Quantum Mechanics

Electromagnetism presents a major problem for understanding the structure of matter:
- matter has + and - charges
- negative can move around, not in atom center

Maxwell's Eq.?
- light behaves like a wave: interference
- light behaves like a particle: photoelectric effect
- electromagnetic wave extends thru space, has a

\[\left\{ \text{a particle is localized, has position } x \right\} \]

\[\text{for light } \rightarrow p = h/\lambda \text{ (Einstein)} \]

Wave-particles (de Broglie):
- if EM waves are particles (y), what about other particles?

Consider electron:

- superposition (sum of many diff. waves can produce)
- waves can produce localization, "wave packet" localized

\[\Delta x \text{ = particle is most probable location within } \Delta x \]
Double Slit for Electrons

If electrons inherently waves, we should see interference

\(e^- \)
\(\text{electron} \rightarrow \text{double slit} \)
\(\text{screen} \) (detector)

- An interference pattern is observed when \(\Delta x \) small

I inject electrons individually, what see is:

\(e^- \)
\(\text{screen} \)

- Pattern builds up one 'hit' at a time

- Single particle interferes with self; it's a wave!

Uncertainty

- To produce a localized particle
 - \(\Delta x \) is small
 - Need to sum more waves
 \[\sum_{\lambda} \rightarrow \frac{\lambda}{\Delta x} \]

- Multiple \(\lambda \) associated with particle; its \(\lambda \) is not well-defined (exact)

- If more wave-like (\(\Delta x \) large)
 - Momentum \& \(\lambda \) well-defined

Since \(\lambda = h/\Delta x \rightarrow \Delta x \) related to \(\Delta p \)

So \(\Delta p \times \Delta x \) inversely related

\(\rightarrow \) when localized, \(\Delta p \) large
\(\rightarrow \) when \(\Delta p \) known well, \(\Delta x \) large

\[\Delta p \Delta x \geq \frac{\hbar}{2} \]

Heisenberg Uncertainty Principle

\(\Delta p \) or \(\Delta x \) to zero

Not an experimental limitation
Implications

Classical physics is deterministic
- can know \hat{x}, \hat{p}, perfectly
- if know initial \hat{x}, \hat{p}, perfectly
- state of universe is completely determined

Quantum Mechanics
- determinism is gone
- we can’t know perfectly
- inherent randomness
 - e.g. radioactivity
- chemistry, semiconductor physics
- rely on uncertainty + wave-like properties of matter
 - FPsA, CPUs, PROMs...