Some Fundamentals
Charge is quantized
a subatomic particles have change
electron $\xi_{e}=-1.6 \times 10^{-1} \mathrm{C}$
$\frac{q_{0}=-q_{e}}{\downarrow}$
co many decimal places

Sproton of \quad of $=+1.6 \times 10^{-19} \mathrm{c}$
(1) neutron of $=O C$ made of 8 quarks each \rightarrow changes $\pm \frac{1}{3} q_{e}, \pm \frac{2}{3} q_{e}$ -no other values

Election is smallest isolata.ble chase (quarts cannot be observed in isolation)

Amazingly $f_{p}=-q_{e}$ to very hist precision

Charge Conservation
When rub glass rod with sill e - positive change \rightarrow nod

- nesacive charge \rightarrow silk (electrons stripped from
atoms)
- Total change conserved
"In a closed system, one can never make or destroy nee charge."
Ac fundamental particle level:' -a particle" of light ('photori, γ) passing thru mazcer

- No cases of change in net electric change have ever been observed.

Coulomb's Law
electrostatics: describe cases where

- have one or more unmoving electriccharses
- calculate force, fields, potential energies
- like sicharges regal
\rightarrow opposite signs attract

Two charges: $7 \mathrm{CB}_{2}$

$$
\frac{1}{\text { 物 } \epsilon_{0}}=k=9 \times 10^{9} \mathrm{Nm} \mathrm{~m}^{2} / \mathrm{c}^{2}-\begin{gathered}
\text { sets } \\
\text { serensch } \\
\text { of force }
\end{gathered}
$$

"permizavity constant"

$$
=8.85 \times 10^{-1 / 2} \mathrm{c}^{2} / \mathrm{Nm}^{2}
$$

Some Fundamentals

Coulomb's Law describes a " $1 / r^{2}$ "force, like sravicy

$$
\left(\overrightarrow{r_{2}}=-G \frac{m_{1} m_{2}}{r_{1_{2}^{2}}^{2}} \hat{r_{2}}\right)
$$

-for point electric changes -exponent $r^{\circledR 1}$ tested to part in $10^{16!!!}$

Also, electrical forces in credibly strong

$$
\begin{aligned}
& k>G \\
& \text {-actually } \xlongequal[\underline{=} 10^{3!}]{k} \text { times } \\
& \text { scronser!! }
\end{aligned}
$$

Units:
Coulomb: "amount of charge flowing thru any crosssection of a wire in 1 sec if there's a steady current

$$
\text { of } 1 \mathrm{Amp}^{\prime \prime}=\frac{6.3 \times 10^{18}}{\text { electrons }}
$$

Muteiple Charges
If have >2 changes, use superposition

94 $\vec{F}^{+} \vec{F}_{1}$ is force on charge of,

$$
\vec{F}_{1}=\vec{F}_{21}+\vec{F}_{31}+\vec{F}_{41}
$$

- resultant force is vector sum of all forces from all particles
By component:

$$
\begin{aligned}
& F_{1 x}\left|\hat{\imath}=\left|F_{31 x}\right| \hat{\imath}-\left|F_{41 x}\right| \hat{\imath}-\left|F_{\beta_{x}}\right| \hat{\imath}\right. \\
& \left|F_{y y}\right| \hat{\jmath}=\left|F_{4 x}\right| \hat{\jmath}-\left|F_{31 y}\right| \hat{\jmath}-\left|F_{21 y}\right| \hat{\jmath}
\end{aligned}
$$

Force dias rams: when multiple forces act on a point charge, - often useful to draw magnitudes * directions

Vector Addition, Angles

* Force Siásrames

Adding by vector components:

$$
\begin{aligned}
& \overrightarrow{f_{1}}=4 \hat{\imath}+3 \hat{\jmath} \\
& f_{2}=-3 \hat{\imath}+1 \hat{\jmath}
\end{aligned}
$$

- add in each 1 direction

$$
\begin{aligned}
\vec{f}_{1}+\vec{f}_{2} & =(4-3 \hat{\imath}+(3+1) \hat{\jmath} \\
& =\begin{array}{c}
\left\lvert\, \frac{1 \hat{\imath}+4 \hat{\jmath}}{\text { consistent with }} \begin{aligned}
\\
\text { force dias ram }
\end{aligned}\right.
\end{array}
\end{aligned}
$$

Considering angles:

$$
\begin{aligned}
& \vec{f}_{1}=30 \mathrm{~N} @ \theta_{1}=45^{\circ} \\
& \frac{f_{2}}{2}=10 \mathrm{~N} @ \theta_{2}=90^{\circ} \\
& \vec{f}_{1}=f_{1} x \hat{\imath}+f_{1} \hat{\jmath} \\
& =\left|f_{1}\right| \cos \theta_{1} \hat{\imath}+\left|f_{1}\right| \sin \theta_{1} \hat{\jmath} \\
& =21.2 \mathrm{~N} \hat{1}+21.2 \mathrm{~N} \hat{\mathrm{~F}} \\
& \vec{f}^{2}=\frac{f^{2} \times \gamma \hat{\jmath}=\left|f_{2}\right| \sin 90^{\circ}}{\jmath}=10 \mathrm{~N} \\
& \therefore^{\prime} \vec{f}_{1}+\vec{f}_{2}=21.2 N \hat{\imath}+31.20 \hat{\jmath}
\end{aligned}
$$

Example: Multiple Charges
Three changes,

$$
\left.\begin{array}{l}
\Omega_{1}=-1.0 \times 10^{-6} \mathrm{C} \\
9_{2}=+3.0 \times 10^{-6} \mathrm{C} \\
q_{3}=-2.0 \times 10^{-6} \mathrm{C}
\end{array}\right) r_{12}=15 \mathrm{~cm} r_{13}=
$$

Charge of is to rishi of 8 , and 8_{3} is on the left 30° away from vertical.

* What is resultant force * direction on $夕$?
First, dui ram

Force Diagram:
F_{12} accraczive
Foo repulsive

Example (cont.)

$$
\begin{aligned}
\left|F_{12}\right| & =18,9.9 / r_{12}^{2} \\
& =9 \times 10^{9} \mathrm{am} / \mathrm{m}^{2} / \mathrm{c}^{2}\left[\frac{\left(+1.0 \times 10^{-6}\right)\left(+3.0 \times 10^{-6} \mathrm{c}\right)}{(0.15 \mathrm{~m})^{2}}\right\} \\
& =1.2 \mathrm{~N} \\
\left|F_{13}\right| & =198.92 / \mathrm{r}_{13}^{2} \\
& =9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{c}^{2}\left\{\frac{\left(-1.0 \times 10^{-6} \mathrm{c}\right)\left(-2.0 \times 10^{-6}\right)}{(0.1 \mathrm{~m})^{2}}\right\} \\
& =1.8 \mathrm{~N}
\end{aligned}
$$

Adding vectors,

$$
\begin{aligned}
F_{1 x} & =F_{12 x}+F_{13 x}=\left|F_{12}\right|+\left|F_{13}\right| \cos \theta^{\prime} \\
& =2 / \mathrm{N} \\
F_{1 y} & =F_{12 y}+F_{13 y}=\left|F_{12 y}\right|+\left|F_{13}\right| \sin \theta^{\prime} \\
& =1.6 \mathrm{~N} \\
\left|F_{1}\right| & =\sqrt{(2.1 N)^{2}+(1.60)^{2}} \\
& =\mid 2.6 \mathrm{~N} \\
\phi & =\tan ^{-1}\left(-\frac{1.6}{2.1}\right) \\
& =-37^{0}
\end{aligned}
$$

Example:
Two changes, 8 , are suspended by loose cables of length $L=0.15 \mathrm{~m}$. The charges are let 50 and fallsuch that they hang each with angle 5° to the vertical. They are not touching.
What is the charge of if each has mass 0.03 kz ?
Diagram:

Force Diagram:
Each sphere in equilibrium
by tension, Ts weight and Force from other
 chan $\frac{8}{5}$ e, F_{e}

Example: (cont,)
We don't know $\vec{F}_{e} \vec{\tau}$ on a. Consider equilibrium:

$$
\begin{gather*}
\sum F_{x}=T \sin \theta-F_{e}=0 \tag{1}\\
\sum F_{y}=T \cos \theta-m \xi=0 \\
L T=T \xi / \cos \theta \tag{2}
\end{gather*}
$$

using (2) in (1) provides

$$
\begin{aligned}
\frac{m \xi}{\cos \theta} & \sin \theta-F_{e}=0 \\
F_{e} & =m \xi \tan \theta \quad(\sin \theta=\tan \theta) \\
& =2.6 \times 10^{-2} \mathrm{~N}
\end{aligned}
$$

Coulomb's Law fives
-or-

$$
F_{e}=\prod g^{2} /\left(\partial_{a}\right)^{2}
$$

-or- $g^{2}=4 \mathrm{~F}_{e} a^{2} / k$ we need
Using Diagram!

$$
\begin{aligned}
& \sin \theta=a / L \\
& a=L \sin \theta=(0.15 m)\left(\sin 5^{\circ}\right) \\
& =1,3 \mathrm{~cm}
\end{aligned}
$$

And we jet

$$
g=2 a \sqrt{F_{e} / k}=4.4 \times 10^{-8} \mathrm{C}
$$

