Least-Squara Merhod Imagino hace a set of n measurement, y;, at point x; - each measurement has ease of We want to fit to some function

fix; a, a, ... and

fit parameter - unknown Calculate signer

of monit

S= i=1L

of

Calculate signer

N: ±6.

N: ±6. would be a X2 if estore Gaussian (not always the case) En Seek a. for which S is a minimum

Straight Line Fit Consider points fitted to a simple livered function y = ax + b To get a and il': 35 = 0 35 = 0 -assigning $A = \sum \frac{x_i}{6^2}$ $B = \sum \frac{1}{5^2}$ C = 5 /3 D = 5 /3 E = 5 xi/i Gerel a= EB-CA XB- 22 6 = DC-EH Covarianes matrix is vielely 62 = B/(BD-A2); 62 = S/(BB-A2) Coro (a, b) = -A/(BS-A?)

Charged Partiels Legistories Pattern xelognitélen - individual hits in tracking detectors How go from => To this? => It is impractical to try all combinations of hils to find the best associations for tracks

- but have advantage of considering full range of configurations Can also analy hits by several calculable eg. Max (Y:-Y:) for straight tracks

Road Mechod Tracking If have a track with measured positions relative to that calculated n. = y, - e, = y - è = X; . Q, +1. Q2 linear relation 7 = X·à To obtain à, we need the covariance matrix $Cy = \begin{pmatrix} 6, & 0 \\ 0 & 82^{3} & 63^{3} \end{pmatrix} = 6y'$ diagonal because each measurement Using least-squares, one minimizer 22 = ETGy E bet a = (X Gy X) X Gy Y (values Ca = (XTGyX)-1 (arms)

For large trackers with many hile - may start at outer edge of detector - consider 3 hit triplets - fit to a parabola - Ab el trapolate - forming track segments - his way

- a series of segments is combined to

form a final track

- drop points with large 'residuals'

(distance from track of good X?)

- colis

a Simple Cone alforithm Need to find the cluster of high energy. hits cells in a calorimeter - one method is to draw a come in detector with vertex at interaction point 1R= 113+109 - Look for alle with large energy deposition - draw come DR in radius around - calculate a now n', &' centraid an iterative process is often needed

Quark Lets: Eftermach of parton fragmentation : jets a spray of partiels arrayed roughly around direction of an initiating colored object: A quark or gluon the kinematich of this 'jet' and the partons - at detector level - final state santieles from prompt decays of beadwardsfragmentation products - collision + shower in calorimeter - many sacregaing showers Several reconstruction schemes: two most ITERATIVE FIXED-CONE JADE (energy or momentum)
space alsorithm)

	JASE algorithm	
	,	
	We will iteratively	mide the closeness
	of cells in mo	mention space
	8 - as opposed to	mention grace using 7, \$ more lively
	Use	
	V 9	21E. E. (1-COA Q.) M.
	715	2(Ε, Ε; (1- Cod θ;)) M. 4.
	000	0. 000
	combined:	threshold on you are
	Virlate a vares	"standard" milit
	own E. a.	"preudojet" with its
	The specific of ma	ny alzorichul can
	wary by especies	nent
	, , ,	
	a -	
	2	
	e e	
	<u> </u>	
11		

Example 4.7 Find the best straight line through the following measured points

v v	0.92	4.15	9.78	14.46	17.26	21.90
σ	0.5	1.0	0.75	1.25	1.0	1.5

Applying (4.75) to (4.82), we find
$$a = 4.227$$
 $b = 0.878$ $\sigma(a) = 0.044$ $\sigma(b) = 0.203$ and $cov(a, b) = -0.0629$.