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+ ’
Therefore E=0 when x= Lk ;6'0 L
(Note that the positive root does not correspond to a physically valid situation.)
) v=td, k@ _g or V=ke(ﬂ———2q ):0
x  2.00=x x 200-x
Again solving for x, 2gx = q(2.00-x)
For 0<x<2.00 V=0 when x=|0.667 m
dﬁ:pﬁl For x<0  x=[-2.00m]
X -x
P25.20 The charges at the base vertices are d/2 = 0.0100 m from point A, s,
and the charge at the top vertex is / ®
2
(2d)* - (5) = Ed
2 -9
A A @"
|<—— 2.00 cm ——>|
fam portA, ANS FIG. P25.20

q.
V= kL
2k

-9, -9 q q 2
=k | —2+—2+ =k, = 4+—
e(d/2 dj2 dJE/zj ed( 15)

-
V=(8.99x109)7'00><10 (—4+ . )=—1.10x107V

0.0200 J5
P2521  (a) v=&ﬁ+@=2(ke_q) 3
v ' p (0, 0.500 m)
8 0 gt " 2.00 uC 2004C
2 o —
A (8.99x10° N-m?/C )(2.00 x107 C) K TR

J(1.00 m)? +(0.500 m)?
vV =322x10* V=

b) U=qv=(-300x10* C)(3.22x10* C)=[ 9.65x102 1|

ANS FIG. P25.21
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80 Chapter 25

P2538  (a) |E,>EgsinceE= %

AV (6-2)V
(b) Ep=-"—=--""—=[200 N/C] down

(c) The figure is shown to the right, with sample field
lines sketched in.

2442 ANS FIG. P25.38
P39, E = il"eQ m{@ﬂ

YTy oy

¢ y
ol e [ ke
A o okl y T
ty o +y +(\/Z +y yﬁ+y

Section 25.5  Electric Potential Due to Continuous Charge Distributions

% __ 1 ¢dg
P25.40 v-jdv_4ﬂ60j :

All bits of charge are at the same distance from O.

So

Vi (—Q]—(899x109N~m2/C2) RESOXIOAC | =
dn e\ R} 0.140 m/z -

P2541  AV=V,,-V, = %2—2 -+ k;Q = k;Q (71_—— 1] - ~0.553%Q
R*+(2R) 5
x| m \m m?

P25.42  (a) M:[ﬂzg.(ij: < ! BT
|
|
|

d Adx | % xd
(b) V=ke_[_q:kej_=keaj e = kea[L—dln(l+£):| l*d*::::l—x
r r pdtx d A 3

ANS FIG. P25.42

xdx

_ rkdq _ o
P2543 V=] ==k, | \/bz T

L
Let z=——x.
2

Then x=%—z, and dx=-dz

© 2010 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Electric Potential 81

(L/2—z2)(-dz) _ kaL

J- aj zdz
N/ \/b2 N/
=— kegL ln(z +z2 +b? )+ k,0\/z* +b?

V=kaf

. L L

2 2
V=—keaLln (é—xj+ (E—xJ +b* || +k,o (é—-x) +b*
2 2 2 2
o o

RPN PSS ooz O o el
e 1_ L/2+(L/2)" +2 +kea[ (2 L) = (2) +b2]

B b*+(L2/4)- L2
JP+(2/4)+ 12

P25.44 Vel ﬂ:ke_f{ixwe | %+k:f@

r X

all charge -3R semicircle R

V=—kAln(-x)

v=k81n3?R+keAn+keln3= k(7 +21n3)

Section 25.6  Electric Potential Due to a Charged Conductor

P25.45 Substituting given values into V = Ralt
#
(8.99x10° N-m?/C?)q
7.50x10° V=

0.300 m

Substituting g = 2.50x107" C,

L aEeRIGT ©
1.60x107° C/e

—| 1.56 x 10'* electrons |

*P25.46 A conductor of any shape forms an equipotential surface. If the conductor is a sphere
of radius R, and if it holds charge Q, the electric field at its surface is £ = keQ/ R? and the
potential of the surface is V = keQ/ R; thus, if we know E and R, we can fund V. However, if
the surface varies in shape, there is no clear way to relate electric field at a point on the surface
to the potential of the surface.
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P25.47 (a) Both spheres must be at the same potential according to kay = ke,

i r

where also q+¢,=120x10° C

Then q = &
5

Dl | g, =120x10° C
)
_120x10% ¢
1+6cm/2 cm
¢,=1.20x10° C-0.300x10° C=0.900x10° C
kg (899x10° N-m*/C?)(0.900x10°° C)

= =|1.35x10° V
i 6x10” m

(b) Outside the larger sphere,

9, =0.300x107® C on the smaller sphere

1%

3
f o Rl Vi L35310° Y

" n o 006m

£={2.25x10° V/m away |

Outside the smaller sphere,

1.35x10°

: A%
E, = r=|6. b
2 0.02m r | 6.74 x10° V/m away]

The smaller sphere carries less charge but creates a much stronger electric field than the
larger sphere.

P2548 (3 E=[0]

(8.99x 109)(26.0>< 10*”)

v=2d. =[167MV ]

R 0.140

kq (899x10°)(26.0x10)

W) e t= T =[5.84 MN/C | away

kq (899x10°)(26.0x107)
K. 0.200

=[L17mMv]

kq _(899x10°)(26.0x10°)

(c) E= —I—;—[ (O 140)2 =|11.9 MN/C | away

=

<2 _ 167 V]

=
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(d) From the kinetic energy of part (c),

e
=—-1’nvf

7 81x107Y ])
1 67x1077 kg

=3.06%10° m/s=(306 km/s

(e) Using the constant-acceleration equation: v2=v?+2a(x, —x
q f i f i

(3.06x10° ms)” = 0+24(0.120 m)

a= l 3.90x10" m/s? | toward the negative plate

® X F=ma=(167x107 kg)(390x10" mis?)=

toward the negative plate

—16
il e —651"10_19 4.07 kN/C
g 1.60x10"° C

(h) IThey are the same‘|

B
P25.66 @ V-V, = —IE -ds and the field at distance r from a =5
A
uniformly charged rod (where r > radius of charged rod) is ‘
£ A 3 2k, A

2weygr r

In this case, the field between the central wire and the coaxial

cylinder is directed perpendicular to the line of charge so that
FIG. P25.66

ViV ——jzke/ldr—Zk Mn(r )
b

or AV = 2k,A ln(r—”J
Ty

(b) From part (a), when the outer cylinder is considered to be at zero potential, the potential
at a distance r from the axis is
V=2kAln (’—]
#

The field at r is given by
E= N _zkel(ij(_%) _ 2k
or T, r r
But, from part (a), 2k, A = i b¥igs :
ln(ra /rb)

AV 1
Therefore,| E = —————————(-) p
In (ra /n ) r
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Electric Potential 93

according to T cos @ = mg. Dividing the expression for the horizontal component by that for
the vertical component, we find that
4VixR

s
d*mg L

) 12
tan @ = Vo = [ = ng for small x

4RL

If V, is less than this value, the only equilibrium position of the ball is hanging straight down.

If V, exceeds this value, the ball will swing over to one plate or the other.

P2571  (a) vzﬂ_ﬁzﬁ(rz_rl)
| Lk Ent

From the figure, forr >> a, r, — r; = 2acos@. Note that r, is

approximately equal to 7. T_
Then - V~~fk"—q2acos(9zk‘fp—(;os‘9 2a
nr r l

(b) Er:__=

ANS FIG. P25.71

In spherical coordinates, the @ component of the gradient is — L (—) ;

r\ 00
1{ oV k,psin@
Therefore, B e Coila il
ererore 0 r(aoj ' r3
o k.p
(c) Forr>>a, 8=90" E,(90°) =0, Ey(90°) = -2~
i
Forr >>a, 6 =0°: Er(0°)=2<§—p, E9(0°)=() '
r

[Yes,|these results are reasonable.

()} because as r — 0, E — co. The magnitude of the electric field between the charges
of the dipole is not infinite.

(€) Substituting 1 ~r, ~r=(x>+ y*)""> and cos = . 77 into V = kP c20s9
gives - 2y ) ¥
k.py
b 5 e
(x +y )
E aV  3k,pxy
and s T T s S
ox (x2+y2)/
> ___a_v_ kep(2y2 —xz)

yayW
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P25T2. . 4l < Vidiwliee the potentialy = Xed

r

The element of charge in a shell is dg = p (volume element) or dg = p(47t rzdr) and the
charge ¢q in a sphere of radius r is

f Arrd
=dnp|r?dr=
q p{r r p[ - ]

Substituting this into the expression for dU, we have

3 2
dUu = (M)dq =k,p < 7 (l)p(m rzdr) =k, L 2rtdr
r 3 r 3

2 R 2
U=IdU=ke(16n ]p2jr4dr=ke(16” JszS
0

3 15

k,Q*
R

But the fotal charge, Q = p%n R?. Therefore,| U = g

P25.73 For an element of area which is a ring of radius r and width dr,dV = % ’
{ I X

dq = 0dA = Cr(2m rdr) and

rdr

R
V=C(2nk,)|———=|7k,C|R R2+x2+x21n[-—x—)

P25.74 Take the illustration presented with the problem
as an initial picture. No external horizontal forces
act on the set of four balls, so its center of mass stays
fixed at the location of the center of the square. As the
charged balls 1 and 2 swing out and away from each
other, balls 3 and 4 move up with equal y-components
of velocity. The maximum-kinetic-energy point is illustrated.
System energy is conserved because it is isolated:

ANS FIG. P25.74

K, +U; =Kfi+Uf

0+U; =K, +U;

2 2
keq =lmv2 +—1-mv2 +lmv2+lmv2+—”q
a 2 2 2 2 3a

2keq2

= 2mv2 — V= keCIZ.
3a V 3am
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