesting about the physical universe because we are able to test quantitatively its
predictions or statements about the universe. Indeed, all physics (and scientific)
theories have this “put up or shut up” quality to them. For something to be called a
physics “theory “ in the first place, it must make quantitative statements about the
universe that can be then quantitatively tested. These tests are called “experiments”.
The statement, “My girlfriend is the most charming woman in the world,” however
true it may be, has no business being in a physics theory because it simply cannot be
quantitatively tested.  If the experimental measurements are performed correctly and
the observations are inconsistent with the theory, then at least some portion of the
theory is wrong and needs to be modified. Yet, consistency between the theoretical
predictions and the experimental observations never decisively proves a theory true. It
is always possible that a more comprehensive theory can be developed which will
also be consistent with these same experimental observations. Physicists, as well as
other scientists, give a kind of provisional assent to their theories, however
successfully they might agree with experimental observation. Comfortably working
with uncertainty is a professional necessity for them. 

Making careful quantitative measurements are important if we want to claim
that a particular physics theory explains something about the world around us.
Measurements represent some physical quantity. For example, 2.1 meter represents a
distance, 7 kilograms represents a mass and 9.3 seconds represents a time. Notice that
each of these quantities has a number like 9.3 and a unit, “seconds”. The number tells
you the amount and the unit tells you the thing that you are talking about, in this case
seconds. Both the number and the unit are required to specify a measured quantity.
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Precision

There is a certain inherent inaccuracy or variation in the measurements we
make in the laboratory. This inherent inaccuracy or variation is called experimental
“error” and the word is not meant to imply incompetence on the part of the
experimenter. Error merely reflects the condition that our measuring instruments are
imperfect. This lack of perfection in our measuring procedure is to be contrasted with
mistakes like adding two numbers incorrectly or incorrectly writing down a number
from an instrument. Those mistakes have nothing to do with what I mean by
experimental error and everything to do with the competence of the experimenter!
Understanding and quantifying measurement error is important in experimental
science because it is a measure of how seriously we should believe (or not believe)
our theories abut how the world works. 

If I measure my mass to be 120.317 kilograms, that is a very precise
measurement because it is very specific. It also happens to be a very inaccurate
measurement because I am not quite that fat. My mass is considerably less, something
like 85 kilograms. So, when we say that we have made a precise measurement we can
also say that we have made a very specific measurement. When we say we have made
an accurate measurement we can also say that we have made a correct measurement.
When we make measurements in the laboratory we should therefore distinguish
between the precision and the accuracy of these measurements.

The so-called number of significant figures that it contains indicates the
precision of a measurement. In our mass example, the quantity 120.317 kilograms has
6 significant figures. This is rather precise as measurements go and is considerably
more precise than anything you will measure in this course. Again, the fact that a
measurement is precise does not make it accurate, just specific. In any event, it is
useful to be familiar with how to recognize the number of significant figures in a
number. The technique is this: 

1. The leftmost non-zero digit is the most significant digit;
2. If there is no decimal point, the rightmost non-zero digit is the least significant;
3. If there is a decimal point, the rightmost digit is the least significant, even if it is

zero.
4. All digits between the least significant and the most significant (inclusive) are

themselves significant.

For example, the following four numbers have 4 significant figures:
2,314    2,314,000    2.314    9009    9.009     0.000009009    9.000

No physical measurement is completely exact or even completely precise. The
apparatus or the skill of the observer always limits accuracy and precision. For
example, often physical measurements are made by reading a scale of some sort
(ruler, thermometer, dial gauge, etc.). The fineness of the scale markings is limited
and the width of the scale lines is greater than zero. In every case the final figure of
the reading must be estimated and is therefore somewhat inaccurate. This last figure
does indeed contain some useful information about the measured quantity, uncertain
as it is. A significant figure is one that is reasonably trustworthy. One and only one
estimated or uncertain figure should be retained and used in a measurement. This
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figure is the least significant figure. It is also important to understand approximately
the magnitude of the uncertainty so that you can state it with the measurement.

For example, a length measurement of 2.500 meters (4 significant figures) is
one digit less uncertain that a measurement of 2.50 meters (3 significant figures). If
your measuring instrument is capable of 4 digit precision then you can distinguish
between an item 2.500 meters long and one 2.501 meters long. If your instrument
were precise to only 3 significant figures, then both items would appear to be 2.50
meters long and you could not distinguish between them. Again, infinite precision is
not possible. All instruments have limits. It is important to know how much precision
your instrument is capable of. For example, it would be silly to measure something
with a toy ruler and then announce that the object was 9.3756283 centimeters long.

Error

Perhaps you have had the experience of measuring something multiple times
and not quite getting the same answer for each measurement. Your measured value
could be a bit high or a bit low of the correct value. Perhaps you notice that the
variations in your measurements have no fixed or predictable pattern. Your measured
value could be as likely to be a bit too high as to be a bit to low. This variation in the
measured quantity is called a random error. Indeed, with random errors an
individual measurement of an object is just as likely to be a bit too high as to be a bit
too low. For example, using a ruler often produces random errors because you will
not consistently get the ruler’s zero line exactly aligned with the edge of the measured
object every time you make a measurement.

Measurements may display good precision but yet be very inaccurate. Often,
you may find that your measurements are usually consistently too high or too low
from the accurate value. The measurements are “systematically” wrong. For example,
weighing yourself with a scale that has a bad spring inside of it will yield weight
measurements that are inaccurate, either too high or too low, even though the weight
measurements may seem reasonable. You might, for example, notice that you seem to
gain weight after Thanksgiving holiday and lose weight after being ill. These
observations may in fact be true but the actual value for your weight will be
inaccurate.  This is an example of a systematic error. Your measurements are
systematically wrong. It is often very difficult to catch systematic errors and usually
requires that you understand carefully the workings of your measuring devices.

Since we don’t normally know the true value of the quantity we are
measuring, (otherwise why would we need to measure it?), we need some way to
estimate how reliable our measurements are. That is, we need some measure of the
error or uncertainty in our measurements. If someone asks us to measure the distance
between the Earth and the Sun, they will also be interested in knowing how accurately
we think we know our answer. We need to be able to give them an answer in a
compact form that indicates our best estimate and our uncertainty in that estimate:
x=xbest±dx . Estimating the uncertainty or error  – which is a measure of the

precision of our measurement  – is usually the hard part and what we concentrate on
now.

One way of estimating the precision of our measurements of some quantity is
to measure the quantity many times and then use the data to estimate how precise our
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measurement is. This procedure works well if the errors in our individual
measurements are random, i.e., if they are just as likely to be too high above the true
value as too low. The procedure is tedious to describe in words but very easy with
symbols. We’ll use words first to show you the advantage of using symbols. We
begin by making multiple measurements mi , where the subscript i labels a particular
measurement of the quantity (i = 1 if we are talking about the first measurement or i =
5 if we are talking about the 5th measurement, and so on). We then form the average
m of all the measurements. Next, we sum up the square of the difference between
m  and all the mi ’s. Continuing, we divide this sum by N – 1, where N is the total

number of measurements we made. Finally, we take the square root of this number to
find the number we really care about. Summarizing, and this time using only symbols,
we have

The symbol s2  is called the “variance of the mean” and its square root σ (the
“standard deviation of the mean”) is the number we are interested in. The value of σ
is what we would substitute for δx above. It summarizes the variation or “spread” in
our data when we make multiple measurements of the same quantity. It is a measure
of the precision or uncertainty of our final answer xbest . Large values of σ mean our
individual measurements varied substantially as we made them over and over again.
In such a case we do not expect that our final answer will be particularly precise.
Conversely, if σ is small, our individual measurements varied little. This is easy to see
by looking at the numerator for our formula for s2 . The formula tells us to subtract
the values of our individual measurements from the average for all the measurements
and then add all these differences. So, if all our measurements are nearly the same,
then the average for the measurements will not be very different from any individual
measurement. The numerical value of the numerator will be small and so will s2 .
Notice also that we divide the numerator by N –1 so that the entire fraction is a kind
of average deviation of the individual measurements from the mean of the
measurements. From this you can see why σ is baptized “the standard deviation of the
mean.”

Although a bit tedious, the above procedure for estimating the uncertainty σ in
our final answer is straightforward. But what do you do if you know or can estimate
the uncertainties in individual measurements? For example, suppose you can measure
lengths to a precision of +/- 3 mm. You measure the length of some quantity many
times and now you want to make a statement about the uncertainty in your value of
xbest . You might think that you ought to be able to make use of this knowledge of

the uncertainty of an individual measurement. You are correct. To get the uncertainty
in your final answer, you need to add the uncertainties in the individual
measurements. But, you need to add them in a special way.  Specifically, you
compute the sum

1
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where the si  are the uncertainties in the individual measurements. In words, this
formula says to add the squares of the reciprocals of the individual uncertainties. This
may seem like a perverse way to proceed but it is actually quite sensible. If a
particular measurement has a very large uncertainty (because you forgot to turn on
part of the measuring device), and then you do not expect this particular measurement
to be very useful for finding your final answer. Well, the above formula tells you this.
If you take the reciprocal of a large number then you will get a small number. Adding
a small number to some other number doesn’t always change the original number
very much so in some cases you can just neglect the small number. 

Remember that what you really care about ultimately is the uncertainty in your final
answer and that is given by σ. Either one of our computational recipes is appropriate
for doing today’s lab.

Odds and Ends

Taking the mean (average) value for a set of measurements is a good way of
reducing the effects of random errors and is the preferred way to get your value for
x

best . As you increase the number of measurements, the mean value of these
measurements will more closely resemble the actual value of the quantity you are
trying to measure, assuming there are no systematic errors present. This is because
you are just as likely to measure a value that is slightly too high as one that is too low,
so that the random errors will “average themselves out”. The magnitude of the relative
errors for the individual measurements gives you an idea of the uncertainty in your
value.

Averaging your measurements will not help you when there are systematic
errors present. In fact, there is no standard way to deal with systematic measurements,
which is why they are so troublesome.

There is a final aspect of measurement that you should be aware of. We need
to be specific about what exactly it is we are trying to measure. For example, in our
weight example above, does it mean with or without clothes? At what time of day?
Before or after a meal? You should be clear about the meaning of the quantity you are
trying to measure so that people can accurately interpret the significance of your
results.

Summary Questions

 What is the difference between accuracy and precision and why is this
difference significant?

 How many significant figures are in 13600? 0.12040? 00045?
 What distinguishes a random error from a systematic error?
 What is the point of making multiple measurements of the same quantity

before making a final statement about the numerical value of that quantity?
Objectives

1. To see how measurements and error analysis are a fundamental part of
experimental science. 
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2. To make some actual measurements and analyze the errors in them. 

3. To observe and understand the difference between accuracy and precision.

4. To understand the nature of random and systematic errors.

Equipment

Candle, ruler, “special” ruler, paper with closed curves, metal rod, material to be
weighed (dry ice and alcohol) and triple beam balance.

Procedure

1. Measure the length of the metal rods.  
Using only the special ruler, measure the length of the metal rod 5 times. When you
are finished, average the values to get a better measure of the piece’s true length.
Next, use your plastic ruler to measure your pieces again. Measure 5 times as before
and compute the average to refine your measured value. Make an “eyeball” estimate
of your uncertainties.

2. Measure the height     of the     candle flame.  
Light your candle and let the flame burn steadily for a minute or so. Use the plastic
ruler to measure the height of the flame. Make 10 measurements and try not to melt
the ruler. Hold the ruler a small distance away from the flame. Record your
measurements. Estimate for each measurement its si . Identify the technique you

used to find the uncertainty σ of your final answer. Remember to write only a
sensible number of significant figures.

3. Measure your reaction time.  
Your reaction time is the time that passes between some external stimulus and your
first action. We will use an old method to measure your reaction time. A falling ruler
will suffice. This is what to do.

a. Have your partner hold the regular (plastic) ruler vertically, holding it by the top
and having the zero point toward the bottom.

b. Place your thumb and forefinger at the ruler’s bottom, surrounding the zero point.
Be prepared to pinch the ruler as if it were to fall. Rest your forearm on the lab
table to steady your hand.

c. Your partner will drop the ruler without warning.
d. Pinch and grab the falling ruler as fast as you can. Record the distance the ruler

fell. This will tell you your reaction time.

e. Compute your reaction time using Galileo’s formula: s = 
1
2

gt2 . The meaning

of the symbols will be explained in lab.

Make 5 measurements and record the corresponding reaction times. Record your
reaction times on your data sheet. Do not mix your times with your partners. This
means you will make 5 measurements per person. Compute and record the individual
si ’s for each measurement. Identify the technique you used to find the uncertainty σ
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of your final answer. Be sure that both you and your lab partner have your reaction
times measured.

4. Measure the diameter of a closed curve.  
Measure the diameter of the large closed curve using the plastic ruler. Measure this
curve diameter across 6 different diameters of the curve. Record your measurements.
Compute the average diameter. Estimate for each measurement its si . Identify the

technique you used to find the uncertainty σ of your final answer. Remember to write
only a sensible number of significant figures.

5. Measure the mass of a cold material.  
Go to the instructor’s table with your partner, where you will be given a cup
containing some alcohol and some crushed dry ice. Using the balance on the
instructor’s table, measure and record the mass of the cup 6 times, at 1 minute
intervals. Warning: The dry ice and alcohol mixture is quite cold. If you stick
your fingers in the mixture you will feel much pain.
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Name: _____________________ Section: __________________

Abstract:

Analysis

1. Rod length

 Rod 1    Special Ruler    si            Plastic Ruler               si

Measurement 1    __________ _______ __________             _______

Measurement 2    __________ _______ __________             _______

Measurement 3    __________ _______ __________             _______

Measurement 4    __________ _______ __________             _______

Measurement 5    __________ _______ __________             _______

Measurement 6    __________ _______ __________             _______

Average Value     __________ __________

Uncertainty          __________ __________

a. Explain the possible sources of error in this measurement?

b. How well did your measurements with the special ruler agree with those done
with the plastic ruler? If there was a disagreement, what kind of error was it?
Random or systematic? What caused this error?
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2. Candle Flame

    Flame height           si

Measurement 1   ___________ ___________

Measurement 2   ___________ ___________

Measurement 3   ___________ ___________

Measurement 4   ___________ ___________

Measurement 5   ___________ ___________

Measurement 6   ___________ ___________

Measurement 7   ___________ ___________

Measurement 8   ___________ ___________

Measurement 9   ___________ ___________

Measurement 10   ___________ ___________

Average Value    ___________

Uncertainty         ___________

a. Describe the possible sources of error in this measurement.

b. What might you do to get a better measurement of the flame’s height?

3. Your reaction time

                                 Distance Time             si  (time)

Measurement 1         ___________ ________ ________

Measurement 2         ___________ ________ ________

Measurement 3         ___________ ________ ________

Measurement 4         ___________ ________ ________

Measurement 5         ___________ ________ ________

Average value           ___________ ________

Uncertainty               ___________ ________

a. Describe the possible sources of error in this measurement and explain their
relevance.
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4. Closed Curve Diameter

                                                  Curve diameter                              si

Measurement 1 ___________________ _______________

Measurement 2 ___________________ _______________

Measurement 3 ___________________ _______________

Measurement 4 ___________________ _______________

Measurement 5 ___________________ _______________

Measurement 6 ___________________ _______________

Average value ___________________ _______________

Uncertainty  ___________________

a. Describe the possible sources of error in this measurement.

b. What do the measurements tell you about the curve’s diameter?

5. Mass of cold material.

Measurement 1 ____________________

Measurement 2 ____________________

Measurement 3 ____________________

Measurement 4 ____________________

Measurement 5 ____________________

Measurement 6 ____________________

a. Describe the possible sources of error in this measurement and their relevance.

b. Do you see any pattern in the measured masses? What is it?

6. Which of your measurements (metal rods, curve diameter, flame height, etc.) was
the most uncertain? Why?
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7. Which of your measurements (metal rods, curve diameter, flame height, etc.) was
the least uncertain? Why?

8. Which measurements (metal rods, curve diameter, flame height, etc.), if any,
suffered from systematic error? Explain.

Conclusions

Succinctly describe what you learned today.
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