P37.1 \[\lambda_{\text{height}} = \frac{dL}{d} = \frac{632.8 \times 10^{-9} \text{ m} \cdot (5.00 \text{ m})}{2.00 \times 10^{-3} \text{ m}} = 1.58 \text{ cm} \]

P37.2 \[y_{\text{bright}} = \frac{4L}{d} \]

For \(m = 1 \), \[\lambda = \frac{4L}{d} \left(\frac{3.40 \times 10^{-3} \text{ m} \cdot (5.00 \times 10^{-4} \text{ m})}{3.30 \text{ m}} \right) = 515 \text{ cm} \]

P37.7 (a) For the bright fringe, \[y_{\text{height}} = \frac{mL}{d} \] where \(m = 1 \)

\[y = \frac{546.1 \times 10^{-9} \text{ m} \cdot 1.20 \text{ m}}{0.250 \times 10^{-3} \text{ m}} = 2.62 \times 10^{-3} \text{ m} = 0.262 \text{ mm} \]

(b) For the dark bands, \(y_{\text{dark}} = \frac{y}{d} \left(m + 1 \right) \)

\[y_{2} - y_{1} = \frac{L}{d} \left[\left(m + 1 \right) - \left(m - 1 \right) \right] = \frac{L}{d} (1) \]

\[= \frac{546.1 \times 10^{-9} \text{ m} \cdot 1.20 \text{ m}}{0.250 \times 10^{-3} \text{ m}} \]

\[\Delta y = 2.62 \text{ mm} \]

FIG. P37.7

P37.24 Light reflecting from the first surface suffers phase reversal. Light reflecting from the second surface does not, but passes twice through the thickness \(t \) of the film. So, for constructive interference, we require

\[\Delta = \frac{\lambda}{2} + 2t = \lambda \]

where \(\lambda = \frac{\lambda}{n} \) is the wavelength in the material.

Then

\[2t = \frac{\lambda}{2} - \frac{\lambda}{2n} \]

\[\lambda = 4nt = 4(1.33)(115 \text{ nm}) = 612 \text{ nm} \]

P37.25 Since \(1 < 1.25 < 1.33 \), light reflected both from the top and from the bottom surface of the oil suffers phase reversal.

For constructive interference we require

\[2t = \frac{m\lambda_{\text{top}}}{n} \]

and for destructive interference,

\[2t = \frac{m(1/2)\lambda_{\text{dest}}}{n} \]

Then

\[\frac{\lambda_{\text{top}}}{\lambda_{\text{dest}}} = 1 + \frac{1}{2n} \]

\[\frac{640 \text{ nm}}{512 \text{ nm}} = 1.25 \]

and \(m = 2 \).

Therefore,

\[t = \frac{2(640 \text{ nm})}{2(1.25)} = 512 \text{ nm} \]

P37.26 If the path length difference \(\Delta = \lambda \), the transmitted light will be bright. Since \(\Delta = 2t = \lambda \),

\[d_{\text{min}} = \frac{\lambda}{2} = \frac{650 \text{ nm}}{2} = 325 \text{ nm} \]