Electric Field

A field is a physical quantity that can be specified at each point in a given region of space.

Example: Measuring water in a pipe. Each point has a velocity, or...
Example: Electric Dipole

Consider a change in the position of charges.

\[\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2 \]

\[\mathbf{E}_1 = \mathbf{E}_0 \]

\[\mathbf{E}_2 = \mathbf{E}_0 \]

\[\mathbf{E} = \mathbf{E}_0 + \mathbf{E}_0 = 2\mathbf{E}_0 \]

Since \(\mathbf{E}_1 \) and \(\mathbf{E}_2 \) are parallel, the net electric field is twice \(\mathbf{E}_0 \).

E = \frac{q}{4\pi\epsilon_0 r^2}

- If \(q \) is positive, \(\mathbf{E} \) is directed away from the charge.
- If \(q \) is negative, \(\mathbf{E} \) is directed towards the charge.

\(\mathbf{E} = \mathbf{E}_0 \)

- **Point 1:** \(x = \frac{1}{2} \)
- **Point 2:** \(x = \frac{3}{2} \)

\[E = \mathbf{E}_0 \cos \left(\frac{2\pi x}{a} \right) \]

- **Point P:** \(x = \frac{3}{2} \)

\[E = \mathbf{E}_0 \cos \left(\frac{2\pi \times \frac{3}{2}}{a} \right) = \mathbf{E}_0 \cos \left(\frac{3\pi}{a} \right) \]

For a dipole, the charges do not cancel

- Because 2 charges are more useful distance.