E-field of a Continuous Charge Distribution

If charge distribution is continuous (has vast number of charges)

- each small piece in $dxdydz$ with charge $d\rho$ can be summed
 \[\Delta E = k \frac{d\rho}{r^2} \]

 so that
 \[E = k \sum \frac{d\rho}{r^2} \]

 as $d\rho \to 0$
 \[E = k \int \frac{d\rho}{r^2} \]

If charge arranged in a:

- line, l
 \[\lambda = \frac{\rho}{l} \]

- surface, A
 \[\sigma = \frac{\rho}{A} \]

- volume, V
 \[\rho = \frac{\rho}{V} \]

if ρ is uniformly distributed

$Q = \text{total charge}$

Example: E-field of Charge

- E-field at r on axis of point charge Q at distance x from its center

For element $d\rho$, we have $dE = \frac{kd\rho}{r^2}$

Need to sum E vectorially for all elements!

Components $1 \to x$ cancel
- Components along axis are
 \[dE = \cos \theta = k \frac{d\rho}{r^2} \cos \theta \approx \frac{d\rho}{r^2} \]

 Since θ, a are the same for all $d\rho$s, we have the integral
 \[E = \int \frac{dE \cos \theta}{r^2} \]

 \[= \frac{k}{2} \int \frac{x}{x^2 + a^2} \frac{d\rho}{r^2} \]

 when $x \gg a$, $E \approx \frac{kQ}{x^2}$ - acts like a point charge.
Motion of Charged Particles in E Field

Consider a charged particle in an E field. What is force acting on it?

\[\vec{F} = q \vec{E} \Rightarrow F = q \vec{E} \]

What is the particle’s motion?

\[F = ma \]

\[\Rightarrow q \vec{E} = ma \]

\[\Rightarrow a = \frac{q \vec{E}}{m} \]

when \(q > 0 \) \(\vec{a} \parallel \vec{E} \)

when \(q < 0 \) \(\vec{a} \parallel \vec{E} \)

Example:

E Field between 2 Plates

1) Consider a with mass, \(m \), placed in an E field uniform between two plates.

2) Take charge \(q \) stationary + \(q \) on 2 oppositely charged metal plates.

\[a = \frac{q \vec{E}}{m} \rightarrow a_y = 0, \quad a_x = \frac{q \vec{E}}{m} \]

Uniformly accelerated motion

\[v = at = \frac{q \vec{E} t}{m} \]

\[y = \frac{1}{2} a t^2 = \frac{q \vec{E} t^2}{2m} \]

2) Deflecting an electron

- Travel with velocity, \(v_0 \) in \(x \)-direction: \(x(t) = vt_0 \)

Given expression for \(y \) above, this gives

\[y = \frac{q \vec{E}}{m} \left(\frac{x}{v_0} \right)^2 \]

→ a parabolic path until exit, then tangent.