
SMU Physics 1307 : Fall 2008

Notes on Rotational Motion

Fixed Axis

Consider a rigid object rotating about a fixed axis. There is an angular frequency ω = dθ/dt
which we can think of as a vector ~ω = ωẑ pointing along the axis of rotation. Positive ω
is counterclockwise rotation and negative ω is clockwise rotation. Correspondingly, if the
fingers of the right hand curl in the direction of rotation, the thumb points in the direction
of ~ω. Any point in the object with displacement vector from the origin ~r = rr̂ , with r = |~r| ,
has purely tangential velocity ~v = vθ̂ given by

~v = ~ω × ~r = ωr ẑ × r̂ = ωrθ̂

Here r̂ and θ̂ are the radial and tangential unit vectors we introduced in class

r̂ = cos θ x̂+ sin θ ŷ θ̂ = cos θ ŷ − sin θ x̂

Since x̂× ŷ = ẑ, it may be seen that r̂ × θ̂ = ẑ. Thus we may write v = rω but it must be
understood that v is the tangential component of ~v, not the (positive) magnitude |~v| of ~v ;
however, |~v| = |v| = r|ω| . The acceleration of this point is given by

~a =
d

dt
~v = (

d

dt
~ω)× ~r + ~ω × (

d

dt
~r)

Now,

(
d

dt
~ω)× ~r = r

dω

dt
ẑ × r̂ = rαθ̂

where we have defined the angular acceleration α = dω/dt. Also,

~ω × (
d

dt
~r) = ~ω × (~ω × ~r) = ~ω × (ωrθ̂) = −rω2r̂

Thus ~a breaks up into tangential and centripetal parts

~a = rαθ̂ − rω2r̂

where rω2 = v2/r.

The total angular momentum about the axis of rotation is given by the sum of all the angular
momenta of the particles making up the rigid object :

~L =
∑
j

mj~rj × ~vj =
∑
j

ωmj |~rj |2 r̂ × θ̂ = Iωẑ

Here I is the moment of inertia about the axis of rotation

I =
∑
j

mj |~rj |2

Taking ~L = Lẑ leads to the important relation

L = Iω
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Taking the time derivative of ~L we find

d

dt
~L =

∑
j

mj (~vj × ~vj + ~rj × ~aj)

Since ~vj × ~vj = 0 and mj~aj = ~Fj ,

d

dt
~L =

∑
j

~rj × ~Fj

The net force on mj may be written as ~Fj = ~F ext
j + ~F int

j . Here ~F int
j is the net force on mj

coming from other particles within the object, and ~F ext
j is the net force on mj coming from

external sources. As discussed in class, if all internal forces between pairs of particles are
directed along the line separating the particles, an assumption we will make, the internal
forces make no net contribution to the sum. Thus,

d

dt
~L = ~τ ext =

∑
j

~rj × ~F ext
j

Taking ~τ ext = τ extẑ and using dL/dt = I dω/dt = Iα we find the second important relation

dL

dt
= τ ext = Iα

Lets examine ~τ ext more carefully. The summation given above is in terms of forces acting
on very small elements mj of the object. It is in essence a microscopic description. The
external forces we would like to consider are either gravity, which acts on all particles at
once, or are direct contact forces, like a string tension or frictional force pushing or pulling
on a particular point of the object. So let us write ~F ext

j as a sum over these forces

~F ext
j = mj ~g +

∑
q

~Fjq

Here q indexes the non-gravitational contact forces and j indexes the (microscopic) masses
mj . Thus,

~τ ext =
∑
j

mj ~rj × ~g +
∑
j

∑
q

~rj × ~Fjq

The center of mass ~R is defined by

M ~R =
∑
j

mj ~rj

Where M =
∑
jmj . Thus, ∑

j

mj ~rj × ~g = ~R× (M~g )

Now, it can be assumed that ~Fjq is non-zero only for masses mj which are in the immediate
vicinity of ~rq , the point application of the qth force. Thus we may take ~rj = ~rq , for the
masses subject to the qth force. This leads to∑

j

∑
q

~rj × ~Fjq =
∑
q

~rq ×
∑
j

~Fjq =
∑
q

~rq × ~Fq
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Here ~Fq =
∑
j
~Fjq is the total qth force, the sum of the forces exerted by the qth force on

each mj . Thus, finally,

~τ ext = ~R× (M~g ) +
∑
q

~rq × ~Fq

It is very important to realize that
∑
q ~rq × ~Fq looks very similar to

∑
j ~rj × ~F ext

j but the
meaning is very different. The sum over j extends over all masses mj , with respective po-
sitions ~rj , with ~F ext

j being the total external force on mj . The sum over q extends over all
external contact forces, acting at points ~rq on the object, with ~Fq being the qth force. In
solving physical problems it is the expression in the box above which will be used.

The kinetic energy of a rigid object rotating around a fixed center of rotation is given by

K =
∑
j

1
2mj ~vj · ~vj =

∑
j

1
2mj ω

2 |~rj |2 θ̂ · θ̂

Using the definition of I and recognizing that θ̂ · θ̂ = 1 we find

K = 1
2Iω

2

Given dK/dt = Iαω, the change in kinetic energy between t1 and t2 is given by

∆K =
∫ t2

t1

dt Iαω =
∫ t2

t1

dt ω τ ext

In general ∆K = Wnet = Wc + Wn , where Wc is the work done by conservative torques
and Wn is the work done by non-conservative torques. We also write τ ext = τ ext

c + τ ext
n .

The conservative torques τ ext
c (θ) are purely a function of the angle. Thus we may define the

potential energy as Wc = −∆U . Since dθ = ωdt ,

Wc =
∫ t2

t1

dt ω τ ext
c (θ) =

∫ θ2

θ1

dθ τ ext
c (θ) = −(U(θ2)− U(θ1))

Given some reference angle θ0 the potential energy is defined as

U(θ) = U(θ0)−
∫ θ

θ0

dθ τ ext
c (θ)

Note that τ ext
c (θ) = −dU/dθ and that U(θ0) is an arbitrary constant, often set to zero.

Thus we can define a mechanical energy

E = 1
2Iω

2 + U(θ)

which leads to the very important relation

∆E = Wn

In the case that we are considering a segment of the motion with |ω| > 0 (motion is mono-
tonic) for which we know τ ext

n at each θ then we may also write

Wn =
∫ θ2

θ1

dθ τ ext
n (θ)
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In practice τ ext
n (θ) will often be a constant (independent of time, and thus θ). In this case

Wn = τ ext
n (θ2 − θ1)

In most problems assigned in this class gravity will provide the only conservative torque. In
this case the position of the center of mass is

~R = R r̂ = R(cos θ x̂+ sin θ ŷ)

and thus, from the expression above for ~τ ext , and given ~g = −gŷ ,

~τ ext
g = τ ext

g ẑ = ~R× (M~g ) = −MgR (cos θ x̂+ sin θ ŷ)× ŷ = −MgR cos θ ẑ

So, choosing θ0 = 0 and Ug(θ0) = 0 ,

Ug(θ) =
∫ θ

0

dθMgR cos θ = MgR sin θ

But R sin θ = Y , the y coordinate of the center of mass. Thus, in the case that gravity
provides the only conservative torque we have

E = 1
2Iω

2 +Mg Y

Rolling

For rolling motion we will only consider a circular object, with radius denoted by r , whose
center of mass lies at the center of the circle. This will lead to the important property that
the velocity of the center of mass ~V = V t̂ , where t̂ is the unit vector tangent to the surface,
is related to the angular velocity ω by

V = −ω r

The negative sign is because rightward motion (positive V ) produces clockwise rotation
(negative ω). For a rolling object the angular momentum will be highly dependent on where
we choose the origin of coordinates. Choosing the center of mass as the origin introduces
complications, since this is an accelerated reference frame in general. Thus the angular
momentum and its derivative with respect to time is not a very helpful variable to use in
solving problems. One property that holds in all cases, including the fixed axis situation
considered above, is that the motion of the center of mass depends only on the external
forces

M ~A =
∑
j

F ext
j =

∑
q

~Fq

where we have defined ~A = d~V /dt . Another equation that may be used is

τ ext
cm = Ic α

Note that this is not expressed in terms of the rate of change of angular momentum with
respect to a fixed origin. It also differs from the analogous expression in the fixed axis case
because Ic and τ ext

cm are computed with respect to the center of mass, rather than a particular
fixed rotation axis. Thus, given any origin with vector ~R to the center of mass,

Icm =
∑
j

mj |~rj − ~R|2 =
∑
j

mj

(
|~rj |2 − 2~rj · ~R+ |~R|2

)
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Using the definitions of I and ~R given above, this leads to the parallel axis theorem

I = Icm +M |~R|2

The torque about the center of mass is given by

~τ ext
cm = τ ext

cm ẑ =
∑
q

(~rq − ~R)× ~Fq

It is often very useful in rolling motion problems to make use of energy concepts. In general,
with ~V the velocity of the center of mass, for a rigid body moving in two dimensions

K = 1
2 M |~V |

2 + 1
2 Icm ω

2

For a rolling object, V = −ωr , so K takes the form

K = 1
2

(
Mr2 + Icm

)
ω2 = 1

2

(
M + Icm/r

2
)
V 2

Using the parallel axis theorem, this has the same form as the kinetic energy of an object
rotating about a fixed axis a distance r from the center of mass. In fact this is the case; the
point on the objects perimeter which is in contact with surface is momentarily at rest and
the entire object is instantaneously rotating about this point.
To compute the work done by various forces, it is most simple to express an infinitesimal
change in K as

dK = M ~V · d~V + Icm ω dω = M ~A · d~R+ Icm αdθ

Where we have used ω dω = ω αdt = αdθ and ~V · d~V = ~V · ~Adt = d~R · ~A . Using the above
force laws we may write this as

dK = ~F ext · d~R+ τ ext
cm dθ

Note that the normal force cannot change the kinetic energy. First it is perpendicular to
d~R , and thus cannot change the first term in dK . Secondly, the normal force points directly
at the center of mass (we chose our object to have this property) thus does not contribute
to τ ext

cm . Consider the contribution of the frictional force dKf to dK . It points tangent to
the surface so we may write its contribution to ~F ext as ~f = f t̂ , where t̂ is the unit tangent
to the surface and the sign of f has been left undetermined. The torque it exerts may be
written as −rn̂× ~f = rf ẑ , where n̂ is the unit normal to the surface. Thus we find that the
frictional force does no net work when an object rolls

dKf = f t̂ · d~R+ rfdθ = 0

where we have used t̂ ·d~R = V dt = −rω dt = −r dθ . Finally, gravity exerts no torque about
the center of mass since∑

j

(~rj − ~R)× (mj~g) = M~g × ~R− ~g ×
∑
j

mj ~rj = 0

Thus
dKg = M~g · d~R = −Mg dY

Where, as above, Y is the y position of the center of mass. Thus we can ignore friction and
the normal force and define an energy with ∆E = Wn as

E = 1
2

(
M + Icm/r

2
)
V 2 + Mg Y

It can also be shown that tensions between objects in a system may change the kinetic
energy of individual objects but cannot change the entire kinetic energy of the system.
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